

APPLICATION MANUAL

TNV Series

APPLICATION MANUAL

2TNV70 3TNV70·3TNV76 3TNV82A·3TNV82A-B 3TNV84·3TNV84T·3TNV84T-B 3TNV88·3TNV88-B·3TNV88-U 4TNV84·4TNV84T·4TNV84T-Z 4TNV88·4TNV88-B·4TNV88-U 4TNV98·4TNV98-Z·4TNV98-E

4TNV98T·4TNV98T-Z 4TNV106·4TNV106T

P/N: 0DTNV-G00301

Section 1

APPLICATION STANDARD

Page

Application Standard 1-	3
Special Operating Environment	5 5
(Air, Sea Water, Road Salt)1- Precautions Against Cold Environment1- Precautions Against Hot Environment1- Others1-	6 6
Low-temperature startability	8 0
(Requirements for the Driven Machine Manufacturers)	4 4
Tamper Resistance 1-3 Report on Sales in the USA 1-3 Recall — EPA 1-3	4 4

This Page Intentionally Left Blank

The engine operating environment and driven machine conditions must be studied carefully when selecting an engine in order to make the most of the engine performance, extend the service life and improve the machine capacity.

This manual describes the items that must be considered when selecting an engine and determining the specifications to ensure that the engine is not used beyond its capacity.

No.	ltem	Application Standard						Remarks	
	_ · .	Special swirl o engines (IDI e	combustion cha			cylinder bore o	of 76 mm or		
1	Engine type	Direct injectio engines)	n system engir	nes (DI	Engines with more	cylinder bore o	of 82 mm or	TNV series	
		Output rpm			See <i>Specifica</i> Engine Spec	<i>ations on page</i> ifications	3-5.		
	Output/mp	Output	Ambient temp	erature	25°C (77°F)				
2	Output/rpm	Setting Atmospheric pr			100 kPa (750) mmHg)		Same as in JIS	
		conditions	Relative humi	dity	30%			and ISO	
		Output power	correction		See Power C	Corrections on p	bage 4-3.		
		Precautions a	igainst sand du	st					
	o	Precautions for	or outdoor insta	allation	-				
з	Special operating environment	Precautions a melting agent	igainst sea air a s	and snow	See Special page 1-5.	Operating Envi	ronment on		
	environment	Precautions a	gainst cold env	vironment					
		Precautions a	gainst hot envi	ronment	1				
		Fuel oil Ambient temperature °C (°F) Equivalent fuel				See Standard			
	Fuel oil	Diesel fuel		≥ -5 (23)		JIS No. 2	JIS No. 2		
				15 to -20 (59 to -4)		JIS No. 3		Diesel Fuel Line	
4				<-20 (<-4)		JIS special No. 3		<i>page 10-7</i> for the fuel	
		Kerosene			Not a	allowed			
		Heavy oil			Not allowed			specifications in each country.	
		JP-4			Not allowed				
		JP-8, JP-5		Contact Yanmar for consideration					
				See Engine oi	l on page 11-5	5.		The initial	
		Lubricatin	ig oil class	Lubricating oi interv	l replacement al (hr)	Lubricating oil filter replacement interval (hr)		replacement of the lubricating oil	
5	Engine oil		CF-4, CI-4 E-5, DH-1	Even	Every 250		y 250	and lubricating oil filter should be done at 50 hours of service.	
		Allowable maximum eng temperature		ngine oil		≤120°C (248°F	-)	At the specified	
		Allowable co	ooling water ter engine outlet	mperature at	≤105°C	105°C (221°F) See Cooling page 9-1.		- maximum ambient temperature.	
6	Engine coolant		Water quality Soft water		See Engine Coolant on page 9-4.				
		Antif	reeze mixing ra	atio%	Atmospheric temperature °C (°F)			See Radiator on	
			30		0 to -15 (32 to 5)				
			40			15 to -25 (5 to -	,	page 9-8.	
		50			-2	25 to -40 (-3 to -	40)]	

APPLICATION STANDARD

No.	ltem	Application	n Standard			Remarks	
7	Power take- off (PTO)	See P.T.O. Syste					
8	Low- temperature startability	See Low-temperature					
		Continuous operation	All directions	IDI	≤25°	See Crankcase	
9	Allowable inclination angle			DI	≤30°	Breather	
9		Instantaneous operation (within 3 minutes)	All directions	IDI	≤30°	System on	
				DI	≤35°	page 11-18.	
10	Allowable exhaust back pressure	See Allowable Air Intake Restriction and					
11	Allowable air restriction at intake manifold	See Allowable All Intake Restriction and	I EXHAUSI BACK	riessules of	r page 1-30.		

SPECIAL OPERATING ENVIRONMENT

The engine performance depends greatly on the operating and environmental conditions.

Please consult with Yanmar when unusual operating conditions exist.

Precautions Against Dusty Conditions

Condition	Part	Countermeasure		
	Air cleaner	The following measures and cleaning are necessary to prevent dust from entering the engine: Use double element (safety element) Use evacuator valve Use dust indicator		
	Alternator	Dust-proof type may be required for preventing entry of		
	Starting motor	sand and dust.		
Wear due to dusty or sandy condition	Breather air reservoir (for turbocharged engine only)	Since dust can enter from the breather pipe while the engine is stopped, an air reservoir may be installed a the end of the breather pipe.		
condition	Cooling fan	to improve the wear resistance, a fan made of nylon 6 (reinforced with glass fiber) or steel may be required.		
	V pulley	To improve the wear resistance, a hardened pulley may be required.		
	V-belt	To counteract belt wear, a larger type V-belt may be required.		
	Radiator	Changing the core type and fin material may be required. Heat balance check after the modification is required.		

Precautions for Outdoor Installation

Condition	Part	Countermeasure
	Rain cap (for both air cleaner and exhaust silencer)	Entry of rainwater, snow, etc. must be prevented.
Rain, snow, etc.	Electrical parts	Since electrical parts correspond to level R2(*) in JIS D 0203, either install them where they will not be splashed with water, or provide covers.
Location		Flat, well-ventilated place

(*) Level R2: A water spraying test level for checking the performance of the portion subject to indirect exposure to rainwater or splashing water.

Precautions Against Salty Conditions (Air, Sea Water, Road Salt)

Condition	Part	Countermeasure
	Electrical parts	
	Speed control lever shaft	
Location exposed to salt air or	Stop lever shaft	Since corrosion may occur, careful maintenance is
road salt	Exhaust manifold bolts	necessary.
	Stop lever return spring	
	Radiator	
Location where salt water may splash directly onto the engine		Do not install engine where it can be splashed with salt water.

Precautions Against Cold Environment

Environmental temperature	Part	Countermeasure	Remarks		
-30°C (-22°F) or above	Battery (high CCA)	Specification must be			
-30 C (-22 F) 01 above	Starting motor	changed.			
	Cooling water hose	Special rubber may be required			
	Intake air hose	to prevent rubber parts from			
	O-rings	being damaged by hardening.	See Low-temperature		
-30°C to -40°C (-22°F to -40°F)	Oil seal	Choose components that will maintain flexibility at this	startability on page 1-7 for		
-30 C 10 -40 C (-22 F 10 -40 F)	Fuel hose	temperature range.	startability.		
	Fuel feed pump	An electric feed pump is required.			
	Starting aid	A block heater should be used.			
-40°C (-40°F) or below		Not recommended.			

Precautions Against Hot Environment

Environmental temperature	Part	Countermeasure		
Below 40°C (104°F)	Electrical parts	The temperature inside the engine hood must be kept below 80°C (176°F) to protect the electrical parts. Provide ventilation around electrical parts.		
	Radiator	A large capacity radiator and fan must be used to		
	Cooling fan	prevent the cooling water and lubricating oil temperatures from getting too hot.		
Above 40°C (104°F)	Oil cooler	Increase capacity or install as standard equipment.		
	Electrical parts	The temperature inside the engine hood must be kep below 80°C (176°F) to protect the electrical parts. Provide ventilation around electrical parts.		

Others

	Condition	Part	Countermeasure
- 1	Location where explosive, flammable or toxic gas exists		Engine is not designed for installation where explosive, flammable or toxic gas exists.

LOW-TEMPERATURE STARTABILITY

The lowest temperature guaranteed for starting the engine with standard specifications is -15°C (5°F) without load. This low-temperature startability when connected with the driven machine is greatly affected by the machine coupling method, moment of inertia of the driven machine and the capacity of the hydraulic equipment. Since the mounted devices vary with the manufacturer, the low-temperature startability of the engine loaded with the driven machine is the same.

The combination of the starting motor, battery and starting aid in each of the following tables is a guideline. Check the engine startability in the actual machine at the required starting conditions with the machine manufacturer.

"Standard" or "Hydrostatic" (HST) specification in the tables refers to the standard combination of various systems required for satisfying the startability at each temperature shown in the table.

"Standard specification" is for the driven machines that do not have parasitic load when engine starts, for example, generator, mower, tractor (with clutch), combine and so on. HST specification refers to the driven machines that have parasitic load when engine starts, for example, excavator, loader (with direct coupled hydraulic pump), and so on.

Note: "Standard" in this section is different from the standard specification in estimating the F-F cost. F-F cost refers to the standard cost when equipped from the fan to the flywheel. Accessories such as the air cleaner, muffler and radiator are not included. Please contact Yanmar for further details.

