

Ingersoll-Rand 4IRJ7N & 4IRJ7T Diesel Engine

WORKSHOP MANUAL

Doosan purchased Bobcat Company from Ingersoll-Rand Company in 2007. Any reference to Ingersoll-Rand Company or use of trademarks, service marks, logos, or other proprietary identifying marks belonging to Ingersoll-Rand Company in this manual is historical or nominative in nature, and is not meant to suggest a current affiliation between Ingersoll-Rand Company and Doosan Company or the products of either.

54533500 Apr.2000 Revised (10-12) © Ingersoll-Rand Co. 2000

FOREWORD

This Workshop Manual is designed to help you perform necessary maintenance, service, and repair procedures on applicable Ingersoll-Rand industrial engines.

Information contained in this Workshop Manual is the latest available at the time of publication.

Ingersoll-Rand reserves the right to make changes at any time without prior notice.

This Workshop Manual is applicable to 1999 and later models.

NOTICE

Before using this Workshop Manual to assist you in performing engine service and maintenance operations, it is recommended that you carefully read and throughly understand the information contained in Section - 1 under the headings "General Repair Instruction" and "Notes on The Format of This Manual"

TABLE OF CONTENTS

SECTION	1.	GENERAL INFORMATION	
SECTION	2.	MAINIEVANE	I
SECTION	3.	ENCINE ASSEMBLY (1)	
SECTION	4.	ENCINE ASSEMBLY (2)	
SECTION	5.	ENGINE ASSEMBLY (3)	2
SECTION	б.	LURICATING SYSTEM	.08
SECTION	7.	COLING SYSTEM	20
SECTION	8.	FUEL SASTEM	125
SECTION	9.	TROHESHOOTING	-38
SECTION	10.	REPAIR STANDARDS	ഒ
SECTION	11.	CONVERSION TABLE	76

SECTION 1

GENERAL INFORMATION

TABLE OF CONTENTS

ITEM	PAGE
Greal repair instructions	5
Notes on the format of this manual	5
Main data and specifications	9
Tightening taque specifications	10

GENERAL REPAIR INSTRUCTIONS

1. Before performing any service operation with the engine mounted, disconnect the grounding cable from the battery.

This will reduce the chance of cable damage and burning due to short circuiting.

2. Always use the proper tool or tools for the job at hand. Where specified, use the specially designed tool or tools.

3. Use genuine INGERSOLL-RAND parts.

4. Never reuse cotter pins, gaskets, O-rings, lock washers, and self locking nuts. Discard them as you remove them. Replace them with new ones.

5. Always keep disassembled parts neatly in groups. This will ensure a smooth reassembly operation. It is especially important to keep fastening parts separate. These parts vary in hardness and design, depending on their installation position.

6. All parts should be carefully cleaned before inspection or reassembly.0il ports and other openings should be cleaned with compressed air to make sure that they are completely free of obstructions.

7. Rotating and sliding part surfaces should be lubricated with oil or grease before reassenbly.

8. If necessary, use a sealer on gaskets to prevent leakage.

9. Nut and bolt torque specifications should be carefully followed.

10. Always release the air pressure from any machine-mounted air tank(s) before dismounting the engine or disconnecting pipes and hoses. To not do so is extremely dangerous.

11. Always check and recheck your work. No service operation is complete until you have done this.

NOTES ON THE FORMAT OF THIS MANUAL

This Workshop Manual is applicable to INGERSOLL-RAND industrial engine or engines which is or are stated in the title.

When more than two engine models are dealt in the manual, such engines have common parts and components as well as data and specifications, unless otherwise specified.

1. Find the applicable section by referring to the Table of Contents at the beginning of the Manual.

2. Common technical data such as general maintenance items, service specifications, and tightening torques are included in the "General Information" section.

The section ENGINE ASSEMBLY is an exception. This parts are divided in three sections to facilitates indexing.

3. Each section is divided into sub-sections dealing with disassembly, inspection and repair, and reassembly.

4. When the same servicing operation is applicable to several different units, the manual will direct you to the appropriate page.

5. For the sake of brevity, self-explanatory removal and installation procedures are omitted. More complex procedures are covered in detail.

6. Each service operation section in this Workshop Manual begins with an exploded view of the applicable area. A brief explanation of the notation used follows.

7. Below is a sample of the text of the Workshop Manual.

8. The following symbols appear throughout this Workshop Manual. They tell you the type of service operation or step to perform.

←→	···· [,]	Removal	I	Adjustment
*		Installation	E	Cleaning
+ [↑] ↓	••••	Disassembly	W	Important operation requiring extra care
**		Reassembly	Ð	Specified torque (tighten)
		Alignment (marks)	()	Special tool use required or recommended(Isuzu tool or tools)
-	••••	Directional indication	()	Commercially available tool use required or recommended
]•		Inspection		Lubrication (oil)
Ą		Measurement	- C	Lubrication (grease)
			.	Sealant application

9. Measurement criteria are defined by the terms "standard" and "limit". A measurement falling within the "standard' range indicates that the applicable part or parts are serviceable.

"Limit" should be thought of as an absolute value.

A measurement which is outside the "limit" indicates that the applicable part or pass must be either repaired or replaced.

IO. Components and parts are listed in the singular form throughout the Manual.

Directions used in this Manual are as follows:
 Front
 The cooling fan side of the engine viewed from the flywheel.

Right The right hand side viewed from the same position.

Ieft

The left hand side viewed from the same position

Rear

The flywheel side of the engine.

Cylinder numbers are counted from the front of the engine.

The front most cylinder is No. 'I and rear most cylinder is the final cylinder number of the engine.

The engine's direction of rotation is counterclockwise viewed from the flywheel.

Engine Model		۲ ۵-4.iG1	
Item		A-4301	
Engine type		Water cooled, four-cycle, in-line, overhead valve	
Combustion chamber type		Direct injection	
Cylinder liner type		Dry	
No. of cylinders - Bore x Stroke	mm(in.)	4 - 95.4 × 107	
Total piston displacement	lit(cid)	3.059 (186.7)	
Compression ratio (To 1)		18.6	
*Engine dimensions	mm(in.)	739 x 625 x 746	
Length x Width x Height		(29.1 × 24.6 × 29.4)	
*Engine weight (Dry)	kg(lb.)	248 (547)	
Fuel injection order		1 – 3– 4 – 2	
*Fuel injection timing (B.T.D.C.)	degrees	16	
Specified fuel		Diesel fuel	
Injection pump		In-line plunger, Bosch A type	
Governor		Variable speed mechanical type	
*Low idle speed	min ^{.1}	850 – 1,000	
Injection nozzle		Multi-hole type	
Injection starting pressure MPa(kg	gf/cm²/psi)	18.1 (185/2630)	
Fuel filter type		Cartridge papaer element	
Water sedimentor (if so equipped)		Sediment/water level indicating type	
Compression pressure MPa(kg	gf/cm²/psi)	3.04 (31/441)	
Valve clearance (at cold) Intake	mm(in.)	0.40 (0.0157)	
Exhaust	mm(in.)	0.40 (0.0157)	
Lubrication method		Pressurized circulation	
Oil pump		Trochoid type	
Main oil filter type		Cartridge paper element, full flow	
Partial oil filter		Not equipped	
*Lubricating oil volume	lit.(qts)	7.6 – 9.6 (Oil pan)	
Oil cooler (if so equipped)		Water cooled built in oil filter	
Cooling method		Pressurized forced circulation	
Coolant volume	lit.(qts)	5.0 (5.3)	
Water pump		Belt driven, impeller type	
Thermostat type		Wax pellet type	
*Alternator	V-A	12 – 50	
*Starter	V-kW	12 – 2.2	

MAIN DATA AND SPECIFICATIONS

Specifications marked with an asterisk (*) will vary according to engine application.

TIGHTENING TORQUE SPECIFICATIONS

The tightening torque values given in the table below are applicable to the bolts unless otherwise specified.

			N·m (kgt·m
Bolt Identification	4	8 8	9
Bolt Diameter × pitch (mm)	\bigcirc	\bigcirc \bigcirc	
M 6 ×1.0	$3.9 \sim 7.8 \{ 0.4 \sim 0.8 \}$	4.9~ 9.8 { 0.5~ 1.0}	
M 8 ×1.25	7.8 \sim 17.7 { 0.8 \sim 1.8}	11.8~ 22.6 { 1.2~ 2.3}	16.7~ 30.4 { 1.7~ 3.1}
M10 × 1.25	20.6~ 34.3 { 2.1~ 3.5}	27.5~ 46.1 { 2.8~ 4.7}	37.3~ 62.8 { 3.8~ 6.4}
* M10×1.5	19.6~ 33.4 { 2.0~ 3.4}	27.5~ 45.1 { 2.8~ 4.6}	36.3~ 59.8 { 3.7~ 6.1}
M12 × 1.25	49.1~ 73.6 { 5.0~ 7.5}	60.8 ~ 91.2 { 6.2 ~ 9.3}	75.5~114.0{7.7~11.6}
* M12 × 1.75	45.1~ 68.7 { 4.6~ 7.0}	56.9~ 84.4 { 5.8~ 8.6}	71.6~107.0{7.3~10.9}
M14 × 1.5	76.5~115.0 { 7.8~11.7}	93.2 ~ 139.0 { 9.5 ~ 14.2}	114.0 ~ 171.0 {11.6 ~ 17.4}
* M14 × 2.0	71.6~107.0{7.3~10.9}	88.3 ~ 131.0 { 9.0 ~ 13.4}	107.0 ~ 160.0 {10.9 ~ 16.3}
M16 × 1.5	104.0~157.0 {10.6~16.0}	135.0~204.0 {13.8~20.8}	160.0 ~ 240.0 {16.3 ~ 24.5}
* M16 × 2.0	100.0~149.0 {10.2~15.2}	129.0 ~ 194.0 {13.2 ~ 19.8}	153.0~230.0 {15.6~23.4}
M18 × 1.5	151.0 ~ 226.0 {15.4 ~ 23.0}	195.0 ~ 293.0 {19.9 ~ 29.9}	230.0 ~ 345.0 {23.4 ~ 35.2}
* M18×2.5	151.0 ~ 226.0 {15.4 ~ 23.0}	196.0 ~ 294.0 {20.0 ~ 30.0}	231.0 ~ 346.0 {23.6 ~ 35.3}
M20 × 1.5	206.0~310.0 {21.0~31.6}	270.0 ~ 405.0 {27.5 ~ 41.3}	317.0 ~ 476.0 {32.3 ~ 48.5}
* M20 × 2.5	190.0 ~ 286.0 {19.4 ~ 29.2}	249.0 ~ 375.0 {25.4 ~ 38.2}	293.0 ~ 440.0 {29.9 ~ 44.9}
M22 × 1.5	251.0 ~ 414.0 {25.6 ~ 42.2}	363.0 ~ 544.0 {37.0 ~ 55.5}	425.0 ~ 637.0 {43.3 ~ 64.9}
* M22 × 2.5	218.0 ~ 328.0 {22.2 ~ 33.4}	338.0~507.0 {34.5~51.7}	394.0 ~ 592.0 {40.2 ~ 60.4}
M24 × 2.0	359.0 ~ 540.0 {36.6 ~ 55.0}	431.0~711.0 {43.9~72.5}	554.0~831.0 {56.5~84.7}
* M24 × 3.0	338.0 ~ 507.0 {34.5 ~ 51.7}	406.0~608.0 {41.4~62.0}	521.0 ~ 782.0 {53.1 ~ 79.7}

STANDARD BOLT

N·m (kaf·m)

An asterisk (*) indicates that the bolts are used for female threaded parts that are made of soft materials such as casting.

TIGHTENING TORQUE SPECIFICATIONS

The tightening torque values given in the table below are applicable to the bolts unless otherwise specified.

FLANGED HEAD BOLT

Bolt Identification Bolt Diameter × pitch (mm)			(A) AND AND A
M 6 × 1.0	4.6~ 8.5 { 0.5~ 0.9}	6.6~ 12.2 { 0.6~ 1.2}	
M 8 × 1.25	10.5~ 196 { 1.1~ 2.0}	15.3~ 28.4 { 1.6~ 2.9}	18.1~ 33.6 { 2.1~ 3.4}
M10 × 1.25	23.1~ 38.5 { 2.4~ 3.9}	35.4~ 58.9 { 3.6~ 6.1}	42.3~ 70.5 { 4.3~ 7.2}
* M10 × 1.5	22.3~ 37.2 { 2.3~ 3.8}	34.5~ 57.5 { 3.5~ 5.8}	40.1~ 66.9 { 4.1~ 6.8}
M12 × 1.25	54.9~ 82.3 { 5.6~ 8.4}	77.7~117.0 { 7.9~11.9}	85.0 ~ 128.0 { 8.7 ~ 13.0}
* M12 × 1.75	51.0~ 76.5 { 5.2~ 7.8}	71.4~107.0{ 7.3~10.9}	79.5~119.0{ 8.1~12.2}
M14 × 1.5	83.0~125.0 { 8.5~12.7}	115.0~172.0 {11.7~17.6}	123.0~185.0 {12.6~18.9}
* M14 × 2.0	77.2~116.0{7.9~11.8}	108.0~162.0 {11.1~16.6}	116.0~173.0 {11.8~17.7}
M16 × 1.5	116.0~173.0 {11.8~17.7}	171.0~257.0 {17.4~26.2}	177.0~265.0 {18.0~27.1}
* M16 × 2.0	109.0~164.0 {11.2~16.7}	163.0~244.0 {16.6~24.9}	169.0 ~ 253.0 {17.2 ~ 25.8}

A bolt with an asterisk (*) is used for female screws of soft material such as cast iron.

N·m (kgf·m)

SPECIAL PARTS FIXING NUTS AND BOLTS

Cylinder Head Cover, Cylinder Head, and Rocker Arm Shaft Bracket

N·m (kgf·m/lb.ft)

N⋅m (kgf⋅m/lb.ft)

Engine Electrical

N·m (kgf·m/lb.ft)

Fuel Injection System

MAINTENANCE

SECTION 2

MAINTENANCE

TABLE OF CONTENTS

ITEM	PAGE
Model identification	
Injection pup identification	
Inbriating system	
Relşem	
Coling system	
Valve clearance adjutment	æ
Injetiotining	
Conpression pressure measurement	
Reconnerched lubricents	
Egineqaikit	

MAINTENANCE

Servicing refers to general maintenance procedures to be performed by qualified service personnel. Maintenance interval such as fuel or oil filter changes should be referred to "INSIRUCTION MANUAL".

MAKER¹/_P 1 ASS'Y NO. INJ.PUMP ASS'Y NO. 2 Distributor type

MODEL IDENTIFICATION

Engine Serial Number The engine number is stamped on the rear left hand side of the cylinder body.

INJECTION PUMP IDENTIFICATION

Injection volume should be adjusted after referring to the adjustment data applicable to the injection pump installed.

The injection purp identification number (A) is stamped on the injection purp identifications plate.

Note:

Always check the identification number before beginning a service operation.

Applicable service data will vary according to the identification number.

Use of the wrong service data will result in reduced engine performance and engine damage.

1. ZEXEL (Manufacturer of the injection pump) identification number

LUBRICATING SYSTEM Main Oil Filter Replacement Procedure 1. Loosen the drain plug to drain the engine oil.

2. Wait a few minutes and then retighten the drain Plug.

3. Lossen the used oil filter by turning it counterclockwise with a filter wrench.

4. Clean the oil cooler fitting face. This will allow the new oil filter to seat properly.

5. Apply a light coat of engine oil to the O-ring.

6. Turn in the new oil filter until the filter O-ring is fitted against the sealing face.

7. Use a filter wrench to turn in the filter an additional

9. Start the engine and check for oil leakage from the

1 and 1/4 of a turn.

ified level if required.

main oil filter.

FUEL SYSTEM Fuel Filter Replacement Procedure

1. Loosen the used fuel filter by turning it counter-clockwise with the filter wrench. Filter Wrench

2. Clean the upper cover fitting face. This will allow the new fuel filter to seat properly.

- 3. Apply a light coat of engine oil to the O-ring.
- 4. Supply fuel to the new fuel filter to facilitate bleed-ing.

5. Turn in the new fuel filter until the filter O-ring is fit-ted against the scaling face. Be very careful to avoid fuel spillage.

6. Use a filter wreach to turn in the fuel filter an additional 1/3 to 2/3 of a turn.

MAINTENANCE

Air Bleeding

1. For the engine equipped with in-line type injection pump

I) Loosen the priming pump cap on the injection pump

2) Loosen the fuel return eye bolt on the fuel filter.

3) Operate the priming pump until there are no more bubbles visible in the fuel being discharged from the fuel return eye bolt on the fuel filter.

4) Retighten the fuel return eye bolt on the fuel filter.

5) Loosen the bleeder bolt while operating the injection pump priming pump to check that the air has been bled completely.

6) Operate the priming pump several times to check for fuel leakage around the injection pump and the fiel filter.

2 . For the engine equipped with distributor type injection pump

I) Loosen the bleeder screw on the injection pump overflow valve.

2) Operate the priming pump until fuel mixed with foam flows from the bleeder screw.

3) Tighten the bleeder screw.

4) Operate the priming pump several times and check for fuel leakage.

Injection Nozzle

Injection Nozzle Inspection

Use a nozzle tester to check the injection nozzle opening pressure and the spray condition. If the opening pressure is above or below the specified value, the injection nozzle must be replaced or

reconditioned.

If the spray condition is bad, the injection nozzle must be replaced or reconditioned.

Injection Nozzle Opening Pressure

MPa	(kgf/cm2/psi)
18.1	(185/2,630)

Spray Condition

Injection Nozzle Adjustment

1. Clamp the injection nozzle in a vise.

2. Use a wrench to remove the injection nozzle retaining n.t.

3. Install the injection nozzle 1, the push rod 2, the spring 3, and adjusting shim 4.

Retaining Nut Torque

N-m (kgf.m/lb.ft)	
39 - 49 (4.0 - 5.0/29 - 36)	

4. Attach the injection nozzle holder to the injection nozzle tester.

5. Apply pressure to the nozzle tester to check that the injection nozzle opens at the specified pressure.

If the injection nozzle does not open at the specified pressure, install or remove the appropriate number of adjusting shims to adjust it.

Adjusting Shim Availability

mm(in.) 0.1-0.59 (0.0039-0.023)

WARNING:

23

TEST FLUID FROM THE INJECTION NOZZLE TESTER WILL SPRAY OUT UNDER GREAT PRESSURE. IT CAN EASILY PUNCTURE A PERSON'S SKIN. KEEP YOUR HANDS AWAY FROM THE INJECTION NOZZLE TESTER AT ALL TIMES.

(I) Correct

(2) Incorrect (Restrictions in orifice)

MAINTENANCE

COOLING SYSTEM

Cooling Fan Drive Belt Fan belt tension is adjusted by moving the alternator. A. Crankshaft damper pulley

- B. Alternator pulley
- C. Cooling fan drive pulley

D. Depress the drive belt mid-portion with a 98 N (IO kgf/22 lb.ft) force.

Drive Belt Deflection

MM (IN.)	
10.0 (0.39)	

Thermostat Operating Test

- 1. Completely submerge the thermostat in water.
- 2. Heat the water.

Stir the water constantly to avoid direct heat being applied to the thermostat.

3. Check the thermostat initial opening temperature.

Thermostat Initial Opening Temperature

Ð

C (F) 82(180)

4. Check the thermostat full opening temperature. Thermostat Full Opening Temperature

C (1	F)		
95	(203)		

Valve Lift at Fully Open Position

mm (in.)	
8.0 (0.315)	

- 1. Thermostat
- 2. Agitating Rod
- 3. Wooden Piece

VALVE CLEARANCE ADJUSTMENT

1. Retighten the rocker ann shaft bracket bolts in sequence as shown in the illustration.

Rocker	Arm	Shaft.	Bracket.	Bolt
	7 7 111	DIMEC	DECICICC	DOT

Torque	N-m (kgf-m/lb.ft)
49-59 (5-6/36-43)	

2. Bring the piston in either the No. 1 cylinder or the No. 4 cylinder to TDC on the compression stroke by turning the crankshaft until the crankshaft damper pulley TDC line is aligned with the timing pointer.

3. Check for play in the No. 1 intake and exhaust valvepush rods.

If the No. 1 cylinder intake and exhaust valve push rods have play, the No. '1 piston is at TDC on the compression stroke.

If the No. 1 cylinder intake and exhaust valve push rods are depressed, the No. 4 piston is at TDC on the compression stroke.

Adjust the No. 1 or the No. 4 cylinder valve clearances while their respective cylinders are at TDC on the com-pression stroke.

Valve Clearance	mm(in.)
0.40 (0.016)	

Loosen each valve clearance adjusting screw as shown in the illustration. (At TDC on the compression stroke of the No. 1 cylinder)

Insert a feeler gauge of the appropriate thickness between the rocker arm and the valve stem end.

4. Turn the valve clearance adjusting screw until a slight drag can be felt on the feeler gauge.

5. Tighten the lock nut securely.

I

Rotate the crankshaft 360 degree.

Realign the crankshaft damper pulley TDC line with the timing pointer.

Adjust the clearances for the remaining values as shown in the illustration. (At TDC on the compression stroke of the No. 4 stroke)

INJECTION TIMING

Injection Timing Confirmation Procedure 1 . In-line type injection pump

1) Rotate the crankshaft clockwise to align the camshaft gear timing mark "O" with the timing gear case cover pointer.

The No. 1 cylinder will now be at the point where nearly injection timing.

2) Remove the No. 1 fuel injection pipe.

3) Remove the delivery valve holder 1 , the delivery valve spring 2, and the delivery valve 3 .

4) Tighten the delivery value holder to the specified tarque.

Deliverv Valve Holder Torque N=m (kgf~m/lb.ft) 39-44 (4.0-4.5/29-33)

5) Operate the injection pump priming pump while slowly rotating the crankshaft until fuel stops flow-ing from the delivery valve holder.

6) Conform that the crankshaft damper pulley notched line is aligned with the timing gear case cover pointer.

Injection Timing (Static BIDC) 16 degree

7) Remove the delivery valve holder.

8) Install the delivery value 1, the delivery value spring 2, and the delivery value holder 3.

9) Tighten the delivery value holder to the specified torque.

10) Install the fuel injection pipes and tighten them to the specified torque.

Fuel Injection Pipe Torque N-m (kgflm/lb.ft) 20-39 (2-4/15-29

11) Operation to air breeding.

]

Ð

MAINTENANCE

2. Distributor type injection pump

I) Rotate the crankshaft clockwise to align the camshaft gear timing mark ".0" with the timing gear case cover pointer.

The No. 1 cylinder will now be at the point where nearly injection timing.

- 2) Remove injector pump distributor head plug.
- 3) Fit a dial gauge and set lift to 1 mm (0.039 in).

4) Set crankshaft damper pulley Top Dead Center mark about 45" before Top Dead Center from the pointer.

5) Set dial gauge in the "0" position.

 \mathbf{Q}

6) Turn the crankshaft a little rightwise and leftwise and see if the pointer is stable in the "0" position.

7) Turn the crankshaft in the normal direction and read the measuring device's indication at TDC.

Starting Timing	mm(in.)
0.5 (0.02)	

8) If the injection timing is outside the specified range, continue with the following steps.

9) Loosen the injection pump fixing nuts and bracket bolts.

IO) Adjust the injection pump setting angle.

If injection timing will be advanced, move the injection pump away from the engine.

If injection timing will be retarded, move the injection pump toward the engine.

Tighten, the pump fixing nut, adjust bolt and pump distribution head plug to the specified torque.

Pump Fixing Bolt N-m(kgf-m/lb.ft)
19 (1.9/14)

Injection Pump Distributor Head Plug N-m(kgf-m/lb.ft) 17 (1.7/12)

MAINTENANCE

COMPRESSION PRESSURE MEASURE-MENT

1. Start the engine and allow it to run for several minutes to warm it up.

- 2. Stop the engine and cut the fuel supply.
- 3. Remove all of the glow plugs from the engine.

Compression Gauge :54368691 Adapter :54368709

4. Set a compression gauge to the No. 1 cylinder glow plug hole.

5. Turn the engine over with the starter motor and take the compression gauge reading.

Compression Pressure MPa (kgf/cm2/psi) at 200 npm

Standard	Limit
3.04 (31/441)	2.2 (22/313)

RECOMMENDED LUBRICANTS

ENGINE TYPE	TYPES OF LUBRICANTS
Without turbocharger	Diesel engine oil CC or CD grade
With turbocharger	Diesel engine oil CD grade

ENGINE OIL VISCOSITY CHART

ENGINE REPAIR KIT

All of the numbered parts listed below are included in the Engine Repair Kit. The gaskets marked with an asterisk (*) are also included in the Top Overhaul Kit.

- * 1 . Cylinder head gasket
- * 2 . Cylinder head cover gasket
- * 3 . Head cover cap nut gasket
- 4 . Drain cock gasket
- 5 . Crankshaft rear oil seal
- 6 . Gear case gasket
- 7 . Gear case cover gasket
- 8 . Oil pan drain plug gasket
- 9 . Oil pan gasket
- 10. Oil filter gasket

- 11 . Water pump gasket
- 12 . Water outlet pipe gasket
- *13 . Thermostat housing gasket
- *14 . Intake manifold gasket
- *15 . Exhaust manifold gasket
- 16 . Crankshaft front oil seal
- *17 . Nozzle holder O-ring
- *18. Nozzle holder gasket
 - 19. Joint bolt gasket
 - 20. Vacuum pump pipe gasket

SECTION 3

ENGINE ASSEMBLY (1)

TABLE OF CONTENTS

ITEM	PAGE
General description	
Di saur idy	

ENGINE ASSEMBLY

GENERAL DESCRIPTION

This illustration is based on the A-4JAl engine in 4J series.

The 4J Series of industrial engines features the unique troidal square combustion chamber. This design provides superior fuel economy for a wide range.

Auto-thermatic pistons with cast steel struts are used to reduce thermal expansion and resulting engine noise when the engine is cold.

Chrone plated dry type cylinder liners provide the highest durability.

The laminated steel sheet cylinder head gasket is very durable.

This type of gasket eliminates cylinder head bolt retightening.

The tufftrided crankshaft has a long service life. Because it is tufftrided, it cannot be reground.

The crankshaft main bearings and the connecting rod bearings are aluminum plated. These bearings are especially sensitive to foreign material such as metal scraps. It is very important that the oil ports and other related parts be kept clean and free of foreign material.

These disassembly steps are based on the A-4JG1 engine.

- Disassembly Steps 1
- 1.Cooling fan and spacer
- 2.Cooling fan drive belt
- 3. Cooling fan drive pulley
- 4. Alternator and adjusting plate 5. Fuel pipe (Fuel filter to
- injection pump)
- 6.Fuel pipe (Fuel filter to feed pupp)
- 7.Fuel pipe (Fuel filter leak off)
- 8.Fuel filter
- 9.0il pipe (Injection purp to cylinder body)

- IO. Fuel leak off pipe
- *11. Fuel injection pipe with clip
- *12 . Injection pump
- 13 . Intake manifold
- 14 . Starter
- 15.0il filter
- 16. Cooling water rubber hose
- 17. Cooling water intake pipe
- *18 . Exhaust manifold.
- 19. Stiffner (RW & LH)

Important Operations (Disassembly Steps - '1)

11. Fuel Injection Pipe with Clip

I) Loosen the injection pipe sleeve nuts at the delivery valve side.

Do not apply excessive force to the injection pipes.

- 2) Loosen the injection pipe clips.
- 3) Remove the injection pipes.
- 12. Injection Pump

1) Remove the six injection pump bracket bolts from the cylinder body timing gear case.

2) Remove the injection pump rear bracket bolts from the rear bracket.

3) Pull the injection pupp with the injection pupp timing gear free from the rear.

Note:

Plug the injection pump delivery holder ports with the shipping caps (or the equivalent) to prevent the entry of foreign material.

18. Exhaust Manifold

Loosen the exhaust manifold bolts a little at a time in the numerical order shown in the illustration.

Disassembly Steps - 2

- 1. Water by-pass hose
- 2. Thermostat housing
- 3. Water pump
- 4. Injection nozzle holder
- Glow plug and glow plug connector 6. Cylinder head cover
- 7. Rocker arm shaft and rocker arm
 - 8. Push rod
- 9. Cylinder head

- 10. Cylinder head gasket
- ▲ 11. Crankshaft damper pulley with dust seal
 - 12. Timing gear case cover (Option)
 - 13. Timing gear cover
- 14. Timing gear oil pipe
 15. Idler gear "B" and shaft
 ▲ 16. Idler gear "A"
- - 17. Idler gear shaft

Inverted Engine

Disassembly Steps - 3

- 1. Oil pan
- ▲ 2. Flywheel
 - 2a. Rear flywheel (If so equipped)
 - 3. Flywheel housing
 - 4. Oil pump with oil pipe
- ▲ 5. Camshaft with camshaft timing gear and thrust plate
 - 6. Timing gear case
- ▲ 7. Connecting rod cap with lower bearing

- 8. Piston and connecting rod with upper bearing
- 9. Crankshaft bearing cap with lower bearing
 - 10. Crankshaft thrust bearing
 - 11. Crankshaft with crankshaft timing gear
- ▲ 12. Crankshaft upper bearing
- ▲ 13. Tappet
 - 14. Crankshaft rear oil seal
 - 15. Cylinder body

 $| \mathbf{0}$

Important Operations (Disassembly Steps - 2)

- 4. Injection Nozzle Holder
- 1) Remove the nozzle holder bracket nuts.

2) Use the nozzle holder remover and the sliding hammer to remove the nozzle holder together with the holder bracket.

Sliding Hammer: 54368790

7. Rocker Arm Shaft and Rocker Arm Loosen the rocker arm shaft bracket bolts in numerical order a little at a time.

Note:

Failure to loosen the rocker ann shaft bracket bolts in numerical order a little at a time will adversely effect the rocker ann shaft.

9. Cylinder Head

Loosen the cylinder head bolts in numerical order a little at a time.

Note:

Failure to loosen the cylinder head bolts in numerical order a little at a time will adversely effect the cylinder head lower surface.

11. Crankshaft Damper Pulley with Dust Seal 1) Block the flywheel with a piece of wood to prevent it from turning.

2) Use the damper pulley remover to remove the damper pulley.

16. Idler Gear "A"

Measure the camshaft timing gear backlash, the crankshaft timing gear backlash, and the idler gear "A" end play before removing the idler gear "A" and shaft.

Timing Gear Backlash Measurement

1) Set a dial indicator to the timing gear to be measured.

Hold both the gear to be checked and the adjoining gear stationary.

2) Move the gear to be checked as far as possible to both the right and the left.

Take the dial indicator reading.

If the measured value exceeds the specified limit, the timing gear must be replaced.

Timing	Gear	Backlash	

mm(in.)

GEAR	Standard
CAM \sim IDLE (A)	0.032-0.060
CRANK \sim IDLE (A)	0.032-0.066
IDLE (A) \sim IDLE (B)	0-0.035
IDLE (B) \sim INJ. PUMP	0–0.029

Idler Gear "A" End Play Measuremen't

Insert a feeler gauge between the idler gear and the thrust collar to measure the gap and determine the idler gear end play.

If the measured value exceeds the specified limit, the thrust collar must be replaced.

nm(in.)

Standard	Limit
0.08 ~ 0.18 (0.003–0.007)	0.30 (0.012)

Idler Gear End Play

Important Operations (Disassembly Steps - 3)

2. Flywheel

1) Block the flywheel with a piece of wood to prevent it from turning.

2) Loosen the flywheel bolts a little at a time in the numerical order shown in the illustration.

5. Camshaft with Camshaft Timing Gear and Thrust Plate

1) Remove the thrust plate bolts.

2) Pull the camshaft free along with the camshaft timing gear and the thrust plate.

Note:

Be careful not to damage the camshaft journal, the cam, and the camshaft during the disassembly procedure.

7. Connecting Rod Cap with Lower Bearing If the connecting rod lower bearings are to be reinstalled, mark their fitting positions by tagging each bearing with the cylinder number from which it was removed.

8. Piston and Connecting Rod with Upper Bearing 1) Remove carbon deposits from the upper portion of the cylinder wall with a scraper before remov-ing the piston and connecting rod.

2) Move the piston to the top of the cylinder and tap it with a hanner grip or similar object from the connecting rod lower side to drive it out.

If the connecting rod upper bearings are to be reinstalled, mark their fitting positions by tagging each bearing with the cylinder number from which it was removed.

9. Crankshaft Bearing Cap with Lower Bearing 1) Measure the crankshaft end play at the center journal of the crankshaft.

Do this before removing the crankshaft bearing caps.

If the measured value exceeds the specified limit, the crankshaft thrust bearing must be replaced.

Crankshaft End Play

Crankshaft End Play	mm(in.)
Standard	Limit
0.10 (0.0039)	0.30 (0.0118)

2) Loosen the crankshaft bearing cap bolts in numerical order a little at a time.

If the crankshaft bearings are to be reinstalled, mark their fitting positions by tagging each bearing with the cylinder number from which it was removed.

12. Crankshaft Upper Bearing

If the crankshaft upper bearings are to be reinstalled, mark their fitting positions by tagging each bearing with the cylinder number from which it was removed.

13. Tappet

If the tappets are to. be reinstalled, mark their fitting positions by tagging each tappet with the cylinder number from which it was removed.

14. Crankshaft Rear Oil Seal (Axial Type) Remove the flywheel housing.

With the oil seal pushed in deep, install the special tool as shown in the illustration and remove the oil sæl.

Oil Seal Remover: 54368865

DISASSEMBLY

SINGLE UNIT

ROCKER ARM SHAFT AND ROCKER ARM

Disassembly Steps

- ▲ 1. Rocker arm shaft snap ring
- ▲ 2. Rocker arm
- 3. Rocker arm shaft bracket
 4. Rocker arm

- 5. Rocker arm shaft spring
- 6. Rocker arm shaft snap ring
- 7. Rocker arm shaft

- 1. Rocker Arm Shaft Snap Ring
- 2. Rocker Arm
- 3. Rocker Arm Shaft Bracket

1) Use a pair of snap ring pliers to remove the snap rings.

2) Remove the rocker arms.

3) Remove the rocker arm shaft bracket. If the rocker arms and rocker arm shaft brackets are to be reinstalled, mark their installation positions by tagging each rocker arm and rocker arm shaft bracket with the cylinder number from which it was removed.

CYLINDER HEAD

Disassembly Steps

- 1. Split collar2. Valve spring upper seat
 - 3. Valve spring
- ▲ 4. Intake and exhaust valves

- 5. Valve stem oil seal
- Valve spring lower washer
 Cylinder head

Important Operations

 Split Collar
 I) Place the cylinder head on a flat wooden surface.

2) Use the spring compressor to remove the split collar.

Do not allow the valve to fall from the cylinder head. Spring Compressor: 54368717

4. Intake and Exhaust Valve

If the intake and exhaust values are to be reinstalled, mark their installation positions by tagging each value with the cylinder number from which it was removed.

If there is excessive valve wear or damage, the valve must be replaced.

Refer to Page 50 of "Inspection and Repair" for the valve and valve seat insert procedure.

Note:

If there is excessive valve guide wear or damage, the valve guide must be replaced.

Refer to Page 49 of "Inspection and Repair" for the valve guide replacement procedure.

The value and the value guides must be replaced as a set. Never replace only one or the other.

PISTON AND CONNECTING ROD

Disassembly Steps

- ▲ 1. Connecting rod bearing
- ▲ 2. Piston ring
- ▲ 3. Piston pin snap ring
 ▲ 4. Piston pin

- Connecting rod
 Piston pin snap ring
- 7. Piston

Important OperationsImportant OperationsImportant Operations

1. Connecting Rod Bearing

If the connecting rod bearings are to be reinstalled, mark their fitting positions by tagging each bearing with the cylinder number from which it was removed.

2. Piston RingI) Clamp the connecting rod in a vise.Take care not to damage the connecting rod.

2) Use a piston pin replacer to remove the piston rings.

Piston Ring Replacer

Q

Do not attempt to use some other tool to remove the piston rings. Piston ring stretching will result in reduced piston ring tension.

3. Piston Pin Snap Ring

4. Piston Pin Snap Ring

Use a pair of snap ring pliers to remove the piston pin snap rings.

- 5. Piston Pin
- 7. Piston

Tap the piston pin out with a hammer and a brass bar.

If the pistons are to be reinstalled, mark their installation

positions by tagging each piston with the cylinder number from which it was removed

CAMSHAFT, CAMSHAFT TIMING GEAR, AND THRUST PLATE

Disassembly Steps

- ▲ 1. Camshaft timing gear▲ 2. Thrust plate

- Feather key
 Camshaft

Important Operations

Camshaft Timing Gear
 Thrust Plate
 Clamp the camshaft in a vise.
 Take care not to damage the camshaft.

2) Use the universal puller 1 to pull out the camshaft timing gear 2.

3) Remove the thrust plate 3 .

SECTION 4

ENGINE ASSEMBLY (2)

TABLE OF CONTENTS

ITEM PAGE

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

CYLINDER HEAD

Cylinder Head Lower Face Warpage 1. Use a straight edge and a feeler gauge to measure the four sides and the two diagonals of the cylinder head lower face.

2. Regrind the cylinder head lower face if the measured values are greater than the specified limit but less than the maximum grinding allowance.

If the measured values exceed the maximum grinding allowance, the cylinder head must be replaced. Cylinder Head Lower Face Warpage mm(in)

,			
Standard Limit		Maximum Grinding Allwance	
0.05 (0.002) or less	0.2 (0.008)	0.3 (0.012)	

Cylinder Head Height (Referen	ce) mm(in)
Standard	Limit
91.95 (3.620) - 92.05 (3.624)	91.65 (3.60)

Note:

If the cylinder head lower face is reground, valve depression must be checked.

Exhaust Manifold Fitting Face Warpage Use a straight edge and a feeler gauge to measure

the manifold cylinder head fitting face warpage. Regrind the manifold cylinder head fitting faces if the measured values are greater than the specified limit but less than the maximum grinding allowance.

If the measured values exceed the maximum grinding allowance, the cylinder head must be replaced.

Manifold Fitting Face Warpage

Manifold Fitting Fac	mm (in)	
Standard	Limit	Maximum Grinding Allwance
0.05 (0.002) or less	0.2 (0.008)	0.4 (0.016)

VALVE GUIDE

Valve Stem and Valve Guide Clearance Measuring Method - I

1. With the valve stem inserted in the valve guide, set the dial indicator needle to "0".

Read the dial indicator.

If the measured values exceed the specified limit, the valve and the valve guide must be replaced as a æt. Valve Stem Clearance

Valve Stem Cleara	mm(in)	
	Standard	Limit
Intake Valve	0.039 – 0.071 (0.0015 – 0.0028)	0.20 (0.008)
Exhaust Valve	0.064 – 0.096 (0.0025 – 0.0037)	0.25 (0.0098)

Measuring Method - II

1. Measure the valve stem outside diameter. Refer to the Item "Valve Stem Outside Diameter".

2. Use a caliper calibrator or a telescoping gauge to measure the valve guide inside diameter.

51

Valve Guide Replacement Valve Guide Removal

Use a hammer and the valve guide replacer to drive out the valve guide from the cylinder head lower face.

Valve Guide Replacer: 54368725

2. Move the valve head from side to side.

Note the highest dial indication.

Ð

Valve Guide Insttillation

1. Apply engine oil to the valve guide outer circumference.

2. Attach the valve guide replacer to the valve guide.

3. Use a hammer to drive the valve guide into position from the cylinder head upper face.

Valve Guide Replacer: 9-8523-1212-0

4. Measure the height of the valve guide upper end from the upper face of the cylinder head.

Valve Guide Upper End Height (H) (Reference)

mm(in)

13.0 (0.512)

Note:

If the valve guide has been removed, both the valve and the valve guide must be replaced as a set.

VALVE AND VALVE SEAT INSERT

Valve Stem Outside Diameter

Measure the valve stem diameter at three points.

If the measured value is less than the specified limit, the valve and the valve guide must be replaced as a set.

Valve Stem Outside Diameter		mm(in)
	Standard	Limit
Intake Valve	7.946 – 7.961 (0.3128 – 0.3134)	7.88 (0.3102)
Exhaust Valve	7.921 – 7.936 (0.3118 – 0.3124)	7.88 (0.3102)

Valve Thickness

Measure the valve thickness.

If the measured value is less than the specified limit, the valve and the valve guide must be replaced as a æt.

Intake and Exhaust Valve Thickness		mm(in)
	Standard	Limit
Intake Valve	1.79 (0.070)	1.1 (0.043)
Exhaust Valve	1.39 (0.0547)	1.1 (0.043)

Valve Depression

1. Install the value 1 to the cylinder head 2 .

2. Use a depth gauge or a straight edge with steel rule to measure the valve depression from the cylinder head lower surface.

If the measured value exceeds the specified limit, the valve seat insert must be replaced.

V	a	lve	De	pres	ssior	ר
					_	

	Standard Limit	
Intake	0.65 (0.026)	1.28 (0.050)
Exhaust	1.10 (0.043)	1.60 (0.063)

mm(in)

mm(in)

Valve Contact Width

1. Check the valve contact faces for roughness and unevenness.

Make smooth the valve contact surfaces.

2. Measure the valve contact width.

If the measured value exceeds the specified limit, the value seat insert must be replaced.

Valve Contact Width

	Standard	Limit
Intake	1.7 (0.067)	2.2 (0.087)
Exhaust	2.0 (0.079)	2.5 (0.078)

Valve Seat Insert Replacement Valve Seat Insert Removal

1. Arc weld the entire inside circumference 1 of the valve seat insert 2.

2. Allow the valve seat insert to cool for a few minutes.

This will invite contraction and make removal of the valve seat insert easier.

3. Use a screwdriver 3 to pry the valve seat insert free.

Take care not to damage the cylinder head ${\boldsymbol 4}$.

4. Carefully remove carbon and other foreign material from the cylinder head insert bore.

Valve Seat Insert Installation

1. Carefully place the attachment 1 (having a smaller outside diameter than the valve seat insert) on the valve seat insert 2 .

Note:

The smooth side of the attachment must contact the valve seat insert.

2. Use a bench press 3 to gradually apply pressure to the attachment and press the valve seat insert into place.

Note:

Do not apply an excessive amount of pressure with the bench press. Damage to the valve seat insert will result.

Valve Seat Insert Correction

1. Remove the carbon from the valve seat insert surface.

2. Use a value cutter (15*, 45*, and 75" blades) to minimize scratches and other rough areas. This will bring the contact width back to the standard value.

Remove only the scratches and rough areas. Do not cut away too much. Take care not to cut away unblemished areas of the valve seat surface.

Valve Seat Angle	· 45°
------------------	-------

Note:

Use an adjustable valve cutter pilot.

Do not allow the valve cutter pilot to wobble inside the valve guide.

3. Apply abrasive compound to the valve seat insert surface.

4. Insert the value into the value guide.

5. Turn the value while tapping it to fit the value seat inært.

6. Check that the valve contact width is correct.

7. Check that the valve seat insert surface is in contact with the entire circumference of the valve.

VALVE SPRING

Valve Spring Free Height

Use a vernier caliper to measure the valve spring free height.

If the measured value is less than the specified limit, the value spring must be replaced.

Valve Spring Free Height

Valve Spring Free Height	mm(in)
Standard	Limit
49.7 (1.96)	48.2 (1.90)

Ð

Valve Spring Inclination

Use a surface plate and a square to measure the valve spring inclination.

If the measured value exceeds the specified limit, the valve spring must be replaced.