Combination of Starting Devices for Each Driven Machine

IDI Series

2TNV70 (complies with EPA Tier4)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)		> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.0 kW, 119515-77	7010 DENSO	 ✓ 	~	~		
Starter	12V 1.1 kW, 119717-77	7010 DENSO				 ✓ 	
Sta	12V 1.4 kW, 119740-77	7020 DENSO					
	46B24	CCA: 325	~	~			
≥	55B24 (NX100-S6)	CCA: 433			~	~	about of
Battery	80D26 (NX110-5)	CCA: 582					lity o
							nufacturer startability
Starting Aid	Without energizing glov neous energizing)	v plug (only simulta-					
artin	Glow-plug 4 sec.		~	~	~	 ✓ 	chine ratio
Sta							mag
Battery Cable	Total allowable resistar	nce (YIS G30-7900J)		0.00	02 Ω		Consult with driven machine ma specification in consideration of actual machines
О. Э.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3I	rd. Sp.	Consult with driv specification in c actual machines
L.O.	Lubricating oil			10W-30		5W-20	Cons speci actua

2 HST specification: For driven machine with parasitic load when engine starts; for example, backhoe.

ltem	Temperature °C (°F)		> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
Starter	12V 1.0 kW, 119515-77						
	12V 1.1 kW, 119717-77	7010 DENSO	 ✓ 	 ✓ 	 ✓ 	 ✓ 	
Sta	12V 1.4 kW, 119740-77	7020 DENSO					*
	46B24	CCA: 325	~	~	~		t
≥	55B24 (NX100-S6)	CCA: 433				v	about of
Battery	80D26 (NX110-5)	CCA: 582					lity o
ш							nufacturer startability
Starting Aid	Without energizing glov neous energizing)	v plug (only simulta-					of
artin	Glow-plug 4 sec.		~	 ✓ 	~	v	chine
Št							mag
Battery Cable	Total allowable resistar	nce (YIS G30-7900J)	0.002 Ω			Consult with driven machine r specification in consideration actual machines	
F.O.	Fuel oil		JIS 2nd. JIS 3rd. JIS 3rd. Sp.			d. Sp.	Consult with driv specification in c actual machines
Ľ. O.	Lubricating oil		10W-30 5W-2			5W-20	Cons speci actua

3TNV70 (complies with EPA Tier4)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)		> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.0 kW, 119515-77	 ✓ 	~	· · ·			
Starter	12V 1.1 kW, 119717-77				v		
Sta	12V 1.4 kW, 119740-77020 DENSO						
	46B24	CCA: 325	~	~			
Σ	55B24 (NX100-S6)	CCA: 433			 ✓ 	 ✓ 	about of
Battery	80D26 (NX110-5)	CCA: 582					lity et
ш							nufacturer startability
Starting Aid	Without energizing glov neous energizing)	v plug (only simulta-					e manufa n of star
artin	Glow-plug 4 sec.		 ✓ 	~	~	v	chine ratio
čť							mac
Battery Cable	Total allowable resistar	nce (YIS G30-7900J)	0.002 Ω			Consult with driven machine manufacturer specification in consideration of startability actual machines	
F.O.	Fuel oil		JIS 2nd. JIS 3rd. JIS 3rd. Sp.			rd. Sp.	Consult with driv specification in c actual machines
L.O.	Lubricating oil		10W-30 5W-20			Cons speci actua	

2 HST specification: For driven machine with parasitic load when engine starts; for example, backhoe.

ltem	Temperature °C (°F)		> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.0 kW, 119515-77	7010 DENSO					
Starter	12V 1.1 kW, 119717-77	7010 DENSO	 ✓ 	 ✓ 			
Sta	12V 1.4 kW, 119740-77020 DENSO				~	~	*
	46B24	CCA: 325	~	~	~		+=
≥	55B24 (NX100-S6)	CCA: 433				 ✓ 	about of
Battery	80D26 (NX110-5)	CCA: 582					lity c
							nufacturer startability
Starting Aid	Without energizing glow neous energizing)	v plug (only simulta-					of
artin	Glow-plug 4 sec.		 ✓ 	~	~	 ✓ 	chine
Sta							mag
Battery Cable	Total allowable resistar	nce (YIS G30-7900J)		Consult with driven machine ma specification in consideration of actual machines			
О. Ц	Fuel oil		JIS 2nd.	rd. Sp.	Consult with driv specification in c actual machines		
L.O.	Lubricating oil			5W-20	Cons speci actua		

3TNV76 (complies with EPA Tier4)

1) Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

			*-5 to -15	-15 to -20	-21 to -25	<-25
ltem	Temperature °C (°F)	> -5 (23)	(23 to 5)	(5 to -4)	(-6 to -13)	(-13)
	12V 1.0 kW, 119515-77010 DENSO					
Starter	12V 1.1 kW, 119717-77010 DENSO	 ✓ 	~	v	~]
Sta	12V 1.4 kW, 119740-77020 DENSO					
	46B24 CCA: 325					
2	55B24 (NX100-S6) CCA: 433	 ✓ 	 ✓ 	v	~	about of
Battery	80D26 (NX110-5) CCA: 582					
						manufacturer of startability
						star
Starting Aid	Without energizing glow plug (only simultaneous energizing)					e mai
artin	Glow-plug 4 sec.	v	v	v	~	chine
Št						mac
Battery Cable	Total allowable resistance (YIS G30-7900J)		Consult with driven machine ma specification in consideration of actual machines			
О. Т	Fuel oil	JIS 2nd. JIS 3rd. JIS 3rd. Sp.				Consult with driv specification in c actual machines
L.O.	Lubricating oil	10W-30 5W-20				Cons speci actua

2 HST specification: For driven machine with parasitic load when engine starts; for example, backhoe.

ltem	Temperature °C (°F)		> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.0 kW, 119515-770	10 DENSO					
Starter	12V 1.1 kW, 119717-770	10 DENSO	 ✓ 				*
Sta	12V 1.4 kW, 119740-77020 DENSO			~	~	~	*
	46B24	CCA: 325					
Ź	55B24 (NX100-S6)	CCA: 433	 ✓ 	 ✓ 			about of
Battery	80D26 (NX110-5)	CCA: 582			~	~	irer a llity c
							nufacturer startability
g Aid	Without energizing glow neous energizing)	plug (only simulta-					ven machine manu consideration of st
Starting /	Glow-plug 4 sec.		~	v	v	v	chine ratio
							mac
Battery Cable	Total allowable resistanc	e (YIS G30-7900J)		ne n			
F.O.	Fuel oil		JIS 2nd.	d. Sp.	Consult with driv specification in c actual machines		
L.O.	Lubricating oil			5W-20	Cons speci actua		

DI Series

3TNV82A (complies with EPA Tier2)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)	> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)		
	12V 1.2 kW, 129129-77010 DENSO	~	~	v				
	12V 1.4 kW, 129608-77010 HITACHI							
Starter	12V 1.4 kW, 129207-77010 DENSO				 ✓ 			
Sta	12V 1.7 kW, 129242-77010 HITACHI							
	12V 2.0 kW, 129400-77012 HITACHI							
	12V 2.3 kW, 129136-77011 HITACHI							
	80D26 (NX110-5) CCA: 413	~	~	 ✓ 				
≥	75D31 (N70Z) CCA: 447							
Battery	95D31 (NX120-7) CCA: 622				~	t		
Ä	115D31					abo		
	130E41 (NX200-10) CCA: 799					er		
<u>ם</u>	Without air heater (only simultaneous energizing)	~				Ifactur		
Starting Aid	Air heater 400 W x 15 sec		~	 ✓ 		ianu		
artin	400 W x 20 sec					driven machine ma in consideration of actual machines		
Ste	400 W x 30 sec				~	driven machine r in consideration actual machines		
	800 W x 30 sec					mac		
Battery Cable	Total allowable resistance (YIS G30-7900J)		0.002 Ω					
F.O.	Fuel oil	JIS 2nd.	JIS 2nd. JIS 3rd. JIS 3rd. Sp.			Consult with driven machine manufacturer about specification in consideration of startability of actual machines		
L.O.	Lubricating oil		10W-30 5W-20					

3TNV82A (complies with EPA Tier2)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Temper	rature °C (°F)	> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77	010 DENSO					
	12V 1.2 kW, 129129-HI	ТАСНІ					
<u> </u>	12V 1.4 kW, 129608-77	010 HITACHI					
Starter	12V 1.4 kW, 129207-77010 DENSO						
St	12V 1.7 kW, 129242-77	010 HITACHI	 ✓ 	v	 ✓ 		
	12V 2.0 kW, 129400-77	012 HITACHI				~	
	12V 2.3 kW, 129136-77	011 HITACHI					
	80D26 (NX110-5)	CCA: 413	v	v	 ✓ 		
2	75D31 (N70Z)	CCA: 447					
Battery	95D31 (NX120-7)	CCA: 622				~	nout
Ш	115D31						rat
	130E41 (NX200-10)	CCA: 799					ture
_	Without air heater (only	simultaneous energizing)	 ✓ 				fact
Starting Aid	Air heater	400 W x 15 sec		v	 ✓ 		anu
ting		400 W x 20 sec					es n
Star		400 W x 30 sec				~	hine hine hin
		800 W x 30 sec					nac
Battery Cable	Total allowable resistan	ce (YIS G30-7900J)		0.002 Ω	0.0012 0		Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.		ult wit ficatio bility o
г. С.	Lubricating oil			10W-30	1	5W-20	Consult wi specificatio startability

3TNV82A-B/3TNV82A-Z (complies with EPA Interim Tier4)

1) Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77010 DENSO					
	12V 1.4 kW, 129608-77010 HITACHI					
D	12V 1.4 kW, 129207-77010 DENSO					
Starter	12V 1.7 kW, 129242-77010 HITACHI	 ✓ 	v	 ✓ 	v	
S	12V 2.0 kW, 129400-77012 HITACHI					
	12V 2.3 kW, 129136-77011 HITACHI					
						atior
	80D26 (NX110-5) CCA: 413	 ✓ 	v	v		ifice
<u>S</u>	75D31 (N70Z) CCA: 447					Sec
Battery	95D31 (NX120-7) CCA: 622				~	nt sp
Ő	115D31					bou
	130E41 (NX200-10) CCA: 799					acha
σ	Without energizing glow plug (only simultaneous energizing)	~				facture tual m
g Ai	Energizing glow plug 5 sec					anu. fac
Starting Aid	10 sec		✓			r£ ⊕
Sta	15 sec			v	~	abili
	20 sec					mac
Battery Cable	Total allowable resistance (YIS G30-7900J)	0.002 Ω				
О. Ц	Fuel oil	JIS 2nd.	JIS 3rd.	JIS 3r	d. Sp.	Consult with driven machine manufacturer about specification in consideration of startability of actual machines
ГО	Lubricating oil	10W-30 5W-20				Cons in cor

3TNV82A-B/3TNV82A-Z (complies with EPA Interim Tier4)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

Item	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77010 DENSO		(/			~ /
	12V 1.4 kW, 129608-77010 HITACHI					
	12V 1.4 kW, 129207-77010 DENSO					
Starter	12V 1.7 kW, 129242-77010 HITACHI	~	✓	 ✓ 		
t di	12V 2.0 kW, 129400-77012 HITACHI				v	
	12V 2.3 kW, 129136-77011 HITACHI					- -
	80D26 (NX110-5) CCA: 413	 ✓ 	~	~		ication
	75D31 (N70Z) CCA: 447					ecifi
Battery	95D31 (NX120-7) CCA: 622				v	t sp
B	115D31					pout
	130E41 (NX200-10) CCA: 799					ach at
σ	Without energizing glow plug (only simultaneous energizing)	~				facture tual m
g Ai	Energizing glow plug 5 sec					anu f ac
Starting Aid	10 sec		✓			°⊊° a
Ste	15 sec			v	v	abili
	20 sec					mac
Battery Cable	Total allowable resistance (YIS G30-7900J)	0.0002 Ω			0.0012 Ω	Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil	JIS 2nd.	JIS 2nd. JIS 3rd. JIS 3		d. Sp.	ult witl nsidera
L.O.	Lubricating oil	10W-30			5W-20	Cons in cor