Valve Spring Inclination

Standard	Limit
1.5 (0.06) or less	2.5 (0.098)

mm(in)

Valve Spring Tension

Use a spring tester to measure the valve spring tension.

If the measured value is less than the specified limit, the valve spring must be replace.

Valve Spring Tension

Valve Spring Tension		N(kgf/lb)
Compressed Height	Standard	Limit
38.9 mm (1.53 in)	254 (25.9/57)	225 (23/51)

ROCKER ARM SHAFT AND ROCKER ARM

Rocker Arm Shaft Run-Out

1. Place the rocker arm shaft on a V-block.

2. Use a dial indicator to measure the rocker arm shaft central portion run-out.

If the run-out is very slight, connect the rocker arm shaft run-out with a bench press. The rocker arm must be at cold condition.

If the measured rocker arm shaft run-out exceeds the specified limit, the rocker arm shaft must be replaced.

Rocker Arm Shaft Run-Out	mm(in)
Standard	Limit
0.2 (0.008)	0.6 (0.024)

Rocker Arm Shaft Outside Diameter Use a micrometer to measure the rocker arm fitting portion outside diameter.

If the measured value is less than the specified limit, the rocker arm shaft must be replaced. mm(in)

Rocker Arm Shaft Outside Diameter	
-----------------------------------	--

Standard	Limit
18.98 – 19.00 (0.747 – 0.748)	18.85 (0.742)

Rocker Arm Shaft and Rocker Arm Clearance 1. Use either a vernier caliper or a dial indicator to measure the rocker arm bushing inside diameter.

Rocker Arm Bushing Inside Diameter mm(in) Standard

Standard	LIMIT
19.01 – 19.03 (0.748 – 0.749)	19.05 (0.750)

2. Measure the rocker arm shaft outside diameter.

If the measured value exceeds the specified limit, replace either the rocker arm or the rocker arm shaft.

Rocker Arm and Rocker Arm Shaft Clearance mm(in)

Standard	Limit
0.01 - 0.05 (0.0004 - 0.002)	0.2 (0.008)

Ð

3. Check that the rocker arm oil port is free of obstructions.

If necessary, use compressed air to clean the rocker ann oil port.

Rocker Arm Correction Inspect the rocker arm valve stem contact surfaces for step wear 1 and scoring 2.

If the contact surfaces have light step wear or scoring, they may be honed with an oil stone.

If the step wear or scoring is severe, the rocker arm must be replaced.

CYLINDER BODY

Cylinder Liner Bore Measurement Use a cylinder indicator to measure the cylinder bore at measuring point 1 in the thrust X - X and axial Y -Y directions of the crankshaft.

Measuring Point ① : Maximum wear portion

[11 – 15 mm (0.43 – 0.59 in)]

mm(in)

If the measured value exceeds the specified limit, the cylinder liner must be replaced.

Cylinder Liner Bore

Standard	Limit
95.421 – 95.460 (3.7567 – 3.7583)	95.5 (3.7598)

Note:

The inside of the dry type cylinder liner is chrone plated. It cannot be rebored or honed.

If the inside of the cylinder liner is scored or scorched, the cylinder liner must be replaced.

Cylinder Liner Projection Inspection 1. Hold a straight edge 1 along the top edge of the cylinder liner to be measured.

2. Use a feeler gauge 2 to measure each cylinder liner projection. Cylinder Liner Projection mr

ylinder Liner Projection	mm(in)
Standard	
0 - 0.10 (0 - 0.0039)	

The difference in the cylinder liner projection height between any two adjacent cylinders must not exceed 0.03 mm (0.0012 in).

If the inside of the cyli

ENGINE ASSEMBLY (2)

Cylinder Liner Replacement Cylinder Liner Removal 1. Remove the cylinder body dowel.

2. Set the cylinder liner remover to the cylinder liner.

3. Check that the remover shaft ankle is firmly gripping the cylinder liner bottom edge.

4. Slowly turn the remover shaft handle counterclockwise to pull the cylinder liner free.

Cylinder Liner Remover Ankle: 5-8840-2304-0 Cylinder Liner Remover: 9-8523-1 169-0

NOTE: Take care not to damage the cylinder body upper during the cylinder liner removal procedure.

Cylinder Body Upper Face Warpage

1. Remove the cylinder body dowel.

2. Remove the cylinder liner.

3. Use a straight edge 1 and a feeler gauge 2 to measure the four sides and the two diagonals of the cylinder body upper face.

Cylinder Body Upper Face Warpage

Standard	Limit
0.05 (0.002) or less	0.2 (0.008)

mm(in)

If the measured value is more than the limit, the cylinder body must be replaced.

Cylinder Body Height (Reference)	mm(in)
Standard	
272.945 – 273.105 (10.746 – 10.752)	

4. Reinstall the cylinder liner.

Refer to "Cylinder Body Bore Measurement".

5. Reinstall the cylinder body dowel.

ENGINE ASSEMBLY (2)

Ð

Cylinder Liner Grade Selection

Measure the cylinder body inside diameter and select the proper cylinder liner grade number corresponding to the cylinder body inside diameter.

Standard Fitting Interference (Reference)	mm(in)
0.001 - 0.019 (0.00004 - 0.00075)	

If the cylinder liner fitting interference is too small, engine cooling efficiency will be adversely affected. If the cylinder liner fitting interference is too large, it will be difficult to insert the cylinder liner into the cylinder body.

The cylinder block deck has been marked during production to indicate the connect liner sizes. The liner grade (i.e. 1,2,3, 4) is indicated in permanent ink. In the case of a questionable liner marking measure the cylinder body inside diameter.

Cylinder Body Bore Measurement 1. Take measurements at measuring point 1 across positions ("W - W"), ("X - X"), (Y - Y) and (Z - Z).

Measuring Point 1 : 98 mm (3.86 in) 2. Calculate the average value of the four measurements to determine the correct cylinder grade.

Cylinder Liner Grade

Nominal Dimension	Cylinder Body Bore Diameter	Liner Grade
	97.001 – 97.010	1
4 97	97.001 – 97.020	2
φυγ	97.021 – 97.030	3
	97.031 – 97.040	4

++

Cylinder Liner Installation

1. Cylinder Liner installation Using The Special Tool.

1) Use new kerosene or diesel oil to thoroughly clean the cylinder liners and bores.

2) Use compressed air to blow-dry the cylinder liner and bore surfaces.

Note:

All foreign material must be carefully removed from the cylinder liner and the cylinder bore before installation.

3) Insert the cylinder liner 1 into the cylinder body2 from the top of the cylinder body.

4) Set the cylinder liner installer 3 to the top of the cylinder liner.

Cylinder Liner Installer: 54368733

5) Position the cylinder body so that the installer center 3 is directly beneath the bench press shaft center 4.

Note:

Check that the cylinder liner is set perpendicular to the bench press and that there is no wobble.

6) Use the bench press to apply a seating force of 500 kgf (1,102.5 lb/4,900 N) to the cylinder liner.

7) Apply a force of 2,500 kgf (5,512.5 lb/24,500 N) to fully seat the cylinder liner.

8) After installing the cylinder liner, measure the cylinder liner projection. Refer to "Cylinder Liner Projection Inspection".

Ø

2. Cylinder Liner Installation Using Dry Ice If the cylinder liner is a chrone plated dry type, it is advisable to use dry ice during the installation procedure.

Cooling the cylinder liner with dry ice will cause the cylinder liner to contact, thus making installation easier.

Note:

It is important that the cylinder liner be inserted to the cylinder body immediately after it has been cooled.

WARNING:

DRY ICE MUST BE USED WITH GREAT CARE. CARE-LESS HANDLING OF DRY ICE CAN RESULT IN SEVERE FROSTBITE.

Piston Selection Select the same grade number as the one for the cylinder liner inside diameter.

Grade of cylinder inside diameter	Grade of piston	Combination
AX	AX	ОК
СХ	СХ	ОК
AX	СХ	NG
СХ	AX	NG

Piston Grade Selection

Measure the cylinder liner bore. Then select the appropriate piston grade for the installed cylinder liner.

1. Measure the cylinder liner bore. There are two measuring points ($1 \mbox{ and } 2$).

Measure the cylinder liner bore in four different direction (W - W, X - X, and Z - Z) at both mea-suring points.

Calculate the average value of the eight measurements to determine the correct cylinder liner bore.

2:160 mm (6.30 in)

Cylinder Liner Bore mm(in)
Standard Limit

95.421 – 95.460 (3.7567 – 3.7583)	95.5 (3.7598)

Relation between Liner Bore and Piston Grade

mm(in)

mm(in)

Liner Bore Diameter	Piston Grade
95.421 – 95.440 (3.7567 – 3.7575)	AX
95.441 – 95.460 (3.7575 – 3.7583)	СХ

Note:

It is most important that the correct piston grade be used. Failure to select the correct piston grade will result in engine failure.

2. Measure the piston outside diameter.

Piston Measuring Point 1 : 71 mm (2.79 in)

Piston Outside Diameter	mm(in)
Outside Diameter	Piston Grade for Service
95.365 – 95.384 (3.7545 – 3.7553)	AX
95.385 – 95.404 (3.7553 – 3.7561)	сх

Cylinder	Liner	and	Piston	Clearance	
----------	-------	-----	--------	-----------	--

0.037 - 0.075 (0.0015 - 0.	.0030)

Note:

Cylinder liner kit clearances are preset. However, the cylinder liner installation procedure may result in slight decreases in cylinder liner clearances. Always measure the cylinder liner clearance after installation to be sure that it is correct.

TAPPET AND PUSH ROD

Visually inspect the tappet canshaft contact surfaces for pitting, cracking, and other abnormal conditions. The tappet must be replaced if any of these conditions are present.

Refer to the illustration at the left.

- I Pitting
- 2 Cracking
- 3 Normal contact
- 4 Irregular contact
- 5 Irregular contact

Note:

The tappet surfaces are spherical. Do not attempt to grind them with an oil stone or similar tool in an effort to repair the tappet. If the tappet is damaged, it must be replaced.

Tappet Outside Diameter

Measure the tappet outside diameter with a micrometer. If the measured value is less than the specified limit, the tappet must be replaced.

Tappet Outside Diameter

Standard	Limit
12.97 – 12.99 (0.510 – 0.511)	12.95 (0.509)

mm(in)

围

Tappet and Cylinder Body Clearance

Standard	Limit
0.03 (0.0012)	0.1 (0.0039)

mm(in)

Push Rod Curvature 1. Lay the push rod on a surface plate.

2. Roll the push rod along the surface plate and measure the push rod curvature with a thickness gauge. If the measured value exceeds the specified limit, the push rod must be replaced.

Push Rod Curvature	mm(in)
Limit	
0.3 (0.012)	

3. Visually inspect both ends of the push rod for excessive wear and damage. The push rod must be replaced if these conditions are discovered during inspection.

CAMSHAFT

Visually inspect the journals, the cams, the oil pump drive gear, and the camshaft bearings for excessive wear and damage. The camshaft and the camshaft bearings must be replaced if these conditions are discovered during inspection.

Camshaft Journal Diameter

Use a micrometer to measure each canshaft journal diameter in two directions ((X - X) and (Y - Y)). If the measured value is less than the specified limit, the canshaft must be replaced.

Camshaft Journal Diameter

Standard	Limit
49.945 – 49.975	49.60
(1.9663 – 1.9675)	(1.953)

mm(in)

Cam Height

包

Measure the cam height (H) with a micrometer. If the measured value is less than the specified limit, the camshaft must be replaced.

Cam Height (H)

Cam Height 🛞	mm(in)	
Standard	Limit	
42.02 (1.65)	41.65 (1.64)	

Camshaft Run-Out

1. Mount the camshaft on V-blocks.

2. Measure the run-out with a dial indicator.

If the measured value exceeds the specified limit, the camshaft must be replaced.

Camshaft Run-Out

Camshaft Run-Out	mm(in)	
Standard	Limit	
0.02 (0.0008)	0.10 (0.004)	

Camshaft and Camshaft Bearing

Use an inside dial indicator to measure the camshaft bearing inside diameter.

Camshaft Bearing Inside Diameter

Standard	Limit
50.0 - 50.03	50.08
(1.9685 – 1.9696)	(1.9716)

mm(in)

mm(in)

If the clearance between the camshaft bearing inside diameter and the journal exceeds the specified limit, the camshaft bearing must be replaced.

Camshaft Bearing Clearance

Standard	Limit
0.025 – 0.085 (0.0010 – 0.033)	0.12 (0.005)

Camshaft Bearing Replacement

Camshaft Bearing Removal

1. Remove the cylinder body plug plate.

2. Use the camshaft bearing replacer to remove the camshaft bearing.

Bearing Replacer: 54368741

Camshaft Bearing Installation

1. Align the bearing oil holes with the cylinder body oil holes.

2. Use the camshaft bearing replacer installer to install the camshaft bearing.

Bearing Replacer: 54368741

Camshaft End Play

1. Before removing the camshaft gear 0, push the thrust plate @ as far as it will go toward the camshaft

qear 0.

2. Use a feeler gauge to measure the clearance between the thrust plate and the camshaft journal. If the measured value exceeds the specified limit, the thrust plate must be replaced.

Camshaft End Play

Camshaft End Play	mm(in)
Standard	Limit
0.050 - 0.114 (0.002 - 0.0044)	0.2 (0.008)

Thrust Plate Replacement

Thrust Plate Removal

I. Use the universal puller 1 to remove the camshaft timing gear 2.

Universal Puller: 54368758

2. Remove the thrust plate 3 .

2. Apply engine oil to the bolt setting face and the bolt threads.

3. Install the camshaft gear.

CRANKSHAFT AND BEARING

Inspect the surface of the crankshaft journals and crankpins for excessive wear and damage. Inspect the oil seal fitting surfaces for excessive wear and damage.

Inspect the oil parts for obstructions.

Note:

To increase crankshaft strength, tufftriding (Nitrizing Treatment) has been applied. Because of this, it is not possible to regrind the crankshaft surfaces.

Crankshaft Tufftriding Inspection 1. Use an organic cleaner to thoroughly clean the crankshaft. There must be no traces of oil on the surfaces to be inspected.

2. Prepare a 5 - 10% solution of ammonium cuprous chloride (dissolved in distilled water).

3. Use a syringe to apply the solution to the surface to be inspected.

Hold the surface to be inspected perfectly horizontal to prevent the solution from running.

Note:

Do not allow the solution to come in contact with the oil ports and their surrounding area.

Judgment

1. Wait for thirty to forty seconds. If there is no discoloration after thirty or forty seconds, the crankshaft is usable.

If discoloration appears (the surface being tested will become the color of copper), the crankshaft must be replaced.

2. Steam clean the crankshaft surface immediately after completing the test.

Note:

The ammonium cuprous chloride solution is highly cor-rosive.

Because of this, it is imperative that the surfaces being tested be cleaned immediately after completing the test.

Crankshaft Thrust Clearance

Set the dial, indicator as shown in the illustration and measure the crankshaft thrust clearance.

If the thrust clearance exceeds the specified limit, replace the thrust bearing as a set.

mm(in)

Standard	Limit
0.10 (0.0039)	0.30 (0.0118)

Crankshaft Run-Out

1. Set a dial indicator to the center of the crankshaft journal.

2. Gently turn the crankshaft in the normal direction of rotation.

Read the dial indicator as you turn the crankshaft. If the measured value exceeds the specified limit, the crankshaft must be replaced.

Crankshaft Run-Out	mm(in	
Standard	Limit	
0.05 (0.002) or less	0.08 (0.0031)	

Bearing Tension

Check to see if the bearing has enough tension, so that a good finger pressure is needed to fit the bearing into position.

1

Crankshaft Journal and Crankpin Diameter 1. Use a micrometer to measure the crankshaft journal diameter across points ("1 - 1") and ("2 - 2").

2. Use the micrometer to measure the crankshaft journal diameter at the two points ($3 \mbox{ and } 4$).

3. Repeat Steps 1 and 2 to measure the crankpin diameter.

If the measured values are less than the limit, the crankshaft must be replaced.

Crankshaft Journal Diameter

Standard	Limit
69.917 – 69.932	69.910
(2.7526 – 2.7531)	(2.7524)

mm(in)

mm(in)

Crankpin Diameter

Standard	Limit
52.915 - 52.930 (2.0833 - 2.0839)	52.906 (2.0829)

Crankshaft Journal and Crankpin

Uneven Wear	mm(in)	
Standard	Limit	
0.05 (0.002) or less	0.08 (0.003)	

Crankshaft Journal and Bearing Clearance If the clearance between the measured bearing inside diameter and the crankshaft journal diameter exceeds the specified limit, the bearing and/or the crankshaft must be replaced.

Crankshaft Bearing Cap Bolt

Torque	N·m(kgf·m/lb.ft)
	157 – 177 (16 – 18/116 – 130)

Crankshaft brg' cap Bolt Torque

Crankshaft Journal and

Bearing Clearance	mm(in)	
Standard	Limit	
0.031 – 0.063 (0.0012 – 0.0025)	0.11 (0.0043)	

Connecting Rod Bearing Inside Diameter

- 1. Install the bearing to the connecting rod big end.
- 2. Tighten the bearing cap to the specified torque.

Connecting Rod Bearing Cap Bolt Torque

le	5	N·m(kgf·m/lb.ft)
	27 – 31 (2.8 – 3.2/20 – 23)→ 45°	– 60°

3. Use a inside dial indicator to measure the connecting rod bearing inside diameter.

M

Crankpin and Bearing Clearance

If the clearance between the measured bearing inside diameter and the crankpin exceeds the specified limit, the bearing and/or the crankshaft must be replaced.

Crankpin and Bearing Clearance	mm(in)
Standard	Limit
0.029 - 0.066 (0.0011 - 0.0026)	0.10 (0.0039)

Clearance Measurements (With Plastigage)

Crankshaft Journal and Bearing Clearance 1. Clean the cylinder body, the journal bearing fitting surface, the bearing caps, and the bearings.

2. Install the bearings to the cylinder body.

3. Carefully place the crankshaft on the bearings.

4. Rotate the crankshaft approximately $30^{\prime\prime}$ to seat the bearing.

5. Place the Plastigage (arrow) over the crankshaft journal across the full width of the bearing.

6. Install the bearing caps with the bearing.

οC

7. Tighten the bearing caps to the specified torque.

Crankshaft Bearing Cap Bolt	
Torque	N·m(kgf·m/lb.ft)
157 – 177 (16 – 18	3/116 – 130)

Do not allow the crankshaft to turn during bearing cap installation and tightening.

8. Remove the bearing cap.

9. Compare the width of the Plastigage attached to either the crankshaft or the bearing against the scale printed on the Plastigage container.

If the measured value exceeds the limit, perform the following additional steps.

1) Use a micrometer to measure the crankshaft outside diameter.

2) Use an inside dial indicator to measure the bearing inside diameter.

If the crankshaft journal and bearing clearance exceeds the limit, the crankshaft and/or the bearing must be replaced.

Crankshaft Journal and Bearing Clearance

Standard	Limit	
0.031 – 0.063	0.11	
	(0.0043)	

Crankpin and Bearing Clearance

1. Clean the crankshaft, the connecting rod, the bearing cap, and the bearings.

2. Install the bearing to the connecting rod and the bearing cap.

Do not allow the crankshaft to move when installing the bearing cap.

3. Prevent the connecting rod from moving.

4. Attach the Plastigage to the crankpin.

Apply engine oil to the Plastigage to keep it from falling.

5. Install the bearing cap and tighten it to the specified torque.

Do not allow the connecting rod to move when installing and tightening the bearing cap. Connecting Rod Bearing Cap Bolt

Torque		N⋅m(kgf⋅m/lb.ft)
	27 – 31 (2.8 – 3.2/20 – 23)→	45° – 60°

6. Remove the bearing cap.

7. Compare the width of the Plastigage attached to either the crankshaft or the bearing against the scale printed on the Plastigage container.

If the measured value exceeds the specified limit, perform the following additional steps.

1) Use a micrometer to measure the crankpin outside diameter.

2) Use an inside dial indicator to measure the bearing inside diameter.

If the crankpin and bearing clearance exceeds the specified limit, the crankshaft and/or the bearing must be replaced.

Crankpin and Bearing Clearance

mm(in)

mm(in)

Standard	Limit	
0.029 - 0.066	0.10	
(0.0011 – 0.0026)	(0.0039)	

CRANKSHAFT BEARING SELECTION

When installing new crankshaft bearings or replacing old bearings, refer to the slection table below. Select and install the new crankshaft bearings, paying close attention to the cylinder body journal hole diameter size mark and the crankshaft journal diameter size mark.

Ma Bore Di	ain Bearing iameter mm(in.)	Crankshaft Main Journal Diameter mm(in.)		Crankshaft Bearing	Oil Clearance
Size Mark	Inside Diameter	Size Mark	Outside Diameter	Size Mark	mm (in.)
1	73.987 ~ 74.000 (2.9129 ~ 2.9134)	1 or -	69.927 ~ 69.932 (2.7530 ~ 2.7532)	Black	0.035 ~ 0.061 (0.0014 ~ 0.0024)
		2 or	69.922 ~ 69.927 (2.7528 ~ 2.7530)	Blue	0.032 ~ 0.058 (0.0013 ~ 0.0023)
		3 or	69.917 ~ 69.922 (2.7526 ~ 2.7528)		0.037 ~ 0.063 (0.0015 ~ 0.0025)
2	73.975 ~ 73.987 (2.9124 ~ 2.9129)	1 or -	69.927 ~ 69.932 (2.7530 ~ 2.7532)	Green	0.031 ~ 0.056 (0.0012 ~ 0.0022)
		2 or	69.922 ~ 69.927 (2.7528 ~ 2.7530)		0.036 ~ 0.048 (0.0014 ~ 0.0019)
		3 or	69.917 ~ 69.922 (2.7526 ~ 2.7528)	Black	0.033 ~ 0.058 (0.0013 ~ 0.0023)

Q

Crankshaft Timing Gear Replacement

Crankshaft Timing Gear Removal

1. Use the crankshaft gear remover 1 to remove the crankshaft gear 2.

2. Remove the crankshaft feather key.

Crankshaft Timing Gear Remover: 54368766

Crankshaft Timing Gear Installation

1. Install the crankshaft gear.

2. Use the crankshaft gear installer 1 to install the crankshaft gear 2.

The crankshaft gear timing mark ("X - X") must be facing outward.

Crankshaft Gear Installer: 54368774
CRANKSHAFT PILOT BEARING

Check the crankshaft pilot bearing for excessive wear and damage and replace it if necessary.

Crankshaft Pilot Bearing Replacement Crankshaft Pilot Bearing Removal Use the pilot bearing remover to remove the pilot bear-ing.

Pilot Bearing Remover: 54368782 Sliding Hammer: 54368790

Crankshaft Pilot Bearing Installation I. Place the crankshaft pilot bearing horizontally across the crankshaft bearing installation hole.

2. Tap around the edges of the crankshaft pilot bearing outer races with a brass hanner to drive the bear-ing into the crankshaft bearing installation hole.

Note:

Strike only the crankshaft pilot bearing outer races with

the hammer. Do not strike the bearing inner races. Bearing damage and reduced bearing service life will result.

ENGINE ASSEMBLY (2)

FLYWHEEL AND RING GEAR Flywheel

1. Inspect the flywheel friction surface for excessive wear and heat cracks.

2. Measure the flywheel friction surface wear amount (depth)

The flywheel friction surface area actually making contact with the clutch driven plate (the shaded area in the illustration) will be smaller than the original machined surface area.

There will be a ridge on the flywheel surface area. Be sure to measure the surface wear in the area inside the ridge.

If the measured value is between the standard and the specified limit, the flywheel may be reground.

If the measured value exceeds the specified limit, the flywheel must be replaced.

Flywheel Friction Surface Depth (1)	mm(in)
Limit	
1.0 (0.04) or more	

Note:

Because a ridge is produced at the flywheel friction sur-face as illustrated, do not measure the friction surface wear amount at the non-ridge area but be sure to measure it at the rear-friction surface which is shown in the illustration by shaded area.

Ring Gear

Inspect the ring gear. If the ring gear teeth are broken or excessively worn, the ring gear must be replaced.

Ring Gear Replacement Ring Gear Removal Strike around the edges of the ring gear with a hammer and diesel to remove it.

Ring Gear Installation

1. Heat the ring gear evenly with a gas burner to invite thermal expansion.

Do not allow the temperature of the gas burner to exceed 200°C (390°F).

2. install the ring gear when it is sufficiently heated. The ring gear must be installed with the chamfer facing the clutch.

Note:

Another method of heating the ring gear to invite thermal expansion is to soak a rag in diesel fuel, wrap the diesel fuel soaked rag around the rim of the ring gear, and then light the rag.

PISTON

11

Piston Grade Selection and Cylinder Liner Bore Measurement

Refer to the Section "CYLINDER BODY", Item "Cylinder

Liner Bore Measurement" for details on piston grade selection and cylinder or liner bore measurement.

PISTON RING

Piston Ring Gap

1. Insert the piston ring horizontally into the cylinder liner.

2. Use a piston inserted upside down to push the piston ring into the cylinder liner until it reaches either measuring point 1 or measuring point 2. Cylinder liner diameter is the smallest at these two points.

Do not allow the piston ring to slant to one side or the other. It must be perfectly horizontal.

3. Use a feeler gauge to measure the piston ring gap.

Measuring Point 1 : 10 mm (0.39 in) or Measuring Point 2 : 120 mm (4.72 in)

If the piston ring gap exceeds the specified limit, the piston ring must be replaced.

Į

Piston Ring Gap		mm(in)
	Standard	Limit
1st Compression Ring	0.2 – 0.35 (0.008 – 0.014)	
2nd Compression Ring	0.37 – 0.52 (0.015 – 0.020)	1.5 (0.059)
Oil Ring	0.2 – 0.4 (0.008 – 0.016)	

Piston Ring and Piston Ring Groove Clearance Use a feeler gauge to measure the clearance between the piston ring and the piston ring groove at several points around the piston.

If the clearance between the piston ring and the piston ring groove exceeds the specified limit, the piston ring must be replaced.

Piston	Ring	and	Piston	Ring	Groove
Cloaran	000				

Clearance	<u> </u>	mm(in)
	Standard	Limit
1st Compression Ring	0.09 – 0.130 (0.0035 – 0.0051)	
2nd Compression Ring	0.05 – 0.090 (0.002 – 0.0035)	0.15 (0.006)
Oil Ring	0.03 – 0.07 (0.0012 – 0.0028)	

]0

Visually inspect the piston. If a piston ring groove is damaged or distorted, the piston must be replaced.

PISTON PIN

Piston Pin Diameter

Use a micrometer to measure the piston pin outside diameter at several points.

If the measured value is less than the specified limit, the piston pin must be replaced.

Piston Pin Diameter

Standard	Limit
33.995 - 34.000 (1.3384 - 1.3386)	33.97 (1.3374)

mm(in)

mm(in)

Piston Pin and Piston Clearance

Use an inside dial indicator to measure the piston pin hole (in the piston).

Piston Pin Hole

ton Pin Hole	mm(in)
Standard	
34.004 - 34.012 (1.3387 - 1.3391)	

Piston Pin and Piston Pin Hole

Clearance		mm(in)
	0.004 - 0.017 (0.0002 - 0.0006)	

Piston Pin and Connecting Rod Small End Bushing Clearance

Use a caliper calibrator and a dial indicator to measure

the piston pin and connecting rod small end bushing clearance.

If the clearance between the piston pin and the connect-ing

rod small end bushing exceeds the specified limit, replace the piston pin and/or the connecting rod bushing.

Piston Pin and Connecting Rod Small

End Bushing Clearance

Standard	Limit
0.008 - 0.020	0.05
(0.0003 – 0.0008)	(0.002)

Connecting Rod Bushing Replacement Connecting Rod Bushing Removal 1. Clamp the connecting rod in a vise.

2. Use the connecting rod bushing remover to remove the connecting rod bushing.

ENGINE ASSEMBLY (2)

(1)

Connecting Rod Bushing Installation

1. Clamp the connecting rod in a vice.

2. Use the connecting rod bushing installer to install

the connecting rod bushing.

Connecting Rod Bushing Replacer:

3. Use a piston pin hole grinder 1 fitted with a reamer 2 to ream the piston pin hole.

Inner Diameter of Small End Bushing	mm(in)	
Standard		
34.008 – 34.015 (1.3389 – 1.3392)		

CONNECTING ROD

Connecting Rod Alignment

Use a connecting rod aligner to measure the distortion and the parallelism between the connecting rod big end hole and the connecting rod small end hole.

If either the measured distortion or parallelism exceed the specified limit, the connecting rod must be replaced.

Connecting Rod Alignment

Per Length of 100 mm (3.94 in)

	Standard	Limit
Distortion	0.05 or Less	0.20 (0.008)
Parallelism	(0.002)	0.15 (0.006)

mm(in)

Q

围

Connecting Rod Side Face Clearance 1. Install the connecting rod to the crankpin. 2. Use a feeler gauge to measure the clearance between the connecting rod big end side face and

the crankpin side face. If the measured value exceeds the specified limit, the connecting rod must be replaced.

Connecting Rod and Crankpin Side Face

Clearance

Clearance	mm(in)
Standard	Limit
0.175 - 0.290 (0.0069 - 0.0114)	0.35 (0.014)

IDLER GEAR SHAFT AND IDLER GEAR

Idler Gear Shaft Outside Diameter

Use a micrometer to measure the idler gear shaft outside diameter.

If the measured value is less than the specified limit, the idler gear must be replaced.

Idler Gear Shaft Outside Diameter

Idler Gear Shaft Outside Dia	meter mm(in)
Standard	Limit
44.95 - 44.98	44.90
(1.769 – 1.770)	(1.767)

Idler Gear "A" Inside Diameter

1. Use an inside dial indic ator to measure the idler gear

Idler Gear Inside Diameter	mm(in)
Standard	Limit
45.0 - 45.03	45.10
(1.7717 – 1.7718)	(1.7756)

If the clearance between the idler gear shaft outside diameter and the idler gear inside diameter exceeds the limit, the idler gear must be replaced.

Idler	Gear	Shaft	and	Idler	Gear
LIGars	nco				

Clearance	mm(in)
Standard	Limit
0.025 - 0.085	0.2
(0.0010 – 0.0033)	(0.008)

Idler Gear "B"

Ð

Bearing replacement

Use a suitable bar and a bench press or hammer. Bearing projection amount should be within the specified height.

_		mm(in)
Projection	1	0.4 - 0.6 (0.016 - 0.024)
Height	2	23.7 – 24.0 (0.933 – 0.945)

TIMING GEAR CASE COVER

Replace theorankshaft front oil seal if it is excessively worn or damaged.

Crankshaft Front Oil Seal Replacement

Oil Seal Removal

Use a plastic hammer and a screwdriver to tap around the oil seal to free it from the gear case. Take care not to damage the oil seal fitting surfaces.

80

Oil Seal Installation

1. Apply a cost of engine oil to the oil seal lip circumference.

2. Use the oil seal installer and the installer grip to insert the oil seal 1 mm (0.039 in) into the front portion of the timing gear case.

Oil Seal Installer: 54368873

SECTION 5

ENGINE ASSEMBLY (3) TABLE OF CONTENTS

ITEM	PAGE
Reassembly	

SINGLE UNIT

ROCKER ARM SHAFT AND ROCKER ARM

Reassembly Steps

- ▲ 1. Rocker arm shaft
 - 2. Rocker arm shaft snap ring
 - 3. Rocker arm
 - 4. Rocker arm shaft bracket

- 5. Rocker arm
- 6. Rocker arm shaft spring
- 7. Rocker arm shaft snap ring

1. Rocker Arm Shaft

1) Position the rocker ann shaft with the large oil hole (Dia. 4 mm (0.136 in)) facing the front of the engine.

2) Install the rocker ann shaft together with the rocker ann, the rocker ann shaft bracket, and the spring.

CYLINDER HEAD

Reassembly Steps

- 1. Cylinder head
- 2. Valve spring lower washer
- ▲ 3. Valve stem oil seal
- ▲ 4. Intake and exhaust valve

- ▲
- 5. Valve spring
 6. Valve spring upper seat
- 7. Split collar

 \mathbf{V}

Important Operations

3. Valve Stem Oil Seal

Apply a coat engine oil to the oil seal inner face.
 Use an oil seal installer to install the oil seal to the valve guide.

Oil Seal Installer: 54368873

4. Intake and Exhaust Valve

1) Apply a coat of engine oil to valve stem.

2) Install the intake and exhaust valves.

3) Turn the cylinder head up to install the valve springs.

Take care not to allow the installed valves to fall free.

5. Valve Spring

1) Turn the cylinder head up to install the valve springs.

2) Install the valve springs with the fine pitched end (painted pink) facing down.

Take care not to allow the installed values to fall free.

6. Split Collar

1) Use the spring compressor to push the valve spring into position.

Spring Compressor: 54368717

2) Install the split collar to the value stem.

3) Set the split collar by tapping around the bead of the collar with a rubber hammer.

PISTON AND CONNECTING ROD

Reassembly Steps

- ▲ 1. Piston
- ▲ 2. Piston pin snap ring
- ▲ 3. Connecting rod
- ▲ 4. Piston pin

- 5. Piston pin snap ring
- ▲ 6. Piston ring
- ▲ 7. Connecting rod bearing

Important Operation

- 1. Piston
- 2. Piston pin snap ring
- 3. Connecting rod

1) Clamp the connecting rod in a vise.

Take care not to damage the connecting rod.

2) Use a pair of snap ring pliers to install the piston pin snap ring to the piston.

3) Install the piston to the connecting rod. The piston head front mark 1 and the con-necting rod "ISUZU" casting mark 2 must be facing the same direction.

4. Piston pin

I) Apply a coat of engine oil to the piston pin and the piston pin hole.

2) Use your fingers to force the piston pin into the piston until it makes contact with the snap ring.

9<u>-</u>>;

3) Use your fingers to force the piston pin snap ring into the piston snap ring groove.

4) Check that the connecting rod moves smoothly an the piston pin.

6. Piston Ring

1) Use a piston ring replacer to install the three piston rings.

Piston Ring Replacer:

Install the piston rings in the order shown in the illustration.

- 1 Oil ring (Coil expander type)
- 2 2nd compression ring (Taper undercut type)
- 3 1st compression ring (Barrel face type)

ł_~

Note:

Install the compression rings with the stamped side facing up.

Insert the expander coil into the oil ring groove so that there is no gap on either side of the expander coil before installing the oil ring.

Apply engine oil to the piston ring surfaces.
 Check that the piston rings rotate smoothly in the piston ring grooves.

7. Connecting Rod Bearing

Carefully wipe any oil or other foreign material from the connecting rod bearing back face and the connecting rod bearing fitting surface.

CAMSHAFT, CAMSHAFT TIMING GEAR, AND THRUST PLATE

Reassembly Steps

- 1. Camshaft
- 2. Feather key

- Thrust plate
 Camshaft timing gear

Important Operations

- 4. Camshaft Timing Gear
- 1) Install the thrust plate 1 .
- 2) Apply engine oil to the bolt threads 2 .

3) Install the camshaft timing gear with the timing mark stamped side facing out.

Camshaft Timing Gear Bolt Torque N·m(kgf·m/lb.ft) 98 - 118 (10 - 12/72 - 87)

→ REASSEMBLY

Reassembly Steps – 1

- ▲ 1. Cylinder body
- ▲ 2. Tappet
- ▲ 3. Crankshaft upper bearing
- ▲ 4. Crankshaft with crankshaft timing gear
- ▲ 5. Crankshaft thrust bearing
- ▲ 6. Crankshaft bearing cap with lower bearing
- ▲ 7. Timing gear case
- 8. Camshaft with camshaft timing gear and thrust plate
- Piston and connecting rod with upper bearing

- ▲ 10. Connecting rod cap with lower bearing
- ▲ 11. Oil pump with oil pipe
- ▲ 12. Crankshaft rear oil seal
- ▲ 13. Flywheel housing
- ▲ 14. Flywheel
- 14a Rear flywheel (If so equipped)
- 🔺 15. Oil pan

Inverted Engine

Reassembly Steps – 2

- ▲ 1. Idler gear shaft
- ▲ 2. Idler gear "A"
- ▲ 3. Idler gear "B"
- 4. Timing gear oil pipe
- ▲ 5. Timing case cover
- 6. Timing gear case cover
- Crankshaft damper pulley with dust seal
- ▲ 8. Cylinder head gasket
- ▲ 9. Cylinder head

- 10. Push rod
- ▲ 11. Rocker arm shaft and rocker arm
- ▲ 12. Water pump
- ▲ 13. Thermostat housing
- 14. Water by-pass hose
- ▲ 15. Glow plug and glow plug connector seal
- ▲ 16. Injection nozzle holder
 - 17. Cylinder head cover

Important Operations (Reassembly Step-1)

Use compressed air to thoroughly clean the inside and outside surfaces of the cylinder body, the oil holes, and the water jackets.

1. Cylinder Body

2. Tappet

 Apply a coat of engine oil to the tappet 1 and the cylinder body tappet insert holes 2 .
 Locate the position mark applied at disassembly (if the tappet is to be reused).

Note: The tappet must be installed before the camshaft.

 Crankshaft Upper Bearing
 The crankshaft upper bearings have an oil hole and an oil groove. The lower bearings do not.
 Carefully wipe any foreign material from the crankshaft upper bearing and the crankshaft upper bearing fitting surfaces.

2) Locate the position mark applied at disassembly if the removed crankshaft upper bearings are to be reused.

4. Crankshaft with Crankshaft Timing Gear Apply an ample coat of engine oil to the crankshaft journals and the crankshaft bearing surfaces before installing the crankshaft.

Note:

Do not apply engine oil to the bearing back faces and the

cylinder body bearing fitting surfaces.

5. Crankshaft Thrust Bearing

I) Apply an ample coat of engine oil to the crank-shaft thrust bearings.

2) Install the crankshaft thrust bearings to the crankshaft center journal.

The crankshaft thrust bearing oil groove must be facing the sliding face.

6. Crankshaft Bearing Cap with Lower Bearing 1) Apply sealant TB - 1207B or equivalant to the cylinder body No. 5 bearing cap fitting surface at the points shown in the illustration. Note:

Be sure that the bearing cap fitting surface is completely

free of oil before applying the silicon adhesive. Do not allow the silicon adhesive to obstruct the cylinder thread holes and bearings.

2) Install the bearing caps.

The bearing cap arrow marks must be facing the front of the engine.

The arrow mark journal number must corre-spond to the journal to which the bearing cap is installed. Note:

The No. 4 journal bearing cap does not have a number stamped on it.

3) Apply a coat of engine oil to the bearing cap bolts.4) Tighten the crankshaft bearing cap bolts to the specified torque a little at a time in the sequence shown in the illustration.

Crankshaft Bearing Cap Tor	rque N⋅m(kgf⋅m/lb.f
157 – 177 (16	3 – 18/116 – 132)

5) Check to see that the crankshaft turns smoothly by rotating it manually.

7. Timing Gear Case

1) Tighten the timing gear case with timing gear case gasket to the specified torque.

Timing Gear Case Bolt Torque N·m(kgf·m/lb.ft)

14 – 24 (1.4 – 2.4/10 – 17)

2) Cut away any excessive flash from the timing gear gasket.

specified to shown in the Crankshaft

8. Camshaft with Camshaft Timing Gear and Thrust Plate

1) Apply a coat of engine oil to the camshaft and the camshaft bearings.

2) Install the canshaft to the cylinder body.
 Take care not to damage the canshaft bearings.
 3) Tighten the thrust plate to the specified torque.

Thrust Plate Bolt Torque	N⋅m(kgf⋅m/lb.ft)
14 – 24 (1.4 -	- 2.4/10 - 17)

4) Check to see that the camshaft turns smoothly by rotating it manually.

م یک ا	
عتهم.	

9. Piston and Connecting Rod with Upper Bearing

10. Connecting Rod Bearing Cap with Lower Bearing

1) Apply a coat of engine oil to the circunference of each piston ring and piston.

2) Position the piston ring gaps as shown in the illustration.

1 1st compression ring

2 2nd compression ring

3 Oil ring

3) Apply a coat of molybdenum disulfide grease to the two piston skirts.

This will facilitate smooth break-in when the engine is first started after reassenbly.

4) Apply a coat of engine oil to the upper bearing surfaces.

Note:

Do not apply engine oil to the bearing back faces and the connecting rod bearing fitting surfaces. 5) Apply a cost of engine oil to the cylinder wall.

ᠯᢪ

6) Position the piston head front mark so that it is facing the front of the cylinder body.

7) Use a piston ring compressor to compress the piston rings.

Piston Ring Compressor

8) Use a harmer grip to push the piston in until the connecting rod makes contact with the crankpin.

At the same time, rotate the crankshaft until the crankpin is at BDC.

9) Install the connecting rod bearing caps.

The bearing cap front marks must be facing the front of the engine.

The bearing cap number (at the side of the bearing cap) and the connecting rod number must be the same.

Note:

It is absolutely essential that the bearing caps be installed in the correct direction. Reversing the bearing cap direction will result in serious engine damage.

10) Apply a coat of engine oil to the threads and setting faces of each connecting rod cap bolt.11) Tighten the connecting rod caps to the specified torque.

Connecting Rod Cap Bolt Torque	N⋅m(kgf⋅m/lb.ft)
27 – 31 (2.8 – 3.2/20 – 23) →	45° – 60°

11. Oil Pump with Oil Pipe Install the oil pump with the oil pipe and tighten the bolts to the specified torque.

Dil Pump Bolt Torque	N·m(kgf·m/lb.ft	
14 - 24 (1.4 - 2.4/10	– 17)	

Note:

Take care not to damage the O-rings when tightening the oil pipe bolts.

12. Crankshaft Rear Oil Seal (Axial Type)

1) Tighten the adapter to the crankshaft rear and section with 2 bolts.

2) Insert the oil seal into the peripheral section of adapter.

3) Insert the sleeve into the adapter section, and 1) tighten it with a bolt (Ml2 x 1.75L = 70) until the adapter section hits the sleeve.

4) Remove the adapter and the sleeve.

5) With the seal pressed in, check the dimension of the oil seal section.

Standard Dimension = 12.5 2 0.3 mm

(0.492 rt 0.012 in)

Oil Seal Installer: 54368873

13. Flywheel 1-lousing

1) Apply sealant to the shaded area shown in the illustration.

2) Tighten the flywheel housing bolts to the specified torque a little at a time in the sequence shown in the illustration.

Flywheel Housing Bolt Torque

M10 x 1.2	35 - 45 (3.6 - 4.6/26 - 33)
M12 x 1.5	74 – 91 (7.5 – 9.3/54 – 67)

N·m(kgf·m/lb.ft)

1) Block the flywheel with a piece of wood to pre-vent it from turning.

2) Apply a coat of engine oil to the threads of the flywheel bolts.

3) Tighten the flywheel bolts in the numerical order shown in the illustration.

Elverhool Bolt Torg

lywheel Bolt Torque	N⋅m(kgf⋅m/lb.ft)
113 – 123 (11.5 –	12.5/83 – 90)

15. Oil Pan

1) Apply sealant TB - 1207B or equivalant to the No. 5 bearing cap arches, the bearing grooves, and the timing gear case arches at the positions shown in the illustration.

2) Fit the gasket rear lipped portion into the No. 5 bearing cap groove.

Be absolutely sure that the lipped portion is fitted snugly in the groove.

3) Tighten the oil pan bolts to the specified torque a little at a time in the sequence shown in the illustration.