3TNV84/3TNV88/3TNV84T (complies with EPA Tier2)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Tempe	erature °C (°F)	> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77	7010 DENSO	~	✓	v		
	12V 1.4 kW, 129608-77	7010 HITACHI				v	
ē	12V 1.4 kW, 129207-77010 DENSO						
Starter	12V 1.7 kW, 129242-77	7010 HITACHI					
Ś	12V 2.0 kW, 129400-77	7012 HITACHI					
	12V 2.3 kW, 129136-77	7011 HITACHI					tion
	80D26 (NX110-5)	CCA: 413	~	 ✓ 	~		cifica
>	75D31 (N70Z)	CCA: 447					spe
Battery	95D31 (NX120-7)	CCA: 622				v	nufacturer about actual machines
ä	115D31						r ab
	130E41 (NX200-10)	CCA: 799					ture I ma
	Without air heater (only	simultaneous energizing)	~				lfaci tua
Starting Aid	Air heater	400 W x 15 sec		✓	v		anu of ac
ting		400 W x 20 sec					e m try c
òtar		400 W x 30 sec				 ✓ 	abili
0,		800 W x 30 sec					machine mai startability of
Battery Cable	Total allowable resistar	nce (YIS G30-7900J)		of			
F.O.	Fuel oil		JIS 2nd. JIS 3rd. JIS 3rd. Sp.				onsult with driv consideration
L.O.	Lubricating oil		10W-30 5W-20				Cons in cor

3TNV84/3TNV88/3TNV84T (complies with EPA Tier2)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Tempe	rature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77	010 DENSO		<u> </u>	,		. ,
	12V 1.4 kW, 129608-77	010 HITACHI					
<u> </u>	12V 1.4 kW, 129207-77	010 DENSO					
Starter	12V 1.7 kW, 129242-77010 HITACHI						
t di	12V 2.0 kW, 129400-77	012 HITACHI					
	12V 2.3 kW, 129136-77	011 HITACHI	~	✓	~	v	<u>uo</u>
							icat
	80D26 (NX110-5)	CCA: 413					ecifi
≥	75D31 (N70Z)	CCA: 447					å
Battery	95D31 (NX120-7)	CCA: 622	 ✓ 	~	~		nes
ä	115D31						r ak achi
	130E41 (NX200-10)	CCA: 799				v	
	Without air heater (only	simultaneous energizing)	~				ifact stual
Starting Aid	Air heater	400 W 15 sec		v	 ✓ 		anu
ting		400 W 20 sec					e E_e
Star		400 W 30 sec				v	abili
		800 W 30 sec					nac tart
Battery Cable	Total allowable resistand	ce (YIS G30-7900J)		Consult with driven machine manufacturer about specification in consideration of startability of actual machines			
F.O.	Fuel oil		JIS 2nd. JIS 3rd. JIS 3rd. Sp.				ult with nsider:
L.O.	Lubricating oil		10W-30 5W-20				Cons in cor

3TNV88-B/3TNV88-U/3TNV84T-Z/3TNV88-Z/3TNV88-E/3TNV84T-B (complies with EPA Interim Tier4)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)	
	12V 1.2 kW, 129129-77010 DENSO					
	12V 1.4 kW, 129608-77010 HITACHI					
5	12V 1.4 kW, 129207-77010 DENSO					
Starter	12V 1.7 kW, 129242-77010 HITACHI	 ✓ 	~	 ✓ 		
ۍ	12V 2.0 kW, 129400-77012 HITACHI					
	12V 2.3 kW, 129136-77011 HITACHI				_	
					tior	
	80D26 (NX110-5) CCA: 413	 ✓ 	~	 ✓ 	ifica	
≥	75D31 (N70Z) CCA: 447				0eC	
Battery	95D31 (NX120-7) CCA: 622				s It	
l m	115D31				bou	
	130E41 (NX200-10) CCA: 799				er a lach	
q	Without energizing glow plug (only simultaneous energizing)	~			nufacturer about actual machines	
g Ai	Energizing glow plug 5 sec				anu fac	
Starting Aid	10 sec		~		e ma ty of	
Sta	15 sec			 ✓ 	machine r startability	
	20 sec				arta	
Battery Cable	Total allowable resistance (YIS G30-7900J)		ofe			
F.O.	Fuel oil	JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	onsult with driv consideration	
L.O.	Lubricating oil		10W-30			

3TNV88-B/3TNV88-U/3TNV84T-Z/3TNV88-Z/3TNV88-E/3TNV84T-B (complies with EPA Interim Tier4)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)		
	12V 1.2 kW, 129129-77010 DENSO		(=====)	()	()		
	12V 1.4 kW, 129608-77010 HITACHI						
	12V 1.4 kW, 129207-77010 DENSO						
Starter	12V 1.7 kW, 129242-77010 HITACHI	 ✓ 	 ✓ 	~			
t d	12V 2.0 kW, 129400-77012 HITACHI						
	12V 2.3 kW, 129136-77011 HITACHI				_		
	80D26 (NX110-5) CCA: 413				cation		
	75D31 (N70Z) CCA: 447	· ·	 ✓ 		acific		
Battery	95D31 (NX120-7) CCA: 622			v	t spe		
ů –	115D31				bou		
	130E41 (NX200-10) CCA: 799				er al ach		
σ	Without energizing glow plug (only simultaneous energizing)	~			facture tual m		
g Ai	Energizing glow plug 5 sec				anu' f ac		
Starting Aid	10 sec		 ✓ 		t o ü		
Ste	15 sec			~	abili		
	20 sec				mac		
Battery Cable	Total allowable resistance (YIS G30-7900J)		0.0012 Ω				
F.O.	Fuel oil	JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	Consult with driven machine manufacturer about specification in consideration of startability of actual machines		
L.O.	Lubricating oil		10W-30				

4TNV84/4TNV88 (complies with EPA Tier2)

1) Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77010 DENSO					
	12V 1.4 kW, 129608-77010 HITACHI					
Starter	12V 1.4 kW, 129207-77010 DENSO	 ✓ 	~	~		
Sta	12V 1.7 kW, 129242-77010 HITACHI				 ✓ 	
	12V 2.0 kW, 129400-77012 HITACHI					uo
	12V 2.3 kW, 129136-77011 HITACHI					cati
	80D26 (NX110-5) CCA: 413					ecifi
≥	75D31 (N70Z) CCA: 447					spe
Battery	95D31 (NX120-7) CCA: 622	v	~	~		out
Ш	115D31					r ab achi
	130E41 (NX200-10) CCA: 799				v	ure I ma
_	Without air heater (only simultaneous energizing)	 ✓ 				fact
Starting Aid	Air heater 400 W 15 sec		~	~		anu of ac
ting	400 W 20 sec					e It c
Star	400 W 30 sec				 ✓ 	abili
	800 W 30 sec					tart
Battery Cable	Total allowable resistance (YIS G30-7900J)	0.002 Ω				Consult with driven machine manufacturer about specification in consideration of startability of actual machines
О. Н	Fuel oil	JIS 2nd.	JIS 2nd. JIS 3rd. JIS 3rd. Sp.			
L.O.	Lubricating oil	10W-30 5W-20			Cons in cor	

4TNV84/4TNV88 (complies with EPA Tier2)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

Item	Tempe	rature °C (°F)	> -5 (23)	*-5 to -15 (23 to 5)	-15 to -20 (5 to -4)	-21 to -25 (-6 to -13)	<-25 (-13)
	12V 1.2 kW, 129129-77	010 DENSO		, /	, ,	/	
	12V 1.4 kW, 129608-77	010 HITACHI					+
ter	12V 1.4 kW, 129207-77	010 DENSO					
Starter	12V 1.7 kW, 129242-77	010 HITACHI					
	12V 2.0 kW, 129400-77	012 HITACHI					Ę
	12V 2.3 kW, 129136-77	011 HITACHI	~	~	v	 ✓ 	atio
	80D26 (NX110-5)	CCA: 413					cific
	75D31 (N70Z)	CCA: 447					spe
Battery	95D31 (NX120-7)	CCA: 622					out
B	115D31		~	~	v		chir
	130E41 (NX200-10)	CCA: 799				~	nufacturer about actual machines
_	Without air heater (only	simultaneous energizing)	~				ifact
Starting Aid	Air heater	400 W 15 sec		~	v		anu
ting		400 W 20 sec					u E_e
Star		400 W 30 sec				 ✓ 	abil
		800 W 30 sec					tart
Battery Cable	Total allowable resistan	ce (YIS G30-7900J)		0.0	012 Ω		Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3r	rd. Sp.	ult witl nsider:
L.O.	Lubricating oil		10W-30 5V		5W-20	Cons in cor	

4TNV88-B/4TNV88-U/4TNV88-Z/4TNV88-E (complies with EPA Interim Tier4)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 1.2 kW, 129129-77010 DENSO				
	12V 1.4 kW, 129608-77010 HITACHI				
Starter	12V 1.4 kW, 129207-77010 DENSO				
Sta	12V 1.7 kW, 129242-77010 HITACHI	~	~	~	
	12V 2.0 kW, 129400-77012 HITACHI				
	12V 2.3 kW, 129136-77011 HITACHI				tion
	80D26 (NX110-5) CCA: 413				fica
≥	75D31 (N70Z) CCA: 447)eci
Battery	95D31 (NX120-7) CCA: 622	~	~	 ✓ 	s sp
ä	115D31				bou
	130E41 (NX200-10) CCA: 799				er a lach
q	Without energizing glow plug (only simultaneous energizing)	~			facture tual m
g Ai	Energizing glow plug 5 sec				anu f ac
Starting Aid	10 sec		~		o IA B
Sta	15 sec			~	hine
	20 sec				mac tarta
Battery Cable	Total allowable resistance (YIS G30-7900J)		0.002 Ω	1	Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil	JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	ult witl sidera
L.O.	Lubricating oil 10W-30		•	Cons in cor	

4TNV88-B/4TNV88-U/4TNV88-Z/4TNV88-E (complies with EPA Interim Tier4)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Tempe	rature °C (°F)	> -5 (23)	-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 1.2 kW, 129129-77	010 DENSO				
	12V 1.4 kW, 129608-77	010 HITACHI				
Starter	12V 1.4 kW, 129207-77	010 DENSO				
Star	12V 1.7 kW, 129242-77	010 HITACHI				
	12V 2.0 kW, 129400-77	012 HITACHI				
	12V 2.3 kW, 129136-77	011 HITACHI	~	~	~	lon
	80D26 (NX110-5)	CCA: 413				icat
~	75D31 (N70Z)	CCA: 447				ecif
Battery	95D31 (NX120-7)	CCA: 622				s t sp
l 🖁	115D31		~	 ✓ 	~	bou ine:
	130E41 (NX200-10)	CCA: 799				er al ach
q	Without energizing glow energizing)	plug (only simultaneous	~			machine manufacturer about startability of actual machines
g A	Energizing glow plug	5 sec				anu f ac
Starting Aid		10 sec		 ✓ 		f o L
Sta		15 sec			~	abili
		20 sec				nac
Battery Cable	Total allowable resistan	ce (YIS G30-7900J)		0.0012 Ω	1	Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	ult witl nsider;
L.O.	Lubricating oil			10W-30		Cons in cor