Pan Bolt Torque	N⋅m(kgf⋅m/lb.ft)	
14 – 24 (1.4 – 2.4/10 – 17)		

 \mathbf{V}

5. Timing Case Cover

1) Before installing the timing gear case, apply a 3 mm x 5 mm (0.12 in x 0.20 in) strip of scalant to the portion of the feather key indicated by the arrow in the illustration.

2) Check that the timing case cover O-ring is firmly inserted into the gear case groove.

3) Tighten the timing case cover bolts to the specified torque.

Timing Case Cover Bolt Torque N·m(kgf·m/lb.ft)

M 8 x 1.25	14 – 24 (1.4 – 2.4/10 – 17)
M12 x 1.25	65 - 85 (6.7 - 8.7/48 - 63)

- 7. Crankshaft Damper Pulley with Dust Seal1) Block the flywheel ring gear with a piece of
- wood to prevent it from turning.

2) Tighten the crankshaft damper pulley to the specified torque.

Crankshaft Damper Pulley Bolt

Torque	N⋅m(kgf⋅m/lb.ft
	197 – 240(20.1 – 24.5/145 – 177)

Take care not to damage the crankshaft damper pulley boss.

8. Cylinder Head Gasket

1. Carefully remove carbon deposits and gasket residue from the piston top face and the cylinder body upper surface.

2. Use a dial indicator to measure the piston head projection at measuring points 1 and 3 on the piston head and measuring points 2 and 4 on the cylinder body.

Do this for each cylinder.

3. Note the highest measured value. This will determine the cylinder head gasket thickness.

Piston Head Projection	mm(in)
0.758 – 0.913 (0.0298 – 0.0359)	

Piston head projection must be within the range shown in the above table.

4. Select a cylinder head gasket of the appropriate thickness.

The difference between the highest measured piston head projection and the lowest measured piston head projection must not exceed mm(in).

			mm(in)
(Grade mark	Average piston projection	Gasket thickness (Reference)
Α	TTTFTT	0.758 – 0.812 (0.0298 – 0.0319)	1.60
В	<u>TëTëTTi</u>	0.813 – 0.858 (0.0320 – 0.0337)	1.65
С	TITIT	0.859 – 0.914 (0.0338 – 0.0359)	1.70

.. .

5. The cylinder gasket "TOP" mark must be facing UP.

1) Align the cylinder body dowels and the cylinder head dowel holes.

Carefully set the cylinder head to the cylinder head gasket.

হ

2) Apply engine oil to the cylinder head fixing bolt threads and setting faces.

3) Tighten the cylinder head bolts to the specified torque in three steps following the numerical order shown in the illustration.

Cylinder Head Bolt Torq	ue	N⋅m(kgf⋅m/lb.ft)
1st stop	2nd stop	3rd stop
44 - 54 (4.5 - 5.5/64 - 78)	60 – 75°	60 – 75°

11. Rocker Arm Shaft and Rocker Arm		
Tighten the rocker arm shaft bracket bolts in the		
numerical order shown in the illustration.		
Rocker Arm Shaft Bracket Bolt Torque N·m(kgf·m/lb.ft)		
49 - 59 (5.0 - 6.0/36 - 43)		

12. Water Pump

 I) Temporarily tighten the water pump bolt marked with an arrow in the illustration.
 This bolt will be tightened to the specified to torque when the alternator adjusting plate is installed.
 2) Tighten the other unter num bolts to the a

2) Tighten the other water pump bolts to the specified torque.

Water Pump Bolt Torque	N⋅m(kgf⋅m/lb.ft)
14 - 24 (1.4 - 2.4/10 -	17)

- 13. Thermostat Housing
- 1) Install the thermostat housing.

2) Tighten the thermostat housing bolts to the

specified torque.

Ð

হ

Thermostat Housing Bolt Torque	N·m(kgf·m/lb.ft)
14 – 24 (1.4 – 2.4/10 – 17)	

14. Glow Plug and Glow Plug Connector

1) Tighten the glow plugs to the specified torque.

Glow Plug Torque	N·m(kgf·m/lb.ft)
15 – 20 (1.5	- 2.0/11 - 14)

2) Install the glow plug connectors.

15. Injection Nozzle Holder

1) Install the injection nozzle gasket 1 and the O-ring 2 to the injection nozzle holder 3.

2) Install the nozzle holder 3 together with the nozzle holder bracket 4 to the cylinder head.
 3) Tighten the holder nuts with washer 5 to the specified torque.

 Injection Nozzle Holder Nut Torque
 N·m(kgf·m/lb.ft)

 31 – 43 (3.2 – 4.4/23 – 32)

- 1.Intake manifold
- 2.Injection pump
- 3.Fuel injection pipe with clip
- 4.Fuel leak off pipe
- 5.0il pipe (Injection pump to cylinder body) 6.Ruel filter
- 7.Fuel pipe (Fuel filter to leak off)
- 8. Fuel pipe (Fuel filter to feed pump)
- 9.Fuel pipe (Fuel filter to injection pump)

- 10.Starter
- 11.Exhaust manifold
- 12.Cooling water intake pipe
- 13. cooling water rubber hose
- 14.Alternator and adjusting plate
- 15.0il filter
- 16.0il pressure switch
- 17.Cooling fan drive pulley
- 18.Cooling fan drive belt
- 19. Cooling fan and spacer
- 20.Stiffner (RH & LH)
- 21.Air breather hose

Important Operations (Reassembly Steps-31

হ

- 3. Fuel Injection Pipe with Clip
- 1) Temporarily tighten the injection pipe sleeve nut.
- 2) Set the clip in the prescribed position.

Note:

Make absolutely sure that the clip is connectly positioned. An improperly positioned clip will result in injection pipe breakage and fuel pulsing noise.

3) Tighten the injection pipe sleeve nut to the specified torque.

Injection Pipe Sleeve Nut Torque	N·m(kgf·m/lb.ft)
20 - 39 (2.0 - 4.0/14 - 29)	

10. Starter

Tighten the starter bolts to the specified torque.

Starter Bolt Torque	N·m(kgf·m/lb.ft)
65 - 85 (6.7 - 8.7/48 - 63)	

II. Exhaust Manifold

Tighten the exhaust manifold bolts to the specified torque a little at a time in the numerical order shown in the illustration.

Exhaust Manifold Bolt Torque	N·m(kgf·m/lb.ft)
14 – 24 (1.4 – 2.4/10 – 17)	

14. Alternator and Adjusting Plate

হ

Tighten the alternator bolts and the adjusting plate bolts to the specified torque.

Alternator Bolt Torque	N⋅m(kgf⋅m/lb.ft)
14 - 24 (1.4 - 2.4/1	10 – 17)
Tighten the adjusting plate torque after cooling drive belt	bolts to the specified installation.
Adjusting Plate Bolt Torque	N⋅m(kgf⋅m/lb.ft)

ljusting Plate Bolt Torque	N⋅m(kgf⋅m/lb.ft)
14 – 24 (1.4 -	- 2.4/10 – 17)

15. Oil Filter

Tighten the oil filter bolts to the specified targue.

Oil Filter Bolt Torque	N·m(kgf·m/lb.ft
14 – 24 (1.4 –	2.4/10 – 17)

Solenoid

1) Install the solenoid, connect the link rod with the stop lever on the injection pump, and semi-tighten the fixing bolt.

2) Adjust the solenoid installation so that the gap between the stop lever and stopper on the injection pump is brought to within 0.7 - 1.2 mm when the solenoid value is energized on.

3) Tighten the solenoid fixing bolts to the specified tarque.

4) With the engine running on trial, be sure that the engine is stopped, when the starter switch is turned to off position.

SECTION 6

LUBRICATING SYSTEM

TABLE OF CONTENTS

ITEM	PAGE
Main data and specifications	109
General description	110
	111
~ <u>-</u>	
Oil filter with built-in oil cooler	
MAIN DATA AND SPECIFICATIONS

ltem		4JG1		
Oil pump type		Trochoid		
Delivery volume	Lit(qts)/min.	17.5 (18.4)		
Pump speed		1000		
Delivery pressure	kPa(kgf/cm²/psi)	392 (4.0/57)		
Oil temperature	°C(°F)	47 – 53 (116.6 – 127.4)		
Engine oil		SAE 30		
Oil filter type		Full flow with cartridge paper element		
Regulating valve opening pressure	kPa(kgf/cm²/psi)	420 - 460 (4.3 - 4.7/61 - 67)		
Relief valve opening pressure	kPa(kgf/cm²/psi)	79 – 118 (0.8 – 1.2/11 – 17)		
Oil cooler type (if so equipped)		Water-cooled		
Safety valve opening pressure	kPa(kgf/cm²/psi)	225 – 265 (2.3 – 2.7/33 – 38)		

GENERAL DESCRIPTION

LUBRICATING OIL FLOW

This illustration is based on 4J Series engine with oil cooler (option). Lubricating oil flow may vary according to the engine specification.

The 4J Series engine lubricating system is a full forced circulation type.

Lubricating oil is purped from the oil purp to the cylinder body oil gallery through the oil cooler and the oil filter. It is then delivered to the vital parts of the engine from the cylinder body oil gallery.

LUBRICATING SYSTEM

OIL PUMP

4J Series engine are equipped with a trochoid type oil pump.

MAIN OIL FILTER

OIL FILTER WITH BUILT-IN OIL COOLER

Disassembly Steps 1.Oil Pipe 2.Strainer case 3.Pump cover

4.Vane

5. Pump body with rotor pinion

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is dis-covered during inspection. Vane, Rotor, and Cover Clearance .

Use a feeler gauge to measure the clearance between the vane, the rotor, and the cover.

If the clearance between the vane, the rotor, and the cover exceeds the specified limit, the rotor set (pin, shaft, rotor, and vane) must be replaced.

Vane, Rotor, and Cover Clearan	ce mm(in)
Standard	Limit
0.02 - 0.07 (0.0008 - 0.0026)	0.15 (0.006)

Rotor and Vane Clearance

Use a feeler gauge to measure the clearance between the rotor and the vane.

If the clearance between the rotor and the exceeds the specified limit, the rotor kit (shaft, rotor, and vane) must be replaced.

Rotor and Vane Clearance

mm(in) Standard Limit 0.14 (0.006) or less 0.20 (0.008)

Vane and Pump Body Clearance

Use a feeler gauge to measure the clearance between the vane and the pump body.

If the clearance between the vane and the pump body exceeds the specified limit, the entire pump assembly must be replaced.

Vane and Pump Body Clearance

Vane and Pump Body Clearance	e mm(in)
Standard	Limit
0.20 - 0.27 (0.008 - 0.011)	0.40 (0.016)

包

Reassembly Steps 1.Pump body with rotor and pinion 2.Vane

3.Pump cover

4.Strainer case 5.Oil pipe

OIL FILTER WITH BUILT-IN OIL COOLER

Disassembly Steps

- 1. Drain plug
- 2. Cartridge oil filter
- 3. Oil cooler
- 4.0-ring

5 . Safety valve

- 6 . Relief valve
- 7. Oil filter body

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

Regulating Valve

1. Attach an oil pressure gauge to the oil gallery near the oil filter.

2. Start the engine to check the regulating valve opening pressure.

 Relief Valve Opening Pressure
 kPa(kgf/cm²/psi)

 421 - 462 (4.3 - 4.7/61 - 67)

Oil Cooler

Water Leakage At Water Passage

1. Plug one side of the oil cooler water passage.

2. Submerge the oil cooler in water.

3. Apply compressed air (196 kPa (2 kgf/cm*/28 psi))

to the other side of the oil cooler water passage. If air bubbles rise to the surface, there is water leakage. LUBRICATING SYSTEM

Reassembly Steps

- 1. Oil filter body
- 2. Relief valve
- 3. Safety valve
- 4. O-ring

0il ccoler
 0il filter cartridge
 Drain plug

Important Operations

SECTION 7

COOLING SYSTEM

TABLE OF CONTENTS

ITEM	PAGE
Main data and specifications	121
General description	122
Tenotat	124

MAIN DATA AND SPECIFICATIONS

Item		
Water pump type		Centrifugal impeller
Pump to crankshaft speed ratio	(To 1)	1.1
Delivery volume	Lit(qts)/min.	100 (105.5)
Tolal head	kPa	60
Pump speed at 3000 rpm		
Water temperature at 30°C (86°F)		
Pump bearing type		Double row shaft
Thermostat type		Wax pellet with jiggle valve
Valve initial opening temperature	e °C(°F)	82 (180)
Valve full opening temperature °C(°F)		95 (203)
Valve lift at fully open position	mm(in.)	8.0 (0.31)

GENERAL DESCRIPTION

COOLANT FLOW

The engine cooling system consists of the radiator, the water pump, the cooling fan, and the thermostat. To quickly increase cold engine coolant temperature for smooth engine operation, the coolant is circulated by the water pump and thermostat through the by-pass hose and back to the cylinder body. The coolant does not circulate through the radiator.

When the coolant temperature reaches $82^{\circ}C$ ($180^{\circ}F$), the thermostat will begin to open and a gradually increasing amount of coolant will circulate through the radiator.

The thermostat will be fully open when the coolant temperature reaches $95^{\circ}C$ (203°F). All of the coolant is now circulating through the radiator for effective engine coolant.

WATER PUMP

A centrifugal type water pump forcefully circulates the coolant through the cooling system.

THERMOSIAT

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

124

SECTION 8

FUEL SYSTEM

TABLE OF CONTENTS

ITEM	PAGE
Main data and specifications	126
Greal description	
Injetion rozzle	
Injection pup calibration data	135

MAIN DATA AND SPECIFICATIONS

ltem	
Injection pump type	Bosch A type
Plunger outside diameter mm(in	n.) 9.0 (0.35)
Governor type	RSV variable speed mechanical type
Fuel feed pump type	Single action
Injection nozzle type	Hole type
Number of injection nozzle orifices	5
Injection nozzle orifice inside diameter mm(in	1.0 (0.039)
Injection nozzle opening pressure MPa(kg/cm²/p	si) 18.1 (185/2,630)
Main fuel filter type	Cartridge paper element

GENERAL DESCRIPTION

FUEL FLOW

The fuel system consists of the fuel tank, the water separator (if so equipped), the fuel filter, the injection pump, and the injection nozzle.

The fuel from the fuel tank passes through the water separator and the fuel filter where water particles and other foreign material are removed from the fuel.

Fuel, fed by the injection pump plunger, is delivered to the injection nozzle in the measured volume at the optimum timing for efficient engine operation.

INJECTION NOZZLE

A hole (with 5 orifices) type injection nozzle is used. It consists of the nozzle body and the needle valve assembly.

The injection nozzle sprays pressurized fuel from the injection pump into the combustion chamber through the nozzle body injection orifice.

FUEL FILTER AND WATER SEPARATOR

A cartridge type fuel filter and a water separator are used.

As the inside of the injection pump is lubricated by the fuel which it is pumping, the fuel must be perfectly clean. The fuel filter and the water separator remove water particles and other foreign material from the fuel before it reaches the injection pump.

The water separator has an internal float. When the float reaches the drain level, remind you to drain the water from the water separator.

INFCTION NOVZLE

Disassembly Steps

- 1 . Retaining nut
- A 2 . Injection nozzle
- 3. Spacer
- 4 . Spring seat

- 5. Spring
- 6. Adjusting shim
- 7 . Nozzle holder

Important Operations

Performance this test before disassembling the injection rozzle.

1) Install the injection mozzle to the mozzle tester. 2) Use the nozzle tester to apply compressed fuel at 18.1 MPa (185 kgf/cm*/2,630 psi) to the injection mozzle.

3) Check the area around the nozzle seat for fuel leakage. If there is fuel leakage, the injection nozzle and the injection body must be replaced as a set.

2.Injection Nozzle

Remove the injection nozzles from the nozzle holders.

The nozzle needle valve and nozzle body combinations must be interchange.

Immerse the injection nozzles in a tool tray filled with clean diesel fuel to protect them from dust.

]0

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

Injection Nozzle Needle Inspection

1. Remove the nozzle needle from the nozzle body.

2 . Carefully wash the nozzle needle and the nozzle body in clean diesel fuel.

3. Check that the nozzle needle moves smoothly inside the injection nozzle body.

If the nozzle needle does not moves smoothly, it must be repaired (See "Nozzle Lapping Procedure" below.)

Nozzle Lapping Procedure

1. Lap the nozzle needle 1 and the nozzle body 2 by applying a compound of oxidized chrome and animal all 3.

Note:

Do not apply an excessive amount of the oxidized chrome and animal oil compound to the injection needle valve seat area.

2 . Carefully wash the needle value and the nozzle body in clean diesel fuel after lapping.

Nozzle Body and Needle Valve Inspection Check the nozzle body and the needle valve for damage and deformation.

The nozzle and body must be replaced if either of these two conditions are discovered during inspection.

REASSEMBLY

Reassembly Steps

- 1 . Nozzle holder
- 2 . Adjusting shim
- 3. Spring
- 4. Spring seat

- 5 . Spacer
- 6 . Injection nozzle
- 7. Retaining nut

Important Operations

3. Adjust Shim

Adjust Shim Availability	mm(in.		
Range	0.10-0.59 (0.0039-0.0232)		

7. Retaining Nut

Tighten to the retaining nut to the specified torque.

N·m(kgf·m/lb.ft)

Injection Nozzle Adjustment

1. Attach the injection nozzle holder to the injection nozzle tester.

2. Apply pressure to the nozzle tester to check that the injection nozzle opens at the specified pressure. If the injection nozzle does not open at the specified pressure, install or remove the appropriate number of adjusting shims to adjust it. WARNING:

TEST FLUID FROM THE INJECTION NOZZLE TESTER WILL SPRAY OUT UNDER GREAT PRESSURE. IT CAN EASILY PUNCTURE A PERSON'S SKIN. KEEP YOUR HANDS AWAY FROM THE INJECTION NOZZLE TESTER AT ALL TIMES.

INJECTION PUMP CALIBRATION DATA

IDENTIFICATION PLATE AND PRODUCT SERIAL NUMBER

 Injection pump adjustment and repair should be made by the nearest ZEXEL CORPORATION or ROBERT BOSCH Authorized Service Outlet.
 When you ask such authorized service outlet the adjustment or repair, the identification Plate and Product Serial Number will give them a necessary clue to get technical data distributed by the manufacturers previously.
 Without this data, the Service Outlet will be unable to effectively service your injection pump.
 If you are unable to locate the data applicable to your injection pump, please contact Ingersoll-Rand Co. through your machine supplier.

3. Do not remove the Identification Plate and Product Serial Number from the injection pump. Keep the Identification Plate and Product Serial Number clean at all times. Do not allow it to rust or become illegible.

Note: Examples of test conditions and calibration data are as follows.

TEST CONDITIONS REQUIRED FOR THE FUEL INJECTION AMOUNT ADJUSTMENT

Injection Nozzle		*ZEXEL No.: 105780-0000		
		Bosch Type No : DN12SD12T		
		Bosch rype No DN123D121		
Injection Nozzle Holder		ZEXEL No.: 105780-2080		
		Bosch Type No.: EF8511/9		
Injection Starting Pressure	MPa(kgf/cm ²)	17.2 (175)		
Injection Line Dimensions	mm(in.)	بر 25		
Inside Diameter		2.0 (0.079)		
Outoido Diamatar				
Outside Diameter		6.0 (0.236)		
Length		600.0 (23.6)		
ransfer Pump Pressure		1.6 (22.75)		
Testing Diesel Fuel		ISO4113 or SAE Standard Test Oil (SAEJ967D)		
Operating Tomporature	0C/0E)	40 45 (104 140)		
Operating remperature	°C(°F)	40 - 45 (104 - 113)		
Pump Rotation Direction		Clockwise (Viewed from the drive side)		
-				

TEL SVS	STEM	IN				Ass'v No.	000000_000	0
	1 1111					Date :		2
		I	ENGINE MODEL 4	JB1PAW-01	l	Company	: ISUZU	<u> </u>
						No.	0-00000-000	-0
Injecti	on pump : F C	PES4A 000000-00	Governo 000	or: EP/RSV 000000-	T -0000-	Fiming device :		
1. Test (Conditions	:						
Pump	rotation :		clockwise (vie	wed from d	rive side)			
Nozzle	: 000000-0 (BOSCH 1	000 Гуре No.	DN12SD12T)	N۲	əlde	er : 000000–0000 (BOSCH Typ	e No. EF8511/9)A)
Nozzle	opening pr	essure : 1	175 kgf/cm²		Jier pur	mp pressure : 1.6	8 kgf/cm²	
Injecti	on pipe : Inr	ner Dia.	2 mm	mm	– Length	600 mm		
Test O	il : ISO4113	or SAE S	Aد, tandard	E J967d)	C	Dil Temp. : 40 ⁺⁵ °	с	
Overfl	ow valve op	ening pre	essure : 1.5 kgf/cm ²					
2. Iniect	ion Timine	a :						
Pre-str	oke No. 1 F	Plunger	33+005 mm	Note : Ad	iust with	control rod posi	tion of	 mm
Injectio	on order :	1	3 1	. 2				
injectio	on order .	90°±30′	180°±30′ 270°±30)'				
						(interval	:	± 30')
			Plungers are num	bered from	the Dri	ver side.		
Tappe 4. Inject	t clearance : ion Quant	Bolt adju Shim adj ity :	istment type ;Mo justment type ;Ma it ro	re than 0.3 nually rotates smoo	mm for a e the can thly.	ll cylinders. nshaft 2~3 times	and confirm tł	nat
Adjust- ing point	Rod Position (mm)	Pump Speed (r.p.m)	Injection Q'tγ (cc/1000 strokes)	Max. var bet. cyl (%)	Fixed	Rema	rks	
Α	8.3	1,500	64 – 65	± 2.5	Lever	Basic		
С	Approx. 6.6	500	9.5 – 13.5	± 15	Rack			
D	Above 14.0	100	(70 – 85)	-	Lever			

5. Timing advance specification :

.

Pump Speed (r.p.m)				
Advance Angle (deg.)				