4TNV84T (complies with EPA Tier2)

4TNV84T-Z/4TNV84T-B (complies with EPA Interim Tier4)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

Item	Temperature °C (°F)	> -5 (23)	**-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 1.2 kW, 129129-77010 DENSO				
	12V 1.4 kW, 129608-77010 HITACHI				
Starter	12V 1.4 kW, 129207-77010 DENSO	 ✓ 	~	 ✓ 	
Sta	12V 1.7 kW, 129242-77010 HITACHI				_
	12V 2.0 kW, 129400-77012 HITACHI				tion
	12V 2.3 kW, 129136-77011 HITACHI				fica
	80D26 (NX110-5) CCA: 413)eci
<u>≻</u>	75D31 (N70Z) CCA: 447				s tsp
Battery	95D31 (NX120-7) CCA: 622	 ✓ 	~	~	bou
ä	115D31				er a lach
	130E41 (NX200-10) CCA: 799				alm
73	Air heater none				ufac
Starting Aid	Air heater 400 W x 15 sec				nanı of a
tinç	400 W x 20 sec				lity n
Star	400 W x 30 sec				chir tabi
	800 W x 15 sec				mac
Battery Cable	Total allowable resistance (YIS G30-7900J)		0.002 Ω		Consult with driven machine manufacturer about specification in consideration of startability of actual machines
F.O.	Fuel oil	JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	ult with nsidera
L.O.	Lubricating oil		10W-30		Cons in co

* Standard specification shown in 4TNV84T-Z Specifications of Standard Engines for Driven Machines on page 2-7. (Yanmar standard timer is set to 15 sec.)

4TNV84T (complies with EPA Tier2)

4TNV84T-Z/4TNV84T-B (complies with EPA Interim Tier4)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Tempe	erature °C (°F)	> -5 (23)	**-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 1.2 kW, 129129-77	010 DENSO			. ,	
	12V 1.4 kW, 129608-77010 HITACHI					
ter	12V 1.4 kW, 129207-77	010 DENSO				
Starter	12V 1.7 kW, 129242-77	010 HITACHI				
	12V 2.0 kW, 129400-77	012 HITACHI				u
	12V 2.3 kW, 129136-77	011 HITACHI	 ✓ 	~	 ✓ 	cati
	80D26 (NX110-5)	CCA: 413				ecifi
~	75D31 (N70Z)	CCA: 447				ds (
Battery	95D31 (NX120-7)	CCA: 622				pout
l m	115D31		~	~	~	nufacturer about actual machines
	130E41 (NX200-10)	CCA: 799				alme
-	Air heater none					otua
Starting Aid	Air heater	400 W x 15 sec				ofa
fing		400 W x 20 sec				lity i
Star		400 W x 30 sec				abil
		800 W x 15 sec				mac
Battery Cable	Total allowable resistan	ce (YIS G30-7900J)		0.0012 Ω		Consult with driven machine manufacturer about specification in consideration of startability of actual machines
О.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	ult wit nsidera
L.O.	Lubricating oil			10W-30		Cons in cor

* Standard specification shown in 4TNV84T-Z Specifications of Standard Engines for Driven Machines on page 2-7. (Yanmar standard timer is set to 15 sec.)

4TNV94L/4TNV98/4TNV98T (complies with EPA Tier2)

4TNV98-Z/4TNV98-E (complies with EPA Interim Tier4)

4TNV98T-Z (complies with EPA Tier3)

① Standard specification: For driven machine with less parasitic load when engine starts; for example, generator, mower, tractor, or combine.

ltem	Temperat	ure °C (°F)	> -5 (23)	**-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 2.3 kW, 129900-77010		~	~	~	
5	12V 3.0 kW, 123900-77	/010				
Starter						
0						-
	80D26 (NX110-5)	CCA: 413				tion
	75D31 (N70Z)	CCA: 413				fica
Battery	95D31 (NX120-7)	CCA: 622	V	<hr/>	_	0eci
Bat	130E41 (NX200-10)	CCA: 799	•	•	•	es ut s
						abo
	Air heater none		~			machine manufacturer about startability of actual machines of ECU
Vid	Air heater	500 W x 15 sec		 ✓ 	 ✓ 	ifact
Starting Aid		500 W x 20 sec			*	ofac
artii		500 W x 30 sec				e 2 E, e
Ct I		1000 W x 15 sec				i dabil
		1000 W x 30 sec				of E
Battery Cable	Total allowable resistan	ice (YIS G30-7900J)		0.0012 Ω		Consult with driven machine manufacturer about specification in consideration of startability of actual machines * indicates settings of ECU
О. Н	Fuel oil		JIS 2nd.	JIS 2rd.	JIS 3rd. Sp.	ult witl nsidera cates
L.O.	Lubricating oil			10W-30		Cons in col * indi

4TNV94L/4TNV98/4TNV98T (complies with EPA Tier2)

4TNV98-Z/4TNV98-E (complies with EPA Interim Tier4)

4TNV98T-Z (complies with EPA Tier3)

⁽²⁾ HST specification: For driven machine with parasitic load when engine starts; for example, backhoe, vibrating roller, or loader.

ltem	Tempe	erature °C (°F)	> -5 (23)	**-5 to -15 (23 to 5)	*-15 to -20 (5 to -4)	<-25 (-13)
	12V 2.3 kW, 129900-77010 12V 3.0 kW, 123900-77010					
Starter			v	~	~]
Sta						_
	80D26 (NX110-5)	CCA: 413				- LO
≥	75D31 (N70Z)	CCA: 447				cati
Battery	95D31 (NX120-7)	CCA: 622				specification
Ĕ	130E41 (NX200-10)	CCA: 799	 ✓ 	~	 ✓ 	ut spe
	Without air heater (only	simultaneous energizing)	 ✓ 			nufacturer about actual machines
	Air heater	500 W x 15 sec		~		Ima
Starting Aid		500 W x 20 sec				tua
ting		500 W x 30 sec				anu
Star		1000 W x 15 sec		* 🗸	 ✓ 	rt ₀
0)		1000 W x 20 sec			*	CU
		1000 W x 30 sec				of E
Battery Cable	Total allowable resistan	ce (YIS G30-7900J)		0.0012 Ω		Consult with driven machine manufacturer about in consideration of startability of actual machines * indicates settings of ECU
F.O.	Fuel oil		JIS 2nd.	JIS 3rd.	JIS 3rd. Sp.	ult with nsidera cates
L.O.	Lubricating oil			10W-30	·	Cons in cor * indi

* Standard specification shown in 4TNV98-Z/4TNV98-E/4TNV98T-Z Specifications of Standard Engines for Driven Machines on page 2-7.

** Standard specification shown in 4TNV94L/4TNV98/4TNV98T Specifications of Standard Engines for Driven Machines on page 2-7.

Allowable Air Intake Restriction and Exhaust Back Pressures

Resistance to intake airflow and exhaust gas flow is generated in the intake and exhaust systems. Do not exceed the limits shown in the tables below to ensure proper engine performance.

The initial upper limit shown here refers to allowable resistances when new. As the engine is used, the resistances increase due to deposits in the air cleaner and muffler. The upper limits for air cleaner replacement and exhaust system cleaning (including the exhaust tube and muffler) are the limit values for operation.

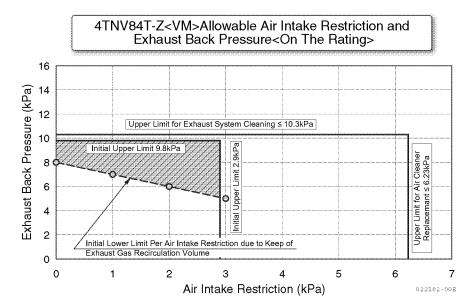
Allowable Air Intake Restriction

Γ	Applicable model	Allowable depres	sion at engine manifold \leq kPa (mmAq)
		Initial upper limit	Upper limit for air cleaner replacement
	All TNV series	2.94 (300)	6.23 (635)

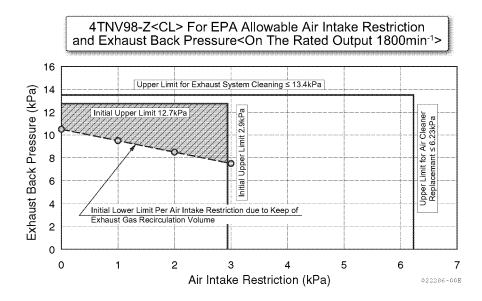
Allowable Exhaust Back Pressure

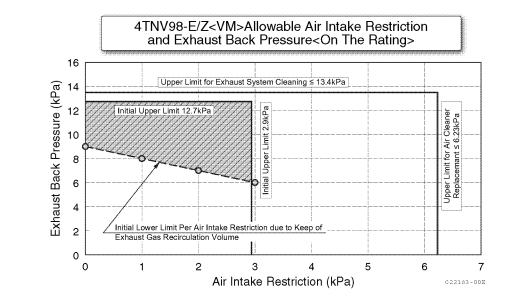
Applicable model	Allowable exha	ust back pressure ≤ kPa (mmAq)
Applicable model	Initial upper limit	Upper limit for exhaust system cleaning
2TNV70	4.90 (500)	5.88 (600)
3TNV70 3TNV76	9.81 (1000)	11.77 (1200)
3TNV82A 3TNV82A-B 3TNV84/88 3TNV88-B,-U 4TNV84/88 4TNV88-B,-U 4TNV94L 4TNV98	12.75 (1300)	15.30 (1560)
3TNV84T	7.85 (800)	9.81 (1000)
4TNV84T 4TNV98T	9.81 (1000)	11.77 (1200)

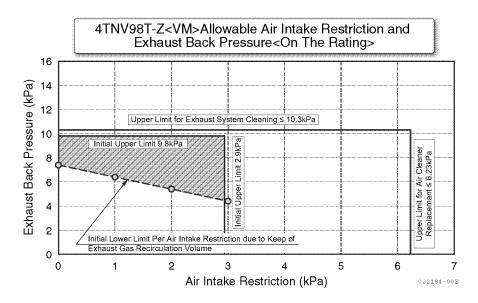
Allowable Air Intake Restriction and Exhaust Back Pressure of EGR Engines

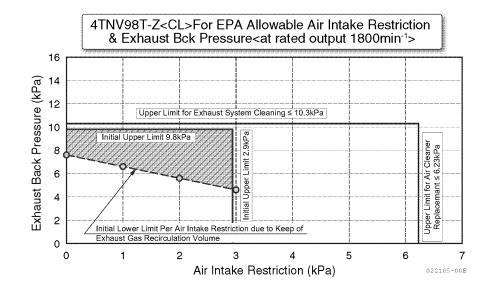

For engines with EGR, the flow volume of EGR gas changes depending on the differential pressure between air intake restriction and exhaust back pressure. If the flow volume of EGR gas is out of specified value, the engine cannot comply with emission control regulations. Therefore, the differential pressure must be managed by specifying lower limits of allowable air intake restriction and exhaust back pressure in addition to the upper limits described above.

The figures below show the allowable intake/exhaust pressure settings (at rated output).


When setting a new engine, set air intake restriction and exhaust back pressure within the "settings area of initial intake/exhaust pressure" indicated in the figures. It is necessary to clean or replace components before exceeding the "intake/exhaust pressure area where emission regulation is fulfilled even when degeneration occurs such as clogging of air cleaner/exhaust muffler."




4TNV98-Z: Allowable Intake/Exhaust Pressure Settings (at rated output)


4TNV98-E: Allowable Intake/Exhaust Pressure Settings (at rated output)

4TNV98T-Z<VM>: Allowable Intake/Exhaust Pressure Settings (at rated output)

4TNV98T-Z<CL>: Allowable Intake/Exhaust Pressure Settings (at rated output)

EPA Emission Control Regulations for Non-road Diesel Engine (Requirements for the Driven Machine Manufacturers)

This regulation applies to non-road compression-ignition engines that are used for any purpose, and enforces regulations concerning new and in-use engines that are produced on or after the implementation date and used in the United States.

The driven machine manufacturers must provide Yanmar with evidence that their application complies with EPA regulations. The following is a brief description of the responsibilities introduced by the regulation.

Driven machine manufacturers should contact Yanmar for details.

Engine Output

EPA-authorized engine output is based on "Gross Power Rating"."Gross Power Rating" refers to power measured with the engine equipped only with the necessary accessories for operation on the test bench.

Therefore, the settings cannot exceed this gross power rating.

For the engines with other load demanded by driven machine manufacturers (such as cooling fan/fan pulley ratio and hydraulic pump load), the "net power rating" which can be obtained by subtracting the load from gross power rating is transmitted to the power line of driven machines. It is recommended to set the maximum absorption load of driven machines to reserve 10% allowance to this net power rating. The purpose of this allowance percentage is to consider and include the difference between the actual environmental conditions of driven machines (such as ambient temperature, fuel temperature, and/or altitude) and the standard conditions for engine output settings at shipment.

Installation Evaluation

To ensure the exhaust emissions conform to the regulation, Yanmar must study the required engine specifications such as rated output, intake air restriction, and exhaust backpressure, which will influence exhaust emissions. *Engine Installation Evaluation* sheets are available to confirm engine specifications.

Engine Maintenance

When the equipment manufacturers prepare their own warranty card, owner's manual, and service manual for the applicable engines, they must describe all items required by the EPA regulations in their manuals using the same statements as Yanmar. Standard maintenance items and intervals are indicated in the technical documents such as warranty statement, operation manual and service manual.

In their manuals, equipment manufacturer's maintenance intervals must be identical to Yanmar. The standard maintenance items should also conform to the foregoing regulation (EPA CFR). Emission related parts mentioned in the regulation must comply with the regulation.

For details, please refer to the TNV operation manual and service manual.

Tamper Resistance

Dealers who are authorized by Yanmar to re-adjust the diesel fuel limiter or high idle speed limit screw for market service on in-use engines, must install a tamper resistance device for preventing illegal change by the end purchaser.

Report on Sales in the USA

The EPA requires Yanmar to obtain and report the production quantity for sales in the United States. The machine manufacturer must inform Yanmar of the actual sales quantity in the United States when it differs from the quantity of Yanmar engines produced.

In such cases, the creation of an additional new engine model to sell exclusively in the United States is requested to help in reporting the sales quantity without informing Yanmar.

Recall — EPA

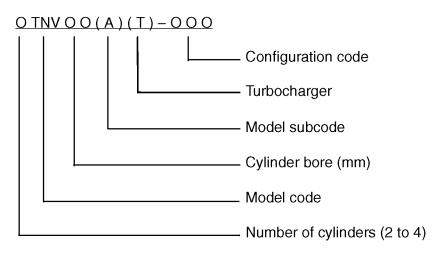
Whenever Yanmar conducts a recall program, the schedule scheme shall be reported to the authority in advance. The remedy program shall be done accordingly. After completing the remedy work, the report shall also be reported to the authority.

Yanmar requires the end purchaser's information, such as name, address and machine model to proceed with the recall program.

This Page Intentionally Left Blank

Section 2

ENGINE MODEL SELECTION


Page

Model Designation	2-3
Engine Classification	2-3
Classification with Injection System	2-3
Classification with Displacement	2-3
Classification with Engine Speed	2-3
Engine Classification with Above Mentioned Conditions	2-4
Standard Engines for Driven Machines	2-5
Classification of Standard Engines for Driven Machines	2-5
Specifications of Standard Engines for Driven Machines	2-7

This Page Intentionally Left Blank

MODEL DESIGNATION

Configuration code = Engine Speed code and Driven Machine code (see *Engine Model Nomenclature on page 2-5*).

ENGINE CLASSIFICATION

Engines are classified with (1) injection system, (2) displacement and (3) engine speed as follows.

For engine performance, see Specifications on page 3-5.

Classification with Injection System

Abbreviation	Means
IDI	Indirect injection system (Special swirl chamber system)
DI	Direct injection system

Classification with Displacement

Abbreviation	Means
NV1	Engine displacement is roughly 1 liter
NV2	Engine displacement is roughly 2 liters
NV3	Engine displacement is roughly 3 liters

Classification with Engine Speed

Classification symbol	Speed range	Applicable driven machines
CL (Constant, low speed)	1500 or 1800 min⁻ ¹	4 pole generators and water pumps
VM (Variable, medium speed)	2000 to 3000 min ⁻¹	Agriculture machines, construction machines and other general machines
CH (Constant, high speed)	3000 or 3600 min⁻¹	2 pole generators, compressors, water pumps and welders
VH (Variable, high speed)	3000 to 3600 min ⁻¹	Compressors and lawn mowers

ENGINE MODEL SELECTION

Engine Classification with Above Mentioned Conditions

No.	Model	Combustion	Group	Classification								
NO.	INIOUEI	chamber type	Gloup	CL	VM	СН	VH					
1	2TNV70			_	0	0	0					
2	3TNV70	IDI	NV1	0	0	0	0					
3	3TNV76			0	0	0	0					
4	3TNV82A			0	0							
5	3TNV84		NV2	0	0		—					
6	3TNV84T			0	0							
7	3TNV88			0	0		—					
8	4TNV84	DI		0	0							
9	4TNV84T			0	0		—					
10	4TNV88			0	0							
11	4TNV94L			0	*0	_	—					
12	4TNV98		NV3	0	*0							
13	4TNV98T			0	*0							

Note: engine speed up to 2500 min⁻¹.

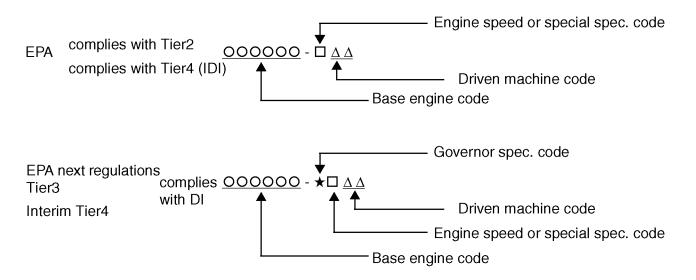
STANDARD ENGINES FOR DRIVEN MACHINES

Industrial engines are used as drives for various machines such as construction machines, agricultural machines and generators. Many driven machine applications based on standard TNV engine configurations for domestic and overseas markets have been developed. After Yanmar receives your inquiry, our application engineers will quickly setup a conference with you to review your specifications and prepare an estimate. Yanmar recommends that you consider using a standard engine for your application to help make the process of preparing a cost estimate as efficient as possible.

Advantages of preparing an estimate based on standard engines for driven machine applications

- The engine design considers past quality issues specific to individual driven machine applications. Quality check points enable preventive measures to be easily taken.
- Using standard engines makes the process of submitting and preparing cost estimates more efficient.
- Standard engines use standard Yanmar components which provide cost advantages for driven machine manufacturers.
- Using standard engines allows for cost reduction and shorter delivery times.

Classification of Standard Engines for Driven Machines


The classification of standard engines is based on the driven machine application and the speed the engine runs at (in rpm). The machine model name and principal differences are described below.

Engine Model Nomenclature

The engine model nomenclature of the standard engines for driven machines is as described below.

However, note that the nomenclature of engine models is different between engines which comply with EPA emission control regulation Tier2 and engines which comply with next regulations such as Tier3 (>56kW), Interim Tier4 (19-56kW), and Tier4 (<19kW).

Configuration code = Engine Speed code and Driven Machine code (see Model Designation on page 2-3).

ENGINE MODEL SELECTION

Engine speed code or special spec code	Engine speed min⁻¹
G	1800/1500
S	2200
N	2500
М	2600
L	2700
К	2800
D	3000
С	3200
Н	3600/3000
X	Special spec.