ZEXEL CORPORATION Service Department

3-4-1 Kitano, Niiza-shi, Saitama-ken, 352 Japan Tel. (048) 470-1559 · Fax. (048) 474-9856

GOVERNOR ADJUSTMENT

Speed Lever Angle

SECTION 9

TROUBLESHOOTING

TABLE OF CONTENTS

ITEM	PACE
Hardstarting	
Unstable idling	
Instficient power	
Excessive fiel consuption	
Excessive oil consuption	153
Oleheting	
White exhaust snoke	
Date stast side	
Oil pressure does not nise	
Abramal argine roise	

TROUBLESHOOTING

Refer to this Section to quickly diagnose and repair engine problems. Each troubleshooting chart has three headings arranged from left to right. (3) Checkpoint (2) Trouble Cause (3) Countermeasure This Section is divided into ten sub-sections:

- 1. Hard Starting
 - 1) Starter inoperative
 - 2) Starter operates but engine does not turn over
 - 3) Engine turns over but does not start
- 2. Unstable Idling
- 3. Insufficient Power
- 4. Excessive Fuel Consumption
- 5. Excessive Oil Consumption
- 6. Overheating
- 7. White Exhaust Smoke
- 8. Dark Exhaust Smoke
- 9. Oil Pressure Does Not Rise
- 10. Abnormal Engine Noise

1. HARD STARTING 1. STARTER MOTOR INOPERATIVE

1. HARD STARTING 2. STARTER MOTOR OPERATES BUT ENGINE DOES NOT TURN OVER

1. HARD STARTING 3.ENGINE TURNS OVER BUT DOES NOT START

1. HARD STARTING 3. ENGINE TURNS OVER BUT DOES NOT START

FUEL IS BEING DELIVERED TO THE INJECTION PUMP

2. UNSTABLE IDLING

2. UNSTABLE IDLING

2. UNSTABLE IDLING

4. EXCESSIVE FUEL CONSUMPTION

4. EXCESSIVE FUEL CONSUMPTION

5. EXCESSIVE OIL CONSUMPTION

6. OVERHEATING

6. OVERHEATING

Checkpoint		Trouble cause		Countermeasure
Continued from the previous page				
Cooling system	-	Cooling system clogged by foreign material	-	Clean the foreign material from the cooling system
	_		_	
Fuel injection timing		Fuel injection timing improperly adjusted	-	Adjust the fuel injection timing

7. WHITE EXHAUST SMOKE

8. DARK EXHAUST SMOKE

9. OIL PRESSURE DOES NOT RISE

9. OIL PRESSURE DOES NOT RISE

Checkpoint Trouble cause Countermeasure Continued from the previous page Camshaft Camshaft Worn camshaft and camshaft bearing Replace the camshaft and the camshaft bearings Crankshaft and bearings Worn crankshaft and bearings Replace the crankshaft and/or the bearings

10. ABNORMAL ENGINE NOISE

1. Engine Knocking

Checkpoint Trouble cause Countermeasure Check to see that the engine has been thoroughly warmed up before beginning the troubleshooting procedure. Fuel unsuitable Fuel Replace the fuel Fuel injection timing Fuel injection timing improperly Adjust the fuel injection timing adjusted Injection nozzle Improper injection nozzle starting Adjust or replace the injection nozzle pressure and spray condition Compression pressure Blown out head gasket Replace the head gasket or the piston Broken piston ring ring 2. Gas Leakage Noise Loosely connected exhaust pipes Tighten the exhaust pipe connections Exhaust pipes ► Broken exhaust pipes Replace the exhaust pipes Replace the washers Injection nozzles and/or glow plugs Loose injection nozzles and/or glow Tighten the injection nozzles and/or plugs the glow plugs Continued on the next page

10. ABNORMAL ENGINE NOISE

2. Gas Leakage Noise

10. ADNORMAL ENGINE NOISE

4. Slapping Noise

SECTION 10

REPAIR STANDARDS

TABLE OF CONTENTS

ITEM	PAGE
Greal rules	
Repair standards drart	

General Rules

1. These tables provide standards relating the repair of the following diesel engine; Model A-4JGL

2. These Repair Standards are based on inspection items, together with dimensions, assembly standards, limit values, and repair procedures.

(1) Nominal dimensions are the standard production values.

(2) Assembly standards considered to be the values used as objectives during the assembly procedures which follow repairs; as a. result, they may be somewhat at variance with the assembly dimensions of a new engine.

(3) Limit values refer to the measured values resulting from wear, etc., beyond which a part must not

be used. If a measured value falls beyond the limit value, the part involved must be repaired replaced. (4) "Repair Procedures" indicates normal repair methods.

(5) Unless otherwise stated, the unit of numerical values in tables should be taken to refer to millimeters, mm (in).

3. Explanation of Terms Used in Tables

(1) The dimension of "wear" refers to the difference between the dimensions of a part which is not worm (or the "nominal dimension" of a part without wear) and the dimension of the part suffering from the most wear (the dimension of the worm part).

(2) Uneven wear means the difference between the maximum and minimum wear values.

4 . When repairs are requested on the overall engine, first perform bench tests to determine what parts require repairs, then perform the minimum disassembly and repairs required to correct the problems. When repairs on a specific engine part are requested, repairs to be made in reference to the relevant items in accordance with the repair standards listed in this manual.

								Ś		
Comments	Warm engine engine speed 200 rpm (varies depending or altitude)	New engine perform	ance is assumed 100%		(Ref) Cylinder & liner clearance	0.017 – 0.055 (0.0007 – 0.0022)		Difference in liner projection between neighboring cylinder not to exceed 0.02		
Repair Procedure	Disassemble and repair engine	-			Upper step wear must be repaired, or replace with standard dimen- sion liner			Some projection must be present	Not repairable; must be replaced	Leaks require repair or replacement
Limit	2.2 (22/313)	140%	200%		Dia 95.5 (3.760)				0.20 (0.008)	
Assembly Standard Value								0 – 0.10 (0 – 0.0039)	0.05 (0.002) or less	490 (5/71)
Nominal Dimension	3.04 (31/441)	100%	100%		Dia. 95.4 (3.756)					
Inspection Item	Cylinder compression pressure MPa (kgf/cm ² /psi)	Fuel consumption L/h	Lubricating oil consumption L/h	Wear on liner bore Measured at A–A	A		Liner projection		Cylinder block upper face warpage	Pressure test: 3 minutes kPa (kgf/cm ² /psi)
Name of Part	engine embly					λρο	inder B	CVI		
Major Category	Time for disasse	alia				λрοξ] ənipr	E		

REPAIR STANDARDS

Comments	Valve seat angle: α	Exhaust side 45°	After repair, be sure	to lap contact surfaces			
Repair Procedure			Repair with valve seat	cutter	Maximum Allowable Griding stock 0.3 (0.012)	repair	Leaks require repair or replacement
Limit	1.28 (0.050)	1.6 (0.063)	2.2 (0.087)	2.5 (0.078)	0.2 (0.008)	0.2 (0.008)	
Assembly Standard Value	Inlet side 0.65 (0.029)	Exhaust side 1.1 (0.028)	Inlet side 1.7 (0.067)	Exhaust side 2.0 (0.079)	0.05 (0.002) or less	0.05 (0.002) or less	490 (5/71)
Nominal Dimension							
Inspection Item	Valve seat depression: B (both inlet and exhaust) (Insert)	(Cylinder A (Value) Bettom 45 (inlet & exhaust surface Must not protrude from to cylinder head	Contact width with valve seat: A		Warpage and flatness of cylinder head lower face (mounting surface)	Warpage of manifold mounting surface	Water-pressure test, 3 minutes kPa (kgf/cm²/psi)
Name of Part			der Head	nilyJ			
Major Category			vboð ən	ign3			

Comments									Measure with expander attached	When assembling compression rings on piston, be sure ring's	marked surface is up. Backwards installation will result in excessive	oil consumption. No top/bottom to oil ring.	
Repair Procedure		Replace piston or piston pin	Replace piston pin		Replace rings or piston			appideu	Replace		Replace rings or piston		At 120° intervals
Limit			Dia. 33.97 (1.3374)		1.5 (0.059)					0.15 (0.006)	0.15 (0.006)	0.15 (0.006)	
Assembly Standard Value	Clearance with major axis 0.037 - 0.075 (0.0015 - 0.0030)	0.004 – 0.017 (0.0002 – 0.0006)	34.995 – 34.000 (1.3384 – 1.3386)	0.20 - 0.35 (0.008 - 0.014)	0.37 - 0.52 (0.015 - 0.020)	0.20 – 0.30 (0.008 – 0.012)	15.7 – 23.5 (1.6 – 2.4)	11.0 – 16.5 (1.1 – 1.7)	41 – 56 (4.2 – 5.8)	0.090 - 0.130 (0.0035 - 0.0051)	0.050 - 0.090 (0.002 - 0.003)	0.030 – 0.070 (0.0012 – 0.0028)	
Nominal Dimension			Dia. 34.0 (1.2205)										
ion Item	linder: m upper face 70 mm (2.76 in)	ton pin hole		1st compression ring	2nd compression ring	Oil ring	1st compression ring	2nd compression ring	Oil ring	1st compression ring	2nd compression ring	Oil ring	uo
Inspect	Clearance with cy grade position fro	Piston pin and pis clearance	Piston pin		Piston Ring Gap			Tension N (kgf)		Clearance	between piston ring and ring		Ring gap orientati
Name of Part	รเ	snotsi¶ puiA notsi¶											
Major Category					st	ıs9 pnit	n Opera	isM					

Comments	Do not attempt to grind:	always replace with new parts				Measure at crankshaft's No. 1 bearing thrust surface				
Repair Procedure			Use those with projection and proper arc; take care with back side fit	Replace bearing	Undersize bearings cannot be used	Replace thrust bearings	Replace crankshaft	Perform lapping on gears with burrs; in cases of severe damage, replace.	Use those with projection and proper arc; take care work back side fit	Replace bearing
Limit	0.09 (0.0035)	0.094 (0.0037)		0.11 (0.0043)		0.30 (0.0118)	0.08 (0.0031)			0.10 (0.0039)
Assembly Standard Value				0.031 – 0.063 (0.0012 – 0.0025)		0.10 (0.0039)	0.05 (0.002) or less			0.029 – 0.066 (0.0011 – 0.0026)
Nominal Dimension	Dia.70(2.756)	Dia. 53 (2.087)								
Inspection Item	even Journal ar on	rnal 1 pins Pin	ırnal and bearing ead	arance between rnal and bearing	ırnal bearing Iersize	nkshaft end play	nkshaft runout	g gear	mecting rod bearing out	arance between necting rod ring and crankpin
Vame f Part	Une	jou ano	Joi spri	kshaft	Cran E C	Cra	Cra	Rin	sboß gni	Connect bea Connect
Major N Category o				st	ne9 pri	iterati) nisM			

r	T	T	r	(r	1		
Comments	Take special care with crankpin precision	Sufficient gap to allow smooth rotation when holding big end	Crank must not be ground (no undersizes available)						
Repair Procedure	Replace parts with poor contact or abrasions	Replace bushing or pin		Replace connecting rod	Repair or replace	Repair or replace	Replace camshaft	Replace bearing	Replace camshaft
Limit		0.05 (0.002)		0.35 (0.0138)	0.20 (0.008)	0.15 (0.006)	0.05 (0.002)	0.12 (0.0047)	Dia. 49.60 (1.953)
Assembly Standard Value		0.008 – 0.020 (0.0003 – 0.0008)		0.175 – 0.290 (0.007 – 0.0114)	0.05 (0.002) or less	0.05 (0.002) or less		0.025 – 0.085 (0.001 – 0.0033)	49.945 - 49.975 (1.9663 - 1.9675)
Nominal Dimension			Dia. 53 (2.087)				Dia. 50 (1.969)		Dia. 50 (1.969)
Inspection Item	Contact between connecting rod bearing and crankpin	Clearance between smallend bushing and piston pin	Connecting rod bearing undersize	Connecting rod and crankpin end play	Big end to small end hole twist (per 100 mm)	Big end to small end hole parallelism (per 100 mm)	Journal uneven wear	Clearance between journal and bearing	Journal wear
Name of Part		spo	A pnit	pəuuog)		IJ	eyswe	;C
Major Category			st	ng Pai	terat) nisM			

REPAIR STANDARDS

•

Comments	nor step wear on ms can be repaired		
Repair Procedure	eplace camshaft car	eplace camshaft	eplace thrust plate
Limit	41.65 (1.64)	0.10 (0.004) F	0.20 (0.008) F
Assembly Standard Value		0.02 (0.0008) or less	0.05 – 0.114 (0.002 – 0.0044)
Nominal Dimension	42.02 (1.65)		
Inspection Item	Cam height:	Camshaft runout	Camshaft end play
Name of Part	1)sdan	าธว	
Major Category	erating Parts	oqO nis	M

.

Comments			Measure valve stem	at three positions	Apply oil to valve guide and press in		,		Reference value						
Repair Procedure	Donloco control		Replace valve and	valve guide together		Replace valve and	valve guide together							Replace bushing or shaft	Replace rocker arm shaft
Limit	Dia. 7.88	(0.3102)	0.2 (0.008)	0.25 (0.0098)			1.1 (0.043)			225 (23/51)	48.2 (1.90)	2.5 (0.098)	Adjust	0.2 (0.008)	Dia. 18.85 (0.742)
Assembly Standard Value	Dia. 7.949 - 7.961 (0.3129 - 0.3134)	Dia. 7.921 – 7.936 (0.3118 – 0.3124)	0.039 - 0.071 (0.0015 - 0.0028)	0.064 – 0.096 (0.0025 – 0.0038)	0.02 (0.0008)	1.79 (0.07)	1.39 (0.05)			254 (25.9/57)			0.40 (0.016)	0.01 - 0.05 (0.0004 - 0.002)	Dia. 18.98 – 19.00 (0.747 – 0.748)
Nominal Dimension	Dia. 8	(0.315)				Z	EX	13.0 (0.512)	13.0 (0.512)		49.7 (1.96)	1.5 (0.06) or less			
Inspection Item	Inlet valve stem wear	Exhaust valve stem wear	Clearance between inlet valve stem and valve guide	Clearance between exhaust valve stem and guide	Interference between valve guide and cylinder head	Valve Thickness	thickness +	Height of valve	guide above cylinder head Exhaust	Tension N (kgf/lb) (When compressed to Installed length) 38.9 mm (1.53 in)	 Free length mm 	[∞] Inclination	Valve clearance (inlet & exhaust) (cold)	Clearance between rocker arm shaft and bushing	Rocker arm shaft wear
Name of Part					I			sə	vleV				1	1	
Major Category							w	yste	S 9vl	вV					

Comments			Special order item from manufacturer
Repair Procedure	Replace tappet	Replace tappet	
Limit	0.10 (0.0039)	12.95 (0.509)	
Assembly Standard Value	0.03 (0.0012)	12.97 – 12.99 (0.510 – 0.511)	
Nominal Dimension			
ipection Item	tween tappet	Out diameter	ement condition
lus	Clearance bet and cyl. body	Tappet wear	Air cleaner el
Name of Part	ţədo	teT	Air cleaner
Major Category	əvlı məta	s∕RS ⊳V	Intake System

Comments							
Repair Procedure		Replace vane, rotor or cover	Replace rotor set	Repair or replace		Replace	
Limit	196 (2/28)	0.15 (0.006)	0.20 (0.008)	0.40 (0.016)	13		
Assembly Standard Value	29 - 64 (3 - 4.5 /43 - 64)	0.02 – 0.07 (0.0008 – 0.0026)	0.14 (0.006) or less	0.20 – 0.27 (0.008 – 0.011)			420 - 460 (4.3 - 4.7 /61 - 67)
Nominal Dimension							
Inspection Item	Lubricating oil pressure (1400 rpm) kPa (kgf/cm ² /psi)	Vane, rotor and cover clearance	Rotor and vane clearance	Clearance between pump body and vane	Pumping rate L/min 1000 rpm, SAE #30, pumping pressure 390 kPa (4 kgf/cm ² /57 psi) oil temp. 50°C (122°F)	Clogging and damage to oil filter	Regulating pressure of main oil filter relief valve kPa (kgf/cm²/psi)
Name of Part	bressure Oil	۹۸	rlev tei	ləЯ brie	s qmuql liO	ər	oji filto
Major Category			məi	isyS pn	Lubricati		

Major Category	Name of Part	Inspection Item	Nominal Dimension	Assembly Standard Value	Limit	Repair Procedure	Comments
		Water pump ball bearing chatter (radial direction)			0.2 (0.0079)	Replace	
		Pumping rate					
		pumping speed 3000 rpm, water temp 30°C (86°F) Total head 60 kPa or more		100			
Mətem	dɯn	Clearance between pump impeller and pump body mm		0.3 – 1.3 (0.0118 – 0.0512)		Repair or replace if impeller and pump body are touching	
2 gnilooD	Water p	Fan belt Press with deflection Afringer finger mm(in)		8 - 12 (0.31 - 0.47)		Adjust	(Reference) 10 kgf (22.0 lb/98N) each
		Initial thermostat operating temperature (at sea level)	82°C (180°F)	80 – 84°C (176 – 183°F)			Replace thermostat if operation is incorrect.
		Thermostat full-open temperature (at sea level)		95°C (203°F)		Temperature at whic thermostat lift reaches 8mm(0.315in) or more.	
mətev2	.otə ,bn	Clogged, cracked, loose fuel pipes, injection pipes, nozzle holders; defective seals.				Repair or replace	
ləu٦	iqi9	Fuel filter element clogging or damage				Replace	Cartridge type

Comments				Rotate by hand and check for smooth rotation:	no abnormal sound or resistance should be felt.					If coil resistance value	is severely abnormal, replace switch.		
Repair Procedure	If warning indicator lights when engine is operating at normal speeds, check and repair electrical system.	Repair	Replace rotor	Replace bearings	Repair	Replace		Repair	Replace			Replace armature	Repair
Limit			0.1 (0.0039) or ress		0.3 (0.012)	26 (1.02)	6 (0.23)		11 (0.43)			Dia. 31.4 (1.24)	0.2 (0.008)
Assembly Standard Value									18 (0.71)			Dia. 32 (1.26)	0.5 (0.02)
Nominal Dimension						27 (1.06)	22 (0.86)						
ispection Item	ndication	seness, cuts or damaged wiring.	Shaft runout	Bearing chatter	hrust side chatter	meter	Length	+		Jeries coil resistance (Ω)) Shut coil resistance (Ω)	0.D.	Undercut depth
<u> </u>	Warning lam	Check for loc insulation to		Rotol		Slip ring dia	Brush	Loose moun	Brush length	Magnetic	at 20°C [68°F]	Commutator	
Name of Part	Charge/ Discharge indication	gniriW	(0	√` 20∿	12 12 89720	Alterna Itachi	H) 1	L	(08	2.2 kW	er ۱2V, 12V,	ttat2 dustiM)
Major Category						leointo	el∃						

Comments			Warm engine	Warm engine	1400 rpm Oil Temp About 80°C (176°F)	When new engine	output is 100%	
Repair Procedure	Replace if cut wiring or shorts are found	30 minutes or more	Inspect	Inspect	Adjust			
Limit			2.2 (22/313)	5% or less				
Assembly Standard Value			3.04 (31/441)		294 - 441 (3 - 4.5/43 - 64)	90% or more	110% or less	
Nominal Dimension								
Inspection Item	Glow plug	Engine run-in operation	Cylinder compression pressure MPa (kgf/ cm ² /psi) about 200 rpm	Difference in compression between cylinders MPa (kgf/ cm ² /psi) about 200 rpm	Lubricating oil pressure kPa (kgf/ cm²/psi)	Output check	Fuel consumption check	
Name of Part	Pre- heater			an noncerton				
Major Category	Flect -rical		· · · ·	itoononi le	~:⊐			

SECTION 11

CONVERSION TABLES

INDEX

CONTENTS

PAGE

lægh	
Ace	
Võlune	
Nees	
Bessue	
Taqe	
Tapeature	

MILLIMETERS TO INCHES

mm	in.	mm	in.	mm	in.	mm	in.
1	0.0394	26	1.0236	51	2.0079	76	2.9921
2	0.0787	27	1.0630	52	2.0472	77	3.0315
3	0.1181	28	1.1024	53	2.0866	78	3.0709
4	0.1575	29	1.1417	54	2.1260	79	3.1102
5	0.1969	30	1.1811	55	2.1654	80	3.1496
6	0.2362	31	1.2205	56	2.2047	81	3.1890
7	0.2756	32	1.2598	57	2.2441	82	3.2283
8	0.3150	33	1.2992	58	2.2835	83	3.2677
9	0.3543	34	1.3386	59	2.3228	84	3.3071
10	0.3937	35	1.3780	60	2.3622	85	3.3465
11	0.4331	36	1.4173	61	2.4016	86	3.3858
12	0.4724	37	1.4567	62	2.4409	87	3.4252
13	0.5118	38	1.4961	63	2.4803	88	3.4646
14	0.5512	39	1.5354	64	2.5197	89	3.5039
15	0.5906	40	1.5748	65	2.5591	90	3.5433
16	0.6299	41	1.6142	66	2.5984	91	3.5827
17	0.6693	42	1.6535	67	2.6378	92	3.6220
18	0.7087	43	1.6929	68	2.6772	93	3.6614
19	0.7480	44	1.7323	69	2.7165	94	3.7008
20	0.7874	45	1.7717	70	2.7559	95	3.7402
21	0.8268	46	1.8110	71	2.7953	96	3.7795
22	0.8661	47	1.8504	72	2.8346	97	3.8189
23	0.9055	48	1.8898	73	2.8740	98	3.8583
24	0.9449	49	1.9291	74	2.9134	99	3.8976
25	0.9843	50	1.9685	75	2.9528	100	3.9370
101	3.9764	111	4.3701	121	4.7638	131	5.1575
102	4.0157	112	4.4094	122	4.8031	132	5.1968
103	4.0551	113	4.4488	123	4.8425	133	5.2362
104	4.0945	114	4.4882	124	4.8819	134	5.2756
105	4.1339	115	4.5276	125	4.9213	135	5.3150
106	4.1732	116	4.5669	126	4.9606	136	5.3543
107	4.2126	117	4.6063	127	5.0000	137	5.3937
108	4.2520	118	4.6457	128	5.0394	138	5.4331
109	4.2913	119	4.6850	129	5.0787	139	5.4724