Governor spec. code	Governor specification	Engine output specification
Z	Electronic governor (eco governor)	Standard output specification
В	Mechanical governor	Standard output specification
E	Electronic governor (eco governor)	Derating output specification
U	Mechanical governor	Derating output specification

Model Name of Engine by Driven Machines and Category

The names of the standard engines for machines and their application are as follows:

No	Model Name	Model Category	Typical Applicable Machines
1	ВК	Construction use, at lower speed	Excavators, Wheel loaders, SSLs, Carriers, Forklifts, Refrigerators, Air compressors
2	WL	Construction use, at higher speed	Excavators, Wheel loaders, SSLs, Carriers, Forklifts, Refrigerators, Air compressors
3	GE	Constant speed	4P Generators (low speed) 2P Generators (high speed), Welders
4	MW	Utility use, at high speed	Mowers, Utility vehicles, Speed sprayers, Pumps
5	U1	Agricultural use	Tractor 1
6	U2	Agricultural use	Tractor 2 with integral monocoque frame
7	SA		Full SAE housings
8	SA2	Utility use	Semi SAE housings
9	SA3		Back plates

Specifications of Standard Engines for Driven Machines

Machine standard engine (NV1 to complies with EPA Tier4)

•: Specification changeable O: Specification not changeable —: No engine model established

		i	- 1		-				-			
	Model		Applicable	Parasitic	Injection			1/70		V1 IV70	271	IV76
Category	Name	Model Category	Applicable machine	load	Injection pump	Main specification	2TNV70 Rated speed		Ra	ated eed	Ra	ited eed
	ВК	Construction use at lower speed	 Backhoe Wheel loader SSL Vibrator Dozer Crane Damper Carrier Forklift Refrigerator Compressor Snow blower 	Heavy	Cold start spec.	 Semi SAE 5 housing Semi SAE 6 for 2TNV70 Shallow oilpan Puller fan 	•	2500	•	2500	•	2500
	WL	Construction machine at higher speed					_	-	—		_	
Machine standard engine		Constant speed use at lower speed	4P Generator	Small	STD	 Full SAE 5 housing Shallow oilpan Pusher fan 	_	_	٠	1500 / 1800	•	1500 / 1800
	GE	Constant speed use at higher speed	 2P Generator Welder 	Small	STD	 Full SAE 5 housing Semi SAE 6 housing for 2TNV70 Deep oilpan Pusher fan 	•	3000 / 3600	•	3000 / 3600	•	3000 / 3600
	мw	Utility use at high speed		Medium			_	_	_	-	_	_
	U1	Agricultural use	 Tractor 1 Mower Utility vehicle Speed sprayer Pump 	Medium	STD	 Backplate Steel oilpan Puller fan HO-P 	_	_	•	3000	•	3000
	U2	Agricultural use	 Tractor 2 Mono-cock frame 	Medium			_	_	_	_	_	_
	SA					 Full SAE 5 housing Shallow oilpan HO-P flange Puller fan 	0*	3600	0	3600	0	3200
General Use	SA2	Utility use		Medium	STD	 Semi SAE 5 housing Shallow oilpan HO-P flange Puller fan 	_	_	_	_	_	_
	SA3					 Backplate Shallow oilpan HO-P flange Puller fan 	_	_	0	3600	0	3200

* Semi SAE 5 housing

ENGINE MODEL SELECTION

Machine standard engine (NV2 to complies with EPA Tier2)

					•.		cation changea				outor		onan	-	V2	110	ongin				
<u>.</u>	Model	MILLOI	Applicable	Parasitic	Injection	Injection	NA 1 10 11	3TN	V82A	3TN	IV84	ЗTN	IV88		V84T	4TN	₩8 4	4TN	V88	4TN	V84T
Category	Name	Model Category	machine	load	pump	nozzle	Main specification	Ra	ted	Ra	ated	Ra	Rated speed		ited	Rated speed		Rated speed		Ra	ated
	ВК	Construction use at lower speed	 Backhoe Crane Carrier Forklift Refrigerator 	Heavy	Cold start spec.	Cold start spec.	 Semi SAE 5 housing Deep oilpan Puller fan Larger starter 	•	eed 2500	•	eed 2500	sp •	2500		eed	sp •	2500	spe •	2500		eed
Machine standard engine	WL	Construction machine at higher speed	Wheel loader SSL Dozer Damper Carrier Vibrator Snow blower	Heavy	Cold start spec.	Cold start spec.	 Semi SAE 5 housing Deep oilpan Extension type dipstick Pusher fan Oil cooler Larger starter 	•	2800	•	2800	•	2800	•	2800	•	2800	•	2800	•	2800
	GE	Constant speed use at lower speed	• 4P Generator	Small	STD	STD	 Semi SAE 4 housing Deep oilpan Pusher fan 	۲	1500 / 1800	•	1500 / 1800	۲	1500 / 1800	٠	1500 / 1800	•	1500 / 1800	٠	1500 / 1800	•	1500 / 1800
		Constant speed use at higher speed	• 2P Generator	Small				-	_	-	_	-	_	-	-	-	-	_	-	—	_
	MW	Utility use at high speed	 Mower Utility vehicle Speed sprayer Pump 	Medium	STD	STD	 Backplate Shallow oilpan HO-P Oil cooler Puller fan 	٠	3000	•	3000	•	3000	•	3000	•	3000	٠	3000	•	3000
	U1	Agricultural use	Tractor 1	Medium	STD	STD	 Backplate Steel oilpan HO-P Puller fan 	٠	2600	•	2500	•	2500	-	_	_	_	_	_	_	-
	U2	Agricultural use	Tractor 2 Mono- cock frame	Medium	STD	STD	 Backplate Cast iron oilpan Balancer for 4 cylinder HO-P Puller fan 	ackplate ast iron Ilpan alancer for 4 — — /linder O-P	_	•	2600	•	2600	•	2700	•	2700	•	2700	_	_
	SA		In case of the machine with heavy parasitic load, please use -NBK or -				 Full SAE 5 housing Deep oilpan HO-P flange Puller fan 	0	3000	_	_	0	3000	0	2800	_	_	0	3000	0	3000
General Use	SA2	Utility use	XWL engine	Medium	STD	STD	 Semi SAE 5 housing Deep oilpan HO-P flange Oil cooler Puller fan 	0	3000	_	-	0	3000	0	2800	_	_	0	3000	0	3000
Use _	SA3						 Backplate Deep oilpan HO-P flange Oil cooler Puller fan 	0	3000	_	_	0	3000	0	2800	_	_	0	3000	0	3000

Machine standard engine (NV2 to complies with EPA Interim Tier4)

											V2				
O . 1	Model Name	Madal Ostanana	Applicable	Parasitic	Marin	3TN	V82A	ЗTN	IV88		V84T	4TN	IV88	4TN	V84T
Category		Model Category	machine	load	Main specification	Ra	ted	Ra	ted	Ra	ited	Ra	ited	Ra	ited
						speed		speed		spe	eed	sp	eed	spe	eed
	ВК	Construction use at lower speed	 Backhoe Crane Carrier Forklift Refrigerator 	Heavy	 Semi SAE 5 housing Deep oilpan Shallow oilpan Puller fan Larger starter 	•	2500	٠	2500	_	_	٠	2500	_	_
	WL	Construction machine at higher speed	 Wheel loader SSL Dozer Damper Carrier Vibrator Compressor Snow blower 	Heavy	 Semi SAE 5 housing Deep oilpan Extension type dipstick Pusher fan Oil cooler Larger starter 	•	2800	•	2800	•	2800	•	2800	•	2800
Machine standard	GE	Constant speed use at lower speed	4P Generator	Small	 Full SAE 4 housing Shallow oilpan Pusher fan 	_	_	٠	1500 / 1800	_	_	•	1500 / 1800	•	1500 / 1800
engine		Constant speed use at higher speed	2P Generator	Small		_	-	_	-	_	-	_	-	_	-
	MW	Utility use at high speed	MowerUtility vehicleSpeed sprayerPump	Medium	 Backplate Shallow oilpan HO-P Oil cooler Puller fan 	_	_	_	_	_	_	_	-	_	_
	U1	Agricultural use	Tractor 1	Medium	 Backplate Steel oilpan HO-P Puller fan 	•	3000	٠	3000	•	2800	_	_	_	_
	U2	Agricultural use	 Tractor 2 Mono-cock frame 	Medium	 Backplate Steel oilpan Balancer for 4 cylinder HO-P Puller fan 	•	2600	٠	2500	_	_	_	_	_	_
	SA				 Full SAE 5 housing Deep oilpan HO-P flange Puller fan 	0	3000	0	3000	0	2800	0	3000	0	3000
General Use	SA2	Utility use		Medium	 Semi SAE 5 housing Deep oilpan HO-P flange Oil cooler Puller fan 	0	3000	0	3000	0	2800	0	3000	0	3000
	SA3	SA3			 Backplate Deep oilpan HO-P flange Oil cooler Puller fan 	0	3000	0	3000	0	2800	0	3000	0	3000

ENGINE MODEL SELECTION

Machine standard engine (NV3 to complies with EPA Tier2)

					Injection				N	V3		
Category	Model	Model Category	Applicable	Parasitic		Main specification	4TN	V94L	4TN	1V98	4TN	V98T
outogory	Name		machine	load	pump		Rated speed		Rated speed			ated eed
Machine standard engine	ВК	Construction use at lower speed	 Backhoe Wheel loader SSL Vibrator Dozer Crane Damper Carrier Forklift Refrigerator Compressor Snow blower 	Heavy	Cold start spec.	 Semi SAE 4 housing Deep oilpan Puller fan Larger starter 	•	2200	•	2200	•	2200
	WL	Construction machine at higher speed		Heavy			_	_	—	_	_	-
	GE	Constant speed use at lower speed	4P Generator	Small	STD	 Semi SAE 3 housing Deep oilpan Pusher fan 	-	1500 / 1800	٠	1500 / 1800	•	1500 / 1800
		Constant speed use at higher speed		Small			_	_		_	_	_
	мw	Utility use at high speed		Medium				_	_	-	_	_
	U1	Agricultural use	•	Medium				—	_	_	—	—
	U2	Agricultural use	Tractor 2	Medium	Cold start spec.	 Backplate Steel oilpan Balancer Puller fan HO-P 	•	2500	•	2500	•	2500
General	SA SA2	A			Cold	 Full SAE 4 housing Deep oilpan Puller fan 	—	_	0	2500	0	2500
General Use		Utility use		Medium	start spec.	 Full SAE 4 housing Deep oilpan Puller fan 	_	_	0	2500	0	2500
	SA3						_	—	_	_	_	_

Machine standard engine (NV3 to complies with EPA Interim Tier4, Tier3)

							N	/3	
Category	Model	Model Category	Applicable machine	Parasitic	Main specification	4TN	IV98	4TN	V98T
Galogoty	Name	would ballogory		load			Iter NU NV98 ated ated 2200 2500 1500 1800 - 2500 2500 2500 2500 2500 2500 2500 2500		ated eed
	вк	Construction use at lower speed	BackhoeWheel loaderSSLVibrator	Heavy	 Semi SAE 4 housing Deep oilpan Puller fan Larger starter 	•	2200	٠	2200
	WL	Construction machine at higher speed	 Dozer Crane Damper Carrier Forklift Refrigerator Compressor Snow blower 	Heavy	 Semi SAE 4 housing Deep oilpan Pusher fan Larger starter 	•	2500	•	2500
Machine standard engine	GE	Constant speed use at lower speed	4P Generator	Small	 Semi SAE 3 housing Deep oilpan Pusher fan 	•	/	٠	1500 / 1800
		Constant speed use at higher speed		Small		_	_		_
	мw	Utility use at high speed		Medium		_	-	_	_
	U1	Agricultural use		Medium			—	—	—
	U2	Agricultural use	Tractor 2	Medium	 Backplate Steel oilpan Balancer Puller fan HO-P 	•	2500	٠	2500
	SA				Full SAE 4 housingDeep oilpanPuller fan	0	2500	0	2500
General Use	SA2	Utility use		Medium	Full SAE 4 housingDeep oilpanPuller fan	0	2500	0	2500
	SA3					-		—	_

This Page Intentionally Left Blank

Section 3

SPECIFICATIONS

Page

Atmospheric Conditions and Engine Configuration Affect Engine Output Engine Output for Industrial Use Engine Output for Generator Use	3-3
Specifications IDI Series DI Series	3-5
Dimensions	3-38

This Page Intentionally Left Blank

ATMOSPHERIC CONDITIONS AND ENGINE CONFIGURATION AFFECT ENGINE OUTPUT

Atmospheric conditions and engine configuration affect the rated output of a TNV engine. TNV engines are tested using the methods established by the Society of Automotive Engineers (SAE) J1349 and International Organization for Standardization (ISO) 3046/1. These standards state that engine output (net power rating) should be determined under the following atmospheric conditions (called the standard conditions). If the operating environment for your application differs from these standard conditions see *Correcting Observed Power on page 4-1*:

Atmospheric pressure:	100 kPa (750 mmHg)
Atmospheric temperature:	25°C (77°F)
Relative humidity:	30%

Engine configuration also affects TNV engine output. The engine output specified in *Specifications on page 3-5* assumes a "standard" engine configuration. A "standard" configuration means that a "standard" Yanmar cooling fan, radiator, muffler and air cleaner are installed. See the Yanmar Option Menu for the list of standard Yanmar components. If a TNV engine has all of these standard components installed, the engine output is called "net brake output." Note that the cooling fan and pulley listed in *Specifications on page 3-5* are considered part of a standard TNV engine specification. Optional equipment is available from Yanmar. If your application uses optional equipment, please tell your Yanmar application engineer the fan type, pulley ratio and engine rpm range (see the Yanmar Option Menu) so the engineer can determine the engine's output.

Engine output is roughly classified for industrial use or generator use. The handling method varies accordingly.

Engine Output for Industrial Use

The engine output for industrial use is called the net rated output, which applies to the driven machine conforming to the VM or VH specifications in *Engine Classification on page 2-3*. Most driven machines conforming to VM or VH specifications use the maximum output requirement either intermittently or infrequently. The output applied in this case is the rated output. The engine should be selected, or the driven machine size should be determined, so the maximum output requirement in the driven machine operation pattern will not exceed the rated engine output.

Some driven machines require the maximum output for a long period because of a fixed revolution range. In this case, select an engine so 90% of its rated output equals the continuous maximum output requirement of the driven machine.

Engine Output for Generator Use

Engine output for generator use applies when the engine is used to drive a generator or other applications that require a constant speed (such as a compressor, water pump or welder). In this classification the engine output is by the rated output (1-hour rating) and continuous rating.

The generator rated output must be selected so it is equal to or less than the continuous rated output of the engine. The engine must also be capable of sustaining a generator overload of 10% for one hour in every twelve hours of operation. The corresponding capacity of the generator is called the overload. The generator capacity should be selected so the overload is equal to or less than the 1 hour rating of the engine output.

SPECIFICATIONS

 These output relationships are illustrated below:
 <Generator output>

 Engine output>
 Generator overload (110%)

 Engine rated output (110%)
 Generator overload (110%)

 Continuous rating (100%)
 Generator rated output (100%)

 No Load (0%)
 No Load (0%)

Though the rated output is a term common to the engine and generator, the meaning is completely different. Use caution when selecting the engine or determining the generator capacity.

This method of determining the generator capacity is for generators used in an industrial capacity. Select the engine according to the respective standard and specifications when generators are used for disaster prevention or emergencies.

SPECIFICATIONS

IDI Series

2TNV70 (complies with EPA Tier4)

	Eng	jine mode							2TN	IV70										
	Engine	classifica	tion				VM				С	H		VH						
1	Туре		—				Verti	ical, 4-cy	cle wate	r-cooled	diesel er	ngine	•							
2	Combustion system	on	_				S	Spherical	swirl cha	amber sy	stem (ID	I)								
3	No. of cylir Bore × Stro		n - mm × mm						2 - 70	amber system (IDI) 0×74 570 3000 3000 3600 3200 3400 36 3000 3000 3600 3200 3400 36 9.8 9.1 10.9 10.2 10.7 11 9.8 9.1 10.9 10.2 10.7 11 9.1 8.5 10.0 9.3 9.6 9.1 9.1 8.5 10.0 9.3 9.6 9.1 9.1 8.5 10.0 9.3 9.6 9.1 3210 $ 3800$ 3400 3600 38 292 ≤ 313 ≤ 299 ≤ 306 ≤ 3313 ≤ 299 ≤ 306 ≤ 3313 ≤ 580 $\leq 550(1022)$ ≤ 550 (1024) (1004) (1004) 3.4 3.4 3.4 3.4 3.4 3.4 3.4										
4	Displacem	ent	l						0.5	570										
	Rated engi speed	ne	min ⁻¹	2000	2200	2400	2500	2600	2800	3000	3000	3600	3200	3400	3600					
	Output	Cont. rating	kW								8.3	10.0								
5	(Gross)	Rated output	kW	6.2	6.9	7.7	8.0	8.3	9.1	9.8	9.1	10.9	10.2	10.7	11.4					
	Output	Cont. rating	kW								7.7	9.1								
	(NET)	Rated output	kW	6.0	6.6	7.3	7.6	7.9	8.5	9.1	8.5	8.3 10.0 10.2 10.7 1 9.1 10.9 10.2 10.7 1 7.7 9.1 1 1 1 8.5 10.0 9.3 9.6 9 - 3800 3400 3600 38 ≤ 313 ≤ 299 ≤ 306 ≤ 336 ≤ 336 ≤ 550 (1022) ≤ 500 (932) ≤ 540 (1004) ≤ 540 (1004) ≤ 540 wheel side)								
6	Maximum i speed		min ⁻¹ ±25	2160	2375	2570	2675	2675 2780 2995 3210 - 3800 3400 3600 38												
7	Specific fue		g/kWh	≤2	79		≤286		≤2	92										
8	Exhaust ga	as temp.	°C (°F)	≤460 (860)	≤480 (896)	≤500 (932)	≤	520 (968	3)		<pre><550 (1022) ≤500 ≤540 ≤550</pre>									
9	Compressi		_						23	3.4			9.3 9.6 9 3400 3600 38 ≤299 ≤306 ≤3 ≤500 ≤540 ≤5 (932) (1004) (1004)							
10	Diesel fuel pressure	injection	MPa (kgf/cm ²)					12.	3 ^{+0.98} ₀	(125 ⁺¹ ₀	⁰)									
11	Main shaft	side	_						Flywhe	el side										
12	Rotation di	rection					Count	terclockv	vise (Viev	wed from	flywhee	l side)								
13	Governor		-			l	Mechanic	al centri	fugal gov	/ernor (A	ll-speed	governo	r)							
14	Aspiration								Natural a	aspiratior	1									
15	Cooling sy	stem					Force-fe	ed circu	lation rad	diator typ	e cooling	g system								
16	Lubricating	, system	-				Forced	lubrication	on with m	nulti-stag	e trochoi	d pump								
17	Starting sy	stem							Electric	starting										
18	Charging s	ystem	-				Alte	ernator (1	2 VDC/4	I0 A, Sta	ndard sp	ec.)								
19	Starting aid	d device	-					Super-	quick He	ating Glo	w plug									
20	Engine oil pressure	Rated speed	MPa						0.3 to	0.45			_							
21	Oil pan	Full	l				1.7				2	.3		1.7						
	capacity	Useful	l	0.7 1.0 0.7																
22	Engine coo capacity		l	0.6																
23	Cooling far dia. × No. (of blades	mm	Pusher, F type - ¢260 x 5																
24	Crank V-pu Fan V-pulle		mm/mm						φ110	/										

Note: The above table shows the specification of a base model.

3TNV70 (complies with EPA Tier4)

	Engi	ne model								ЗT	NV70								
	Engine of	classificat	ion	С	L				VM				С	Ή		VH			
1	Туре							Vertica	al, 4-cyc	cle wate	er-coole	ed diesel	engine	Э					
2	Combustio	n system	_					Sp	herical	swirl ch	namber	system	(IDI)						
3	No. of cylin Bore × Stro		n – mm × mm							3 – 7	70 × 74								
4	Displaceme	ənt	l							0.	.854								
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000	3000	3600	3200	3400	3600		
	Output	Cont. rating	kW	6.2	7.5								13.1	16.1					
5	(Gross)	Rated output	kW	6.8	8.2	9.3	10.3	11.5	12	12.5	14.1	14.6	14.3	17.6	15.1	16.1	17		
	Output	Cont. rating	kW	6.1	7.3								12.1 14.5						
	(NET)	Rated output	kW	6.7	8	9	9.9	11	11.4	11.8	12.8	13.7	13.3	16	14	14.7	15.4		
6	Maximum i speed		min ⁻¹ ±25	1600	00 1895 2160 2375 2570 2675 2780 2995 3210 – 3800 3400 3600										3815				
7	Specific fue consumptic		g/kWh																
8	Exhaust ga	ıs temp.	°C (°F)	≤400 (752)	≤430 (806)	≤440 (824)	≤460 (860)	≤490 (914)	≤ŧ	510 (95	0)	≤540 (1004)	1<580 (1076) 1						
9	Compressi	on ratio								2	3.4								
10	Diesel fuel pressure	injection	MPa (kgf/cm ²)						12.3	3 +0.98 0	(12	5 ⁺¹⁰)							
11	Main shaft	side								Flywh	eel side	ə							
12	Rotation di	rection	-					Counter	rclockw	ise (Vie	ewed fro	om flywh	ieel sid	e)					
13	Governor						Med	chanica	centrif	ugal go	vernor	(All-spe	ed gove	ernor)					
14	Aspiration		-						1	Vatural	aspirat	ion							
15	Cooling sys		_									уре соо							
16	Lubricating	-	_				F	orced lu	bricatic	on with	multi-st	age troc	hoid pu	ımp					
17	Starting sys	stem	—								c startir	-							
18	Charging s	ystem						Alterr	nator (1	2 VDC/	40 A, S	standard	spec.)						
19	Starting aid	device	—						Super-o	quick H	eating	Glow plu	g						
20	Engine oil pressure	Rated speed	MPa							0.3	to 0.45								
21	Oil pan	Full	l					2.8					3	.8		2.8			
	capacity	Useful	l	1.3 1.7 1.3															
22	Engine coc capacity		l						l	0.9 (En	gine on	ly)							
23	Cooling far dia. × No. c		mm	Pusher, F type – ϕ 310 × 5															
24	Crank V-pu Fan V-pulle		mm/mm							φ11C) /								

Note: The above table shows the specification of a base model.