INCHES TO MILLIMETERS

	in.		mm		in.		mm
		1/64	0.3969			33/64	13.0969
	1/32		0.7938		17/32		13.4938
		3/64	1.1906			35/64	13.8906
1/16			1.5875	9/16			14.2875
		5/64	1.9844			37/64	14.6844
-	3/32		2.3813		19/32		15.0813
		7/64	2.7781			39/64	15.4781
1/8			3.1750	5/8			15.8750
		9/64	3.5719			41/64	16.2719
	5/32		3.9688		21/32		16.6688
		11/64	4.3656			43/64	17.0656
3/16			4.7625	11/16			17.4625
		13/64	5.1594			45/64	17.8594
	7/32		5.5563		23/32		18.2563
		15/64	5.9531			47/64	18.6531
1/4			6.3500	3/4			19.0500
		17/64	6.7469			49/64	19.4469
	9/32		7.1438		25/32		19.8438
		19/64	7.5406			51/64	20.2406
5/16			7.9375	13/16			20.6375
		21/64	8.3344			53/64	21.0344
	11/32		8.7313	•	27/32		21.4313
		23/64	9.1281	r.		55/64	21.8281
3/8			9.5250	7/8			22.2250
		25/64	9.9219			57/64	22.6219
	13/32		10.3188		29/32		23.0188
		27/64	10.7156			59/64	23.4156
7/16			11.1125	15/16			23.8125
		29/64	11.5094			61/64	24.2094
	15/32		11.9063		31/32		24.6063
		31/64	12.3031			63/64	25.0031
1/2			12.7000	1			25.4000

LENGTH

FEET TO METERS

ft.	0	1	2	3	4	5	6	7	8	9	ft.
	m	m	m	m	m	m	m	m	m	m	
		0.305	0.610	0.914	1.219	1.524	1.829	2.134	2.438	2.743	
10	3.048	3.353	3.658	3.962	4.267	4.572	4.877	5.182	5.486	5.791	10
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.839	20
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	11.887	30
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935	40
50	15.240	15.545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983	50
60	18.288	18.593	18.898	19.202	19.507	19.812	20.117	20.422	20.726	21.031	60
70	21.336	21.641	21.946	22.250	22.555	22.860	23.165	23.470	23.774	24.079	70
80	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127	80
90	27.432	27.737	28.042	28.346	28.651	28.956	29.261	29.566	29.870	30.175	90
100	30.480	30.785	31.090	31.394	31.699	32.004	32.309	32.614	32.918	33.223	100
	1		1	1	1	1	1	I.	1	1	

METERS TO FEET

			· · · · · · · · · · · · · · · · · · ·									
	m	0	1	2	3	4	5	6	7	8	9	
		ft.	ft.	ft.	ft.	ft.	ft.	ft.	ft.	ft.	ft.	
			3.2808	6.5617	9.8425	13.1234	16.4042	19.6850	22.9659	26.2467	29.5276	
	10	32.8084	36.0892	39.3701	42.6509	45.9318	49.2126	52.4934	55.7743	59.0551	62.3360	10
	20	65.6168	68.8976	72.1785	75.4593	78.7402	82.0210	85.3018	88.5827	91.8635	95.1444	20
	30	98.4252	101.7060	104.9869	108.2677	111.5486	114.8294	118.1102	121.3911	124.6719	127.9528	30
	40	131.2336	134.5144	137.7953	141.0761	144.3570	147.6378	150.9186	154.1995	157.4803	160.7612	40
	50	164.0420	167.3228	170.6037	173.8845	177.1654	180.4462	183.7270	187.0079	190.2887	193.5696	50
	60	196.8504	200.1312	203.4121	206.6929	209.9738	213.2546	216.5354	219.8163	223.0971	226.3780	60
	70	229.6588	232.9396	236.2205	239.5013	242.7822	246.0630	249.3438	252.6247	255.9055	259.1864	70
	80	262.4672	265.7480	269.0289	272.3097	275.5906	278.8714	282.1522	285.4331	288.7139	291.9948	80
	90	295.2756	298.5564	301.8373	305.1181	308.3990	311.6798	314.9606	318.2415	321.5223	324.8032	90
	100	328.0840	331.3648	334.6457	337.9265	341.2074	344.4882	347.7690	351.0499	354.3307	357.6116	100
I											1	

MILES TO KILOMETERS

miles	0	1	2	3	4	5	6	7	8	9	
	km										
		1.609	3.219	4.828	6.437	8.047	9.656	11.265	12.875	14.484	
10	16.093	17.703	19.312	20.921	22.531	24.140	25.750	27.359	28.968	30.578	10
20	32.187	33.796	35.406	37.015	38.624	40.234	41.843	43.452	45.062	46.671	20
30	48.280	49.890	51.499	53.108	54.718	56.327	57.936	59.546	61.155	62.764	30
40	64.374	65.983	67.592	69.202	70.811	72.420	74.030	75.639	77.249	78.858	40
50	80.467	82.077	83.686	85.295	86.905	88.514	90.123	91.733	93.342	94.951	50
60	96.561	98.170	99.779	101.389	102.998	104.607	106.217	107.826	109.435	111.045	60
70	112.654	114.263	115.873	117.482	119.091	120.701	122.310	123.919	125.529	127.138	70
80	128.748	130.357	131.966	133.576	135.185	136.794	138.404	140.013	141.622	143.232	80
90	144.841	146.450	148.060	149.669	151.278	152.888	154.497	156.106	157.716	159.325	90
100	160.934	162.544	164.153	165.762	167.372	168.981	170.590	172.200	173.809	175.418	100

KILOMETERS TO MILES

km	0	1	2	3	4	5	6	7	[*] 8	9	
	miles	miles									
—		0.621	1.243	1.864	2.485	3.107	3.728	4.350	4.971	5.592	
10	6.214	6.835	7.456	8.078	8.699	9.321	9.942	10.563	11.185	11.806	10
20	12.427	13.049	13.670	14.292	14.913	15.534	16.156	16.777	17.398	18.020	20
30	18.641	19.262	19.884	20.505	21.127	21.748	22.369	22.991	23.612	24.233	30
40	24.855	25.476	26.098	26.719	27.340	27.962	28.583	29.204	29.826	30.447	40
50	31.069	31.690	32.311	32.933	33.554	34.175	34.797	35.418	36.039	36.661	50
60	37.282	37.904	38.525	39.146	39.768	40.389	41.010	41.632	42.253	42.875	60
70	43.496	44.117	44.739	45.360	45.981	46.603	47.224	47.845	48.467	49.088	70
80	49.710	50.331	50.952	51.574	52.195	52.816	53.438	54.059	54.681	55.302	80
90	55.923	56.545	57.166	57.787	58.409	59.030	59.652	60.273	60.894	61.516	90
100	62.137	62.758	63.380	64.001	64.622	65.244	65.865	66.487	67.108	67.729	100

AREA

SQUARE INCHES TO SQUARE CENTIMETERS

in²	0	1	2	3	4	5	6	7	8	9	in²
	cm²	cm²	cm²	cm²	cm²	cm²	cm ²	cm²	cm²	cm ²	
		6.452	12.903	19.355	25.806	32.258	38.710	45.161	51.613	58.064	
10	64.516	70.968	77.419	83.871	90.322	96.774	103.226	109.677	116.129	122.580	10
20	129.032	135.484	141.935	148.387	154.838	161.290	167.742	174.193	180.645	187.096	20
30	193.548	200.000	206.451	212.903	219.354	225.806	232.258	238.709	245.161	251.612	30
40	258.064	264.516	270.967	277.419	283.870	290.322	296.774	303.225	309.677	316.128	40
50	322.580	329.032	335.483	341.935	348.386	354.838	361.290	367.741	374.193	380.644	50
60	387.096	393.548	399.999	406.451	412.902	419.354	425.806	432.257	438.709	445.160	60
70	451.612	458.064	464.515	470.967	477.418	483.870	490.322	496.773	503.225	509.676	70
80	516.128	522.580	529.031	535.483	541.934	548.386	554.838	561.289	567.741	574.192	80
90	580.644	587.096	593.547	599.999	606.450	612.902	619.354	625.805	632.257	638.708	90
100	645.160	651.612	658.063	664.515	670.966	677.418	683.870	690.321	696.773	703.224	100

SQUARE CENTIMETERS TO SQUARE INCHES

cm²	o	1	2	3	4	5	6	7	8	9	cm²
	in²	in²	in²	in²	in ²	in ²	in²	in²	in ²	in ²	
-		0.155	0.310	0.465	0.620	0.775	0.930	1.085	1.240	1.395	
10	1.550	1.705	1.860	2.015	2.170	2.325	2.480	2.635	2.790	2.945	10
20	3.100	3.255	3.410	3.565	3.720	3.875	4.030	4.185	4.340	4.495	20
30	4.650	4.805	4.960	5.115	5.270	5.425	5.580	5.735	5.890	6.045	30
40	6.200	6.355	6.510	6.665	6.820	6.975	7.130	7.285	7.440	7.595	40
50	7.750	7.905	8.060	8.215	8.370	8.525	8.680	8.835	8.990	9.145	50
60	9.300	9.455	9.610	9.765	9.920	10.075	10.230	10.385	10.540	10.695	60
70	10.850	11.005	11.160	11.315	11.470	11.625	11.780	11.935	12.090	12.245	70
80	12.400	12.555	12.710	12.865	13.020	13.175	13.330	13.485	13.640	13.795	80
90	13.950	14.105	14.260	14.415	14.570	14.725	14.880	15.035	15.190	15.345	90
100	15.500	15.655	15.810	15.965	16.120	16.275	16.430	16.585	16.740	16.895	100

VOLUME

CUBIC INCHES TO CUBIC CENTIMETERS

in ³	0	1	2	3	4	5	6	7	8	9	in ³
	cm ³ (cc)										
—		16.387	32.774	49.161	65.548	81.935	98.322	114.709	131.097	147.484	
10	163.871	180.258	196.645	213.032	229.419	245.806	262.193	278.580	294.967	311.354	10
20	327.741	344.128	360.515	376.902	393.290	409.677	426.064	442.451	458.838	475.225	20
30	491.612	507.999	524.386	540.773	557.160	573.547	589.934	606.321	622.708	639.095	30
40	655.483	671.870	688.257	704.644	721.031	737.418	753.805	770.192	786.579	802.966	40
50	819.353	835.740	852.127	868.514	884.901	901.289	917.676	934.063	950.450	966.837	50
60	983.224	999.611	1015.998	1032.385	1048.772	1065.159	1081.546	1097.933	1114.320	1130.707	60
70	1147.094	1163.482	1179.869	1196.256	1212.643	1229.030	1245.417	1261.804	1278.191	1294.578	70
80	1310.965	1327.352	1343.739	1360.126	1376.513	1392.900	1409.288	1425.675	1442.062	1458.449	80
90	1474.836	1491.223	1507.610	1523.997	1540.384	1556.771	1573.158	1589.545	1605.932	1622.319	90
100	1638.706	1655.093	1671.481	1687.868	1704.255	1720.642	1737.029	1753.416	1769.803	1786.190	100

CUBIC CENTIMETERS TO CUBIC INCHES

		1	1.	T		T	T	r			
cm ³ (cc)	0	1	2	3	4	5	6	7	8	9	cm ³ (cc)
	in ³										
		0.0610	0.1220	0.1831	0.2441	0.3051	0.3661	0.4272	0.4882	0.5492	
10	0.6102	0.6713	0.7323	0.7933	0.8543	0.9153	0.9764	1.0374	1.0984	1.1594	10
20	1.2205	1.2815	1.3425	1.4035	1.4646	1.5256	1.5866	1.6476	1.7086	1.7697	20
30	1.8307	1.8917	1.9527	2.0138	2.0748	2.1358	2.1968	2.2579	2.3190	2.3799	30
40	2.4409	2.5020	2.5630	2.6240	2.6850	2.7460	2.8071	2.8681	2.9291	2.9901	40
50	3.0512	3.1122	3.1732	3.2342	3.2952	3.3563	3.4173	3.4783	3.5393	3.6004	50
60	3.6614	3.7224	3.7834	3.8444	3.9055	3.9665	4.0275	4.0885	4.1496	4.2106	60
70	4.2716	4.3326	4.3937	4.4547	4.5157	4.5767	4.6377	4.6988	4.7598	4.8208	70
80	4.8818	4.9429	5.0039	5.0649	5.1259	5.1870	5.2480	5.3090	5.3700	5.4310	80
90	5.4921	5.5531	5.6141	5.6751	5.7362	5.7972	5.8582	5.9192	5.9803	6.0413	90
100	6.1023	6.1633	6.2243	6.2854	6.3464	6.4074	6.4684	6.5295	6.5905	6.6515	100
4	1	1				1			,		

VOLUME

GALLONS (U.S.) TO LITERS

U.S. gal.	0	1	2	3	4	5	6	7	8	9	U.S.gal.
	liters										
		3.7854	7.5709	11.3563	15.1417	18.9271	22.7126	26.4980	30.2834	34.0688	
10	37.8543	41.6397	45.4251	49.2105	52.9960	56.7814	60.5668	64.3523	68.1377	71.9231	10
20	75.7085	79.4940	83.2794	87.0648	90.8502	94.6357	98.4211	102.2065	105.9920	109.7774	20
30	113.5628	117.3482	121.1337	124.9191	128.7045	132.4899	136.2754	140.0608	143.8462	147.6316	30
40	151.4171	155.2025	158.9879	162.7734	166.5588	170.3442	174.1296	177.9151	181.7005	185.4859	40
50	189.2713	193.0568	196.8422	200.6276	204.4131	208.1985	211.9839	215.7693	219.5548	223.3402	50
60	227.1256	230.9110	234.6965	238.4819	242.2673	246.0527	249.8382	253.6236	257.4090	261.1945	60
70	264.9799	268.7653	272.5507	276.3362	280.1216	283.9070	287.6924	291.4779	295.2633	299.0487	70
80	302.8342	306.6196	310.4050	314.1904	317.9759	321.7613	325.5467	329.3321	333.1176	336.9030	80
90	340.6884	344.4738	348.2593	352.0447	355.8301	359.6156	363.4010	367.1864	370.9718	374.7573	90
100	378.5427	382.3281	386.1135	389.8990	393.6844	397.4698	401.2553	405.0407	408.8261	412.6115	100

LITERS TO GALLONS (U.S.)

liters	0	1	2	3	4	5	6	7	8	9	liters
	gal.										
		0.2642	0.5283	0.7925	1.0567	1.3209	1.5850	1.8492	2.1134	2.3775	_
10	2.6417	2.9059	3.1701	3.4342	3.6984	3.9626	4.2268	4.4909	4.7551	5.0193	10
20	5.2834	5.5476	5.8118	6.0760	6.3401	6.6043	6.8685	7.1326	7.3968	7.6610	20
30	7.9252	8.1893	8.4535	8.7177	8.9818	9.2460	9.5102	9.7744	10.0385	10.3027	30
40	10.5669	10.8311	11.0952	11.3594	11.6236	11.8877	12.1519	12.4161	12.6803	12.9444	40
50	13.2086	13.4728	13.7369	14.0011	14.2653	14.5295	14.7936	15.0578	15.3220	15.5861	50
60	15.8503	16.1145	16.3787	16.6428	16.9070	17.1712	17.4354	17.6995	17.9637	18.2279	60
70	18.4920	18.7562	19.0204	19.2846	19.5487	19.8129	20.0771	20.3412	20.6054	20.8696	70
80	21.1338	21.3979	21.6621	21.9263	22.1904	22.4546	22.7188	22.9830	23.2471	23.5113	80
90	23.7755	24.0397	24.3038	24.5680	24.8322	25.0963	25.3605	25.6247	25.8889	26.1530	90
100	26.4172	26.6814	26.9455	27.2097	27.4739	27.7381	28.0022	28.2664	28.5306	28.7947	100

GALLONS (IMP.) TO LITERS

Imp gal.	0	1	2	3	4	5	6	7	8	9	lmp gal.
	liters										
		4.5459	9.0918	13.6377	18.1836	22.7295	27.2754	31.8213	36.3672	40.9131	
10	45.4590	50.0049	54.5508	59.0967	63.6426	68.1885	72.7344	77.2803	81.8262	86.3721	10
20	90.9180	95.4639	100.0098	104.5557	109.1016	113.6475	118.1934	122.7393	127.2852	131.8311	20
30	136.3770	140.9229	145.4688	150.0147	154.5606	159.1065	163.6524	168.1983	172.7442	177.2901	30
40	181.8360	186.3819	190.9278	195.4737	200.0196	204.5655	209.1114	213.6573	218.2032	222.7491	40
50	227.2950	231.8409	236.3868	240.9327	245.4786	250.0245	254.5704	259.1163	263.6622	268.2081	50
60	272.7540	277.2999	281.8458	286.3917	290.9376	295.4835	300.0294	304.5753	309.1212	313.6671	60
70	318.2130	322.7589	327.3048	331.8507	336.3966	340.9425	345.4884	350.0343	354.5802	359.1261	70
80	363.6720	368.2179	372.7638	377.3097	381.8556	386.4015	390.9474	395.4933	400.0392	404.5851	80
90	409.1310	413.6769	418.2228	422.7687	427.3146	431.8605	436.4064	440.9523	445.4982	450.0441	90
100	454.5900	459.1359	463.6818	468.2277	472.7736	477.3195	481.8654	486.4113	490.9572	495.5031	100

LITERS TO GALLONS (IMP.)

..

liters	0	1	2	3	4	5	6	7	[.] 8	9	liters
	gal.	gal.	gal.	gal.	gal.	gal.	gal.	gal.	gal.	gal.	
		0.2200	0.4400	0.6599	0.8799	1.0999	1.3199	1.5399	1.7598	1.9798	
10	2.1998	2.4198	2.6398	2.8597	3.0797	3.2997	3.5197	3.7397	3.9596	4.1796	10
20	4.3996	4.6196	• 4.8396	5.0595	5.2795	5.4995	5.7195	5.9395	6.1594	6.3794	20
30	6.5994	6.8194	7.0394	7.2593	7.4793	7.6993	7.9193	8.1393	8.3592	8.5792	30
40	8.7992	9.0192	9.2392	9.4591	9.6791	9.8991	10.1191	10.3391	10.5590	10.7790	40
50	10.9990	11.2190	11.4390	11.6589	11.8789	12.0989	12.3189	12.5389	12.7588	12.9788	50
60	13.1988	13.4188	13.6388	13.8587	14.0787	14.2987	14.5187	14.7387	14.9586	15.1786	60
70	15.3986	15.6186	15.8386	16.0585	16.2785	16.4985	16.7185	16.9385	17.1584	17.3784	70
80	17.5984	17.8184	18.0384	18.2583	18.4783	18.6983	18.9183	19.1383	19.3582	19.5782	80
90	19.7982	20.0182	20.2382	20.4581	20.6781	20.8981	21.1181	21.3381	21.5580	21.7780	90
100	21.9980	22.2180	22.4380	22.6579	22.8779	23.0979	23.3179	23.5379	23.7578	23.9778	100

MASS

POUNDS TO KILOGRAMS

lbs.	0	1	2	3	4	5	6	7	8	9	lbs.
	kg										
		0.454	0.907	1.361	1.814	2.268	2.722	3.175	3.629	4.082	
10	4.536	4.990	5.443	5.897	6.350	6.804	7.257	7.711	8.165	8.618	10
20	9.072	9.525	9.979	10.433	10.886	11.340	11.793	12.247	12.701	13.154	20
30	13.608	14.061	14.515	14.970	15.422	15.876	16.329	16.783	17.237	17.690	30
40	18.144	18.597	19.051	19.504	19.958	20.412	20.865	21.319	21.772	22.226	40
50	22.680	23.133	23.587	24.040	24.494	24.948	25.401	25.855	26.308	26.762	50
60	27.216	27.669	28.123	28.576	29.030	29.484	29.937	30.391	30.844	31.298	60
70	31.751	32.205	32.659	33.112	33.566	34.019	34.473	34.927	35.380	35.834	70
80	36.287	36.741	37.195	37.648	38.102	38.555	39.009	39.463	39.916	40.370	80
90	40.823	41.277	41.731	42.184	42.638	43.091	43.545	43.998	44.452	44.905	90
100	45.359	45.813	46.267	46.720	47.174	47.627	48.081	48.534	48.988	49.442	100

KILOGRAMS TO POUNDS

kg	0	1	2	3	4	5	6	7	8	9	kg
	lbs.	lbs.	lbs.	lbs.							
-		2.205	4.409	6.614	8.818	11.023	13.228	15.432	17.637	19.842	
10	22.046	24.251	26.455	28.660	30.865	33.069	35.274 [*]	37.479	39.683	41.888	10
20	44.092	46.297	48.502	50.706	52.911	55.116	57.320	59.525	61.729	63.934	20
30	66.139	68.343	70.548	72.753	74.957	77.162	79.366	81.571	83.776	85.980	30
40	88.185	90.390	92.594	94.799	97.003	99.208	101.413	103.617	105.822	108.026	40
50	110.231	112.436	114.640	116.845	119.050	121.254	123.459	125.663	127.868	130.073	50
60	132.277	134.482	136.687	138.891	141.096	143.300	145.505	147.710	149.914	152.119	60
70	154.324	156.528	158.733	160.937	163.142	165.347	167.551	169.756	171.960	174.165	70
80	176.370	178.574	180.779	182.984	185.188	187.393	189.597	191.802	194.007	196.211	80
90	198.416	200.621	202.825	205.030	207.234	209.439	211.644	213.848	216.053	218.258	90
100	220.462	222.667	224.871	227.076	229.281	231.485	233.690	235.895	238.099	240.304	100

KILOGRAMS TO NEWTON

kgf	0	1	2	3	4	5	6	7	8	9	kgf
	N	N	N	N	N	N	N	N	N	N	
		9.81	19.61	29.42	39.23	49.03	58.84	68.65	78.45	88.26	
10	98.07	107.87	117.68	127.49	137.29	147.10	156.91	166.71	176.52	186.33	10
20	196.13	205.94	215.75	225.55	235.36	245.17	254.97	264.78	274.59	284.39	20
30	294.20	304.01	313.81	323.62	333.43	343.23	353.04	362.85	372.65	382.46	30
40	392.27	402.07	411.88	421.69	431.49	441.30	451.11	460.91	470.72	480.53	40
50	490.33	500.14	509.95	519.75	529.56	539.37	549.17	558.98	568.79	578.59	50
60	588.40	598.21	608.01	617.82	627.63	637.43	647.24	657.05	666.85	676.66	60
70	686.47	696.27	706.08	715.89	725.69	735.50	745.31	755.11	764.92	774.73	70
80	784.53	794.34	804.15	813.95	823.76	833.57	843.37	853.18	862.99	872.79	80
90	882.60	892.41	902.21	912.02	921.83	931.63	941.44	951.25	961.05	970.86	90
100	980.67	990.47	1000.28	1010.08	1019.89	1029.70	1039.50	1049.31	1059.12	1068.92	100

NEWTON TO KILOGRAMS

N	0	10	20	30	40	50	60	70	[′] 80	90	N
	kgf	kgf									
—		1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	
100	10.197	11.217	12.237	13.256	14.276	15.296	16.316	17.335	18.355	19.375	100
200	20.394	21.414	22.434	23.454	24.473	25.493	26.513	27.532	28.552	29.572	200
300	30.592	31.611	32.631	33.651	34.670	35.690	36.710	37.730	38.749	39.769	300
400	40.789	41.809	42.828	43.848	44.868	45.887	46.907	47.927	48.947	49.966	400
500	50.986	52.006	53.025	54.045	55.065	56.085	57.104	58.124	59.144	60.163	500
600	61.183	62.203	63.223	64.242	65.262	66.282	67.302	68.321	69.341	70.361	600
700	71.380	72.400	73.420	74.440	75.459	76.479	77.499	78.518	79.538	80.558	700
800	81.578	82.597	83.617	84.637	85.656	86.676	87.696	88.716	89.735	90.755	800
900	91.775	92.795	93.814	94.834	95.854	96.873	97.893	98.913	99.933	100.952	900
1000	101.972	102.992	104.011	105.031	106.051	107.071	108.090	109.110	110.130	111.149	1000
PRESSURE

POUNDS PER SQUARE INCHES TO KILOGRAMS PER SQUARE CENTIMETERS

lb/in²	0	1	2	3	4	5	6	7	8	9	lb/in²
(psi)	kgf/cm ²	(psi)									
—		0.0703	0.1406	0.2109	0.2812	0.3515	0.4218	0.4921	0.5625	0.6328	
10	0.7031	0.7734	0.8437	0.9140	0.9843	1.0546	1.1249	1.1952	1.2655	1.3358	10
20	1.4061	1.4764	1.5468	1.6171	1.6874	1.7577	1.8280	1.8983	1.9686	2.0389	20
30	2.1092	2.1795	2.2498	2.3201	2.3904	2.4607	2.5311	2.6014	2.6717	2.7420	30
40	2.8123	2.8826	2.9529	3.0232	3.0935	3.1638	3.2341	3.3044	3.3747	3.4450	40
50	3.5154	3.5857	3.6560	3.7263	3.7966	3.8669	3.9372	4.0075	4.0778	4.1481	50
60	4.2184	4.2887	4.3590	4.4293	4.4996	4.5700	4.6403	4.7106	4.7809	4.8512	60
70	4.9215	4.9918	5.0621	5.1324	5.2027	5.2730	5.3433	5.4136	5.4839	5.5543	70
80	5.6246	5.6949	5.7652	5.8355	5.9058	5.9761	6.0464	6.1167	6.1870	6.2573	80
90	6.3276	6.3979	6.4682	6.5386	6.6089	6.6792	6.7495	6.8198	6.8901	6.9604	90
100	7.0307	7.1010	7.1713	7.2416	7.3119	7.3822	7.4525	7.5228	7.5932	7.6635	100

KILOGRAMS PER SQUARE CENTIMETERS TO POUNDS PER SQUARE INCHES

kgf/cm ²	0	1	2	3	4	5	6	7	8	9	kgf/cm ²
	lb/in²(psi)										
		14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.78	128.01	
10	142.23	156.45	170.68	184.90	199.12	213.35	227.57	241.79	256.01	270.24	10
20	284.46	298.68	312.91	327.13	341.35	355.58	369.80	384.02	398.24	412.47	20
30	426.69	440.91	455.14	469.36	483.58	497.81	512.03	526.25	540.47	554.70	30
40	568.92	583.14	597.37	611.59	625.81	640.04	654.26	668.48	682.70	696.93	40
50	711.15	725.37	739.60	753.82	768.04	782.27	796.49	810.71	824.93	839.16	50
60	853.38	867.60	881.83	896.05	910.27	924.50	938.72	952.94	967.16	981.39	60
70	995.61	1009.83	1024.06	1038.28	1052.50	1066.73	1080.95	1095.17	1109.39	1123.62	70
80	1137.84	1152.06	1166.29	1180.51	1194.73	1208.96	1223.18	1237.40	1251.62	1265.85	80
90	1280.07	1294.29	1308.52	1322.74	1336.96	1351.19	1365.41	1379.63	1393.85	1408.08	90
100	1422.30	1436.52	1450.75	1464.97	1479.19	1493.42	1507.64	1521.86	1536.08	1550.31	100

KILOGRAMS PER SQUARE CENTIMETERS TO KILO PASCAL

kgf/cm ²	0	1	2	3	4	5	6	7	8	9	kgf/cm ²
	KPa	KPa	KPa	KPa	KPa	КРа	KPa	KPa	KPa	KPa	
		98.1	196.1	294.2	392.3	490.3	588.4	686.5	784.5	882.6	
10	980.7	1078.7	1176.8	1274.9	1372.9	1471.0	1569.1	1667.1	1765.2	1863.3	10
20	1961.3	2059.4	2157.5	2255.5	2353.6	2451.7	2549.7	2647.8	2745.9	2843.9	20
30	2942.0	3040.1	3138.1	3236.2	3334.3	3432.3	3530.4	3628.5	3726.5	3824.6	30
40	3922.7	4020.7	4118.8	4216.9	4314.9	4413.0	4511.1	4609.1	4707.2	4805.3	40
50	4903.4	5001.4	5099.5	5197.5	5295.6	5393.7	5491.8	5589.8	5687.9	5785.9	50
60	5884.0	5982.1	6080.1	6178.2	6276.3	6374.4	6472.4	6570.5	6668.6	6766.6	60
70	6864.7	6962.7	7060.8	7158.9	7256.9	7355.0	7453.1	7551.1	7649.2	7747.3	70
80	7845.3	7943.4	8041.5	8139.5	8237.6	8335.7	8433.7	8531.8	8629.9	8727.9	80
90	8826.0	8924.1	9022.1	9120.2	9218.3	9316.3	9414.4	9512.5	9610.5	9708.6	90
100	9806.7	9904.7	10002.8	10100.8	10198.9	10297.0	10395.1	10493.1	10591.2	10689.2	100

KILO PASCAL TO KILOGRAMS PER SQUARE CENTIMETERS

KPa	0	100	200	300	400	500	600	700	· 800	900	KPa
	kgf/cm ²										
		1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	
1000	10.197	11.217	12.237	13.256	14.276	15.296	16.316	17.335	18.355	19.375	1000
2000	20.394	21.414	· 22.434	23.454	24.473	25.493	26.513	27.532	28.552	29.572	2000
3000	30.592	31.611	32.631	33.651	34.670	35.690	36.710	37.730	38.749	39.769	3000
4000	40.789	41.809	42.828	43.848	44.868	45.887	46.907	47.927	48.947	49.966	4000
5000	50.986	52.006	53.025	54.045	55.065	56.085	57.104	58.124	59.144	60.163	5000
6000	61.183	62.203	63.223	64.242	65.262	66.282	67.302	68.321	69.341	70.361	6000
7000	71.380	72.400	73.420	74.440	75.459	76.479	77.499	78.518	79.538	80.558	7000
8000	81.578	82.597	83.617	84.637	85.656	86.676	87.696	88.716	89.735	90.755	8000
9000	91.775	92.795	93.814	94.834	95.854	96.873	97.893	98.913	99.933	100.952	9000
10000	101.972	102.992	104.011	105.031	106.051	107.071	108.090	109.110	110.130	111.149	10000
											1

TORQUE

ft. Ibs.	0	1	2	3	4	5	6	7	8	9	ft Ibs.
	kgf-m										
		0.138	0.277	0.415	0.553	0.691	0.830	0.968	1.106	1.244	
10	1.383	1.521	1.659	1.797	1.936	2.074	2.212	2.350	2.489	2.627	10
20	2.765	2.903	3.042	3.180	3.318	3.456	3.595	3.733	3.871	4.009	20
30	4.148	4.286	4.424	4.562	4.701	4.839	4.977	5.115	5.254	5.392	30
40	5.530	5.668	5.807	5.945	6.083	6.221	6.360	6.498	6.636	6.774	40
50	6.913	7.051	7.189	7.328	7.466	7.604	7.742	7.881	8.019	8.157	50
60	8.295	8.434	8.572	8.710	8.848	8.987	9.125	9.263	9.401	9.540	60
70	9.678	9.816	9.954	10.093	10.231	10.369	10.507	10.646	10.784	10.922	70
80	11.060	11.199	11.337	11.475	11.613	11.752	11.890	12.028	12.166	12.305	80
90	12.443	12.581	12.719	12.858	12.996	13.134	13.272	13.411	13.549	13.687	90
100	13.826	13.964	14.102	14.240	14.379	14.517	14.655	14.793	14.932	15.070	100

FOOT POUNDS TO KILOGRAMMETERS

KILOGRAMMETERS TO FOOT POUNDS

kgf-m	0	1	2	3	4	5	6	7	8	9	kgf-m
	ft. Ibs.										
-		7.23	14.47	21.70	28.93	36.17	43.40	50.63	57.86	65.10	
10	72.33	79.56	86.80	94.03	101.26	108.50	115.73	122.96	130.19	137.43	10
20	144.66	151.89	159.13	166.36	173.59	180.83	188.06	195.29	202.52	209.76	20
30	216.99	224.22	231.46	238.69	245.92	253.16	260.39	267.62	274.85	282.09	30
40	289.32	296.55	303.79	311.02	318.25	325.49	332.72	339.95	347.18	354.42	40
50	361.65	368.88	376.12	383.35	390.58	397.82	405.05	412.28	419.51	426.75	50
60	433.98	441.21	448.45	455.68	462.91	470.15	477.38	484.61	491.84	499.08	60
70	506.31	513.54	520.78	528.01	535.24	542.48	549.71	556.94	564.17	571.41	70
80	578.64	585.87	593.11	600.34	607.57	614.81	622.04	629.27	636.50	643.74	80
90	650.97	658.20	665.44	672.67	679.90	687.14	694.37	701.60	708.83	716.07	90
100	723.30	730.53	737.77	745.00	752.23	759.47	766.70	773.93	781.16	788.40	100

KILOGRAMMETERS TO NEWTONMETERS

kgf-m	0	1	2	3	4	5	6	7	8	9	kgf-m
	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	
		9.81	19.61	29.42	39.23	49.03	58.84	68.65	78.45	88.26	
10	98.07	107.87	117.68	127.49	137.29	147.10	156.91	166.71	176.52	186.33	10
20	196.13	205.94	215.75	225.55	235.36	245.17	254.97	264.78	274.59	284.39	20
30	294.20	304.01	313.81	323.62	333.43	343.23	353.04	362.85	372.65	382.46	30
40	392.27	402.07	411.88	421.69	431.49	441.30	451.11	460.91	470.72	480.53	40
50	490.33	500.14	509.95	519.75	529.56	539.37	549.17	558.98	568.79	578.59	50
60	588.40	598.21	608.01	617.82	627.63	637.43	647.24	657.05	666.85	676.66	60
70	686.47	696.27	706.08	715.89	725.69	735.50	745.31	755.11	764.92	774.73	70
80	784.53	794.34	804.15	813.95	823.76	833.57	843.37	853.18	862.99	872.79	80
90	882.60	892.41	902.21	912.02	921.83	931.63	941.44	951.25	961.05	970.86	90
100	980.67	990.47	1000.28	1010.08	1019.89	1029.70	1039.51	1049.31	1059.12	1068.93	100

NEWTONMETERS TO KILOGRAMMETERS

·

N-m	0	10	20	30	40	50	60	70	· 80	90	N-m
	kgf-m										
-		1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	
100	10.197	11.217	12.236	13.256	14.276	15.296	16.315	17.335	18.355	19.374	100
200	20.394	21.414	.22.433	23.453	24.473	25.493	26.512	27.532	28.552	29.571	200
300	30.591	31.611	32.630	33.650	34.670	35.690	36.709	37.729	38.749	39.768	300
400	40.788	41.808	42.827	43.847	44.867	45.887	46.906	47.926	48.946	49.965	400
500	50.985	52.005	53.024	54.044	55.064	56.084	57.103	58.123	59.143	60.162	500
600	61.182	62.202	63.221	64.241	65.261	66.281	67.300	68.320	69.340	70.359	600
700	71.379	72.399	73.418	74.438	75.458	76.478	77.497	78.517	79.537	80.556	700
800	81.576	82.596	83.615	84.635	85.655	86.675	87.694	88.714	89.734	90.753	800
900	91.773	92.793	93.812	94.832	95.852	96.872	97.891	98.911	99.931	100.950	900
1000	101.970	102.990	104.009	105.029	106.049	107.069	108.088	109.108	110.128	111.147	1000

TEMPERATURE

FAHRENHEIT TO CENTIGRADE

°F	°C	°F	°C	۴	°C	۴F	°C	۴F	°C	°F	°C	۴F	°C	۴	°C
-60	-51.1	-2	-18.9	56	13.3	114	45.6	172	77.8	230	110.0	288	142.2	346	174.4
-58	-50.0	0	-17.8	58	14.4	116	46.7	174	78.9	232	111.1	290	143.3	348	175.6
-56	-48.9	2	-16.7	60	15.6	118	47.8	176	80.0	234	112.2	292	144.4	350	176.7
-54	-47.8	4	-15.6	62	16.7	120	48.9	178	81.1	236	113.3	294	145.6	352	177.8
-52	-46.7	6	-14.4	64	17.8	122	50.0	180	82.2	238	114.4	296	146.7	354	178.9
-50	-45.6	8	-13.3	66	18.9	124	51.1	182	83.3	240	115.6	298	147.8	356	180.0
-48	-44.4	10	-12.2	68	20.0	126	52.2	184	84.4	242	116.7	300	148.9	358	181.1
-46	-43.3	12	-11.1	70	21.1	128	53.3	186	85.6	244	117.8	302	150.0	360	182.2
-44	-42.2	14	-10.0	72	22.2	130	54.4	188	86.7	246	118.9	304	151.1	362	183.3
-42	-41.1	16	-8.9	74	23.3	132	55.6	190	87.8	248	120.0	306	152.2	364	184.4
-40	-40.0	18	-7.8	76	24.4	134	56.7	192	88.9	250	121.1	308	153.3	366	185.6
-38	-38.9	20	-6.7	78	25.6	136	57.8	194	90.0	252	122.2	310	154.4	368	186.7
-36	-37.8	22	-5.6	80	26.7	138	58.9	196	91.1	254	123.3	312	155.6	370	187.8
-34	-36.7	24	-4.4	82	27.8	140	60.0	198	92.2	256	124.4	314	156.7	372	188.9
-32	-35.6	26	-3.3	84	28.9	142	61.1	200	93.3	258	125.6	316	157.8	374	190.0
-30	-34.4	28	-2.2	86	30.0	144	62.2	202	94.4	260	126.7	318	158.9	376	191.1
-28	-33.3	30	-1.1	88	31.1	146	63.3	204	95.6	262	127.8	320	160.0	378	192.2
-26	-32.2	32	0.0	90	32.2	148	64.4	206	96.7	264	128.9	322	161.1	380	193.3
-24	-31.1	34	1.1	92	33.3	150	65.6	208	97.8	266	130.0	324	162.2	382	194.4
-22	-30.0	36	2.2	94	34.4	152	66.7	210	98.9	268	131.1	326	163.3	384	195.6
-20	-28.9	38	3.3	96	35.6	154	67.8	212	100.0	270	132.2	328	164.4	386	196.7
-18	-27.8	40	4.4	98	36.7	156	68.9	214	101.1	272	133.3	330	165.6	388	197.8
-16	-26.7	42	5.6	100	37.8	158	70.0	216	102.2	274	134.4	332	166.7	390	198.9
-14	-25.6	44	6.7	102	38.9	160	71.1	218	103.3	276	135.6	334	167.8	392	200.0
-12	-24.4	46	7.8	104	40.0	162	72.2	220	104.4	278	136.7	336	168.9	400	204.4
-10	-23.3	48	8.9	106	41.1	164	73.3	222	105.6	280	137.8	338	170.0	410	210.0
-8	-22.2	50	10.0	108	42.2	166	74.4	224	106.7	282	138.9	340	171.1	420	215.6
-6	-21.1	52	11.1	110	43.3	168	75.6	226	107.8	284	140.0	342	172.2	430	221.1
-4	-20.0	54	12.2	112	44.4	170	76.7	228	108.9	286	141.1	344	173.3	440	226.7

CENTIGRADE TO FAHRENHEIT

°C	°F	°C	۰F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
-50	-58.0	-18	-0.4	14	57.2	46	114.8	78	172.4	110	230.0	142	287.6	174	345.2
-49	-56.2	-17	1.4	15	59.0	47	116.6	79	174.2	111	231.8	143	289.4	175	347.0
-48	-54.4	-16	3.2	16	60.8	48	118.4	80	176.0	112	233.6	144	291.2	176	348.8
-47	-52.6	-15	5.0	17	62.6	49	120.2	81	177.8	113	235.4	145	293.0	177	350.6
-46	-50.8	-14	6.8	18	64.4	50	122.0	82	179.6	114	237.2	146	294.8	178	352.4
-45	-49.0	-13	8.6	19	66.2	51	123.8	83	181.4	115	239.0	147	296.6	179	354.2
-44	-47.2	-12	10.4	20	68.0	52	125.6	84	183.2	116	240.8	148	298.4	180	356.0
-43	-45.4	-11	12.2	21	69.8	53	127.4	85	185.0	117	242.6	149	300.2	181	357.8
-42	-43.6	-10	14.0	22	71.6	54	129.2	86	186.8	118	244.4	150	302.0	182	359.6
-41	-41.8	-9	15.8	23	73.4	55	131.0	87	188.6	119	246.2	151	303.8	183	361.4
-40	-40.0	-8	17.6	24	75.2	56	132.8	88	190.4	120	248.0	152	305.6	184	363.2
-39	-38.2	-7	19.4	25	77.0	57	134.6	89	192.2	121	249.8	153	307.4	185	365.0
-38	-36.4	-6	21.2	26	78.8	58	136.4	90	194.0	122	251.6	154	309.2	186	366.8
-37	-34.6	-5	23.0	27	80.6	59	138.2	91	195.8	123	253.4	155	311.0	187	368.6
-36	-32.8	-4	24.8	28	82.4	60	140.0	92	197.6	124	255.2	156	312.8	188	370.4
-35	-31.0	-3	26.6	29	84.2	61	141.8	93	199.4	125	257.0	157	314.6	189	372.2
-34	-29.2	-2	28.4	30	86.0	62	143.6	94	201.2	126	258.8	158	316.4	190	374.0
-33	-27.4	-1	30.2	31	87.8	63	145.4	95	203.0	127	260.6	159	318.2	191	375.8
-32	-25.6	0	32.0	32	89.6	64	147.2	96	204.8	128	262.4	160	320.0	192	377.6
-31	-23.8	1	33.8	33	91.4	65	149.0	97	206.6	129	264.2	161	321.8	193	379.4
-30	-22.0	2	35.6	34	93.2	66	150.8	98	208.4	130	266.0	162	323.6	194	381.2
-29	-20.2	3	37.4	. 35	95.0	67	152.6	99	210.2	131	267.8	163	325.4	195	383.0
-28	-18.4	4	39.2	36	96.8	68	154.4	100	212.0	132	269.6	164	327.2	196	384.8
-27	-16.6	5	41.0	37	98.6	69	156.2	101	213.8	133	271.4	165	329.0	197	386.6
-26	-14.8	6	42.8	38	100.4	70	158.0	102	215.6	134	273.2	166	330.8	198	388.4
-25	-13.0	7	44.6	39	102.2	71	159.8	103	217.4	135	275.0	167	332.6	199	390.2
-24	-11.2	8	46.4	40	104.0	72	161.6	104	219.2	136	276.8	168	334.4	200	392.0
-23	-9.4	9	48.2	41	105.8	73	163.4	105	221.0	137	278.6	169	336.2	210	410.0
-22	-7.6	10	50.0	42	107.6	74	165.2	106	222.8	138	280.4	170	338.0	220	428.0
-21	-5.8	11	51.8	43	109.4	75	167.0	107	224.6	139	282.2	171	339.8	230	446.0
-20	-4.0	12	53.6	44	111.2	76	168.8	108	226.4	140	284.0	172	341.6	240	464.0
-19	-2.2	13	55.4	45	113.0	77	170.6	109	228.2	141	285.8	173	343.4	250	482.0