3TNV76 (complies with EPA Tier4)

	Eng	jine mode			A 10.1 Image: Constraint of the state of the sta												
	Engine	classifica	ition	С	L				VM				C	н		VH	
1	Туре		—					Verti	cal, 4-c	ycle wa	ter-coole	ed diesel	engine		•		
2	Combustio system	n	_					S	pherica	l swirl c	hamber	system	(IDI)				
3	No. of cylin Bore × Stro		n – mm × mm							3 –	76 × 82						
4	Displaceme	ent	l							1	1.116						
	Rated engi speed	ine	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000	3000	3600	3200	3400	3600
	Output	Cont. rating	kW	8.4	10.1								16.5	19.9			
5	(Gross)	Rated output	kW	9.2	11	12.3	13.8 15.1 15.8 16.5 17.8 19.2 17.9 21.7 19.9 21.2							21.2	22.3		
	Output	Cont. rating	kW	8.2	9.8								15.1	17.7			
	(NET)	Rated output	kW	9	9 10.7 11.8 13.2 14.3 14.9 15.5 16.7 17.9 16.5 19.5 18.2 19.3										19.5		
6	Maximum i speed	dling	min ⁻¹ ±25	1600	<u>500</u> 1895 2160 2375 2570 2675 2780 2995 3210 – 3800 3400 3600 3											3815	
7	Specific fue consumptio		g/kWh	≤2	≤265 ≤272 ≤279 ≤286 ≤306 ≤292 ≤299 ≤										≤306		
8	Exhaust ga	as temp.	°C (°F)	≤390 (734)	≤410 (770)	≤460 (860)	≤480 (896)	≤500 (932)	≤530	(986)	≤550 (1022)	≤590 (1094)	≤580	(1076)	≤530 (986)	≤570 (1058)	≤580 (1076)
9	Compressi		_								23.5						
10	Diesel fuel pressure	injection	MPa (kgf/cm ²)						12	. 3 +0.9	⁸ (125	5 ⁺¹⁰)					
11	Main shaft	side	_							Flyw	heel side	Э					
12	Rotation di	rection	_					Count	erclock	wise (Vi	iewed fro	om flywh	eel side	e)			
13	Governor		_				Me	echanic	al centr	ifugal g	overnor	(All-spee	ed gove	rnor)			
14	Aspiration		_							Natura	l aspirati	ion					
15	Cooling sys	stem	_				F	orce-fe	ed circu	ulation r	adiator t	ype cool	ling syst	tem			
16	Lubricating	ı system	—					Forced	lubricat	ion with	multi-sta	age troc	hoid pui	mp			
17	Starting sy:	stem	—							Electr	ic startin	g					
18	Charging s	ystem	_					Alte	rnator (12 VDC	C/40 A, S	tandard	spec.)				
19	Starting aid	d device	_						Super	-quick H	leating (Glow plu	g				
20	Engine oil pressure	Rated speed	MPa							0.3	to 0.45						
21	Oil pan	Full	l					;	3.5					4	.4	3	.5
21	capacity	Useful	l						1.6					2	.1	1.	.6
22	Engine coc capacity	lant	l							0.9 (Er	ngine on	ly)					
23	Cooling far dia. × No. c		mm		Pusher, F type – ϕ 335 × 6												
24	Crank V-pu Fan V-pulle		mm/mm							φ 1 1	0 / φ100						

Note: The above table shows the specification of a base model.

DI Series

3TNV82A (complies with EPA Tier2)

	Eng	ine mode						3TNV82	A.						
	Engine	classifica	ition	C	Ľ				VM						
1	Туре		_			Ve	rtical, 4-cyc	le water-co	oled diesel	engine					
2	Combustio system	n	_				D	irect injecti	on (DI)						
3	No. of cylin Bore × Stro		n – mm × mm					3 – 82 ×	84						
4	Displaceme	ənt	l					1.331							
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000			
	Output	Cont. rating	kW	10.3	12.6										
5	(Gross)	Rated output	kW	11.3	13.8	15	16.5	18.1	18.9	19.7	21.3	23			
	Output	Cont. rating	kW	9.9	12										
	(NET)	Rated output	kW	11	13.2	14.6	16	17.5 18.2 19 20.4 21.9 2570 2675 2780 2995 3180							
6	Maximum i speed	-	min ⁻¹ ±25	1600 1895 2180 2375 2570 2675 2780 2995 3180											
7	Specific fue consumption		g/kWh			≤245	_		≤252 ≤258						
8	Exhaust ga	as temp.	°C (°F)	≤490 (914)	≤550 (1022)	560 (1040)	≤570 (1058)	≤580 (1076)	≤580 ≤620 ≤630 ≤650 (1076) (1148) (1166) (1202)						
9	Compressi	on ratio						19.2							
10	Diesel fuel pressure	injection	MPa (kgf/ cm ²)	19.6 ^{+1.0}	(200 ₀ ⁺¹⁰)			21.0	6 ^{+1.0} (2	20 ⁺¹⁰)					
11	Main shaft	side						Flywheel :	side						
12	Rotation di	rection				Cou	nterclockwi	ise (Vieweo	l from flywh	eel side)					
13	Governor					Mechan	ical centrif	ugal govern	or (All-spe	ed governo	or)				
14	Aspiration						Ν	latural aspi	ration						
15	Cooling sy	stem	_			Force-	feed circula	ation radiat	or type coo	ling system	า				
16	Lubricating	system	_			Force	d lubricatio	n with mult	i-stage troc	hoid pump					
17	Starting sy	stem						Electric sta	Irting						
18	Charging s	ystem				Al	ternator (12	2 VDC/40 A	, Standard	spec.)					
19	Starting aid	device	_				Air he	eater (12 VI	DC/400 W)						
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)			0.441	+0.098 -0.049 (4.8	5 ^{+1.0} -0.5)			0.441 +0.098 -0.049	(4.5 ^{+1.0} _{-0.5})			
21	Oil pan	Full	l					5.5							
	capacity	Useful	l					1.9							
22	Engine coo capacity	lant	l				1	1.8 (Engine	only)						
23	Cooling far dia. × No. d		mm	Pusher, F type – ∳335 × 6											
24	Crank V-pu Fan V-pulle		mm/mm	φ 1 20	/				φ110 / φ1	10					

Note: The above table shows the specification of a base model.

3TNV82A-B/-Z (complies with EPA Interim Tier4)

	Enç	gine mode	I				зт	NV82A-	3/-Z					
	Engine	classifica	tion	CL					VM					
1	Туре		—			Vertical	4-cycle	water-co	oled dies	sel engin	е			
2	Combustic system	n	—				Dir	rect injec	tion					
3	No. of cylir Bore × Stro		n – mm × mm					φ82 × 84	4					
4	Displacem	ent	l					1.331						
	Rated eng speed	ine	min ⁻¹			2200	2300	2400	2500	2600	2700	2800		3000
	Output	Cont. rating	kW			ł	ł							-
5	(Gross)	Rated output	kW			16.5	17.3	18.1	18.9	19.7	20.5	21.3		23.0
	Output	Cont. rating	kW			·								
	(NET)	Rated output	kW			16.0	16.8	17.5	18.2	19.0	19.7	20.4		21.9
6	Maximum speed	-	min ⁻¹ ±25			2375	2485	2570	2675	2780	2890	2995		3180
7	Specific fu consumpti		g/kWh		≤245 ≤252 ≤25									258
8	Exhaust ga	as temp.	°C (°F)			≤580 (1076	≤590 (1094)	≤600 (1112)	≤610 (1130)	≤620 (1148)	≤630 (1166)	≤640 (1184)		≤660 (1220)
9	Compress	ion ratio	—					19.2						
10	Diesel fuel pressure	injection	MPa (kgf/ cm ²)				19.6 ⁺	-1.0 0 (20	00 ⁺¹⁰)					
11	Main shaft	side	—				Fl	ywheel s	ide					
12	Rotation d	irection	—			Counterc	lockwise	(Viewed	from fly	wheel sid	le)			
13	Governor		—	Mec	hanical gover	nor (All-sp	ed gove	rnor) / El	ectronic	governo	r (All-spe	ed gove	ernor)	
14	Aspiration		—				Natu	ural aspir	ration					
15	Cooling sy	stem	—			I	Radiator t	type cool	ing syste	em				
16	Lubricating	g system	—			Force	ed lubrica	ation with	trochoid	l pump				
17	Starting sy	stem	—				Ele	ectric sta	rting					
18	Charging s	system	—				Alternat	or (12 VI	DC/40 A)				
19	Starting aid	d device	—			S	uper-quic	k Heatin	g Glow p	olug				
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)			0.36 +	0.10 .05 (3.7	+1.0 -0.5)					0.41 +0.1	¹⁰ ₀₅ (4.2 ^{+1.0} _{-0.5})
21	Oil pan	Full	l					5.5					·	
21	capacity	Useful	l					1.9						
22	Engine coo capacity	olant	l				1.8	(Engine	only)					
23	Cooling fai dia. × No.		mm			Resin	F type p	usher far	n -	NF) x 6				
24	Crank V-pu Fan V-pull		mm/mm					φ	110 / 1	10				

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

3TNV82A-B 3TNV82A-Z (Electronically controlled)

Eng	ine Model						3TNV82	A-B/3TI	V82A-2	Z				
Vers	sion			CL					VM					
1	Туре		_			Ve	rtical In	-line Die	sel Eng	ine				
2	Combustio	n System	_				Dire	ect Injec	tion					
3	No. of Cylir Bore x Stro		n - mm x mm				3	8 - 82~8	4					
4	Displaceme	ent	l					1.331						
	Engine Spe	ed	min ⁻¹			2200	2300	2400	2500	2600	2700	2800		3000
	Power Output	Cont. Rating	kW											
5	(Gross) *1	Max. Rating	kW			16.5	17.3	18.1	18.9	19.7	20.5	21.3		23.0
	Power Output	Cont. Rating	kW			Γ	I	Γ	1	I	1			
	(Net)	Max. Rating	kW			16.0	16.8	17.5	18.2	19.0	19.7	20.4		21.9
6	High Idling		min ⁻¹ ±25			2375	2485	2570	2675	2780	2890	2995		3180
7	Fuel Consu	umption	g/kWh	≤245 ≤252 ≤252										
8	Exhaust Temperatu	re	°C											≤660
9	Compressi	on Ratio	_					19.2						
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)				19.6	+1.0 0 (200	0 ⁺¹⁰)					
11	PTO Positi	on	_					wheel E						
12	Direction of	f Rotation	_					(viewed						
13	Governor				Mechanical (all-spee	d gover	nor) / El	ectronic	(all-spe	ed gove	ernor)		
14	Aspiration							Natural						
15	Cooling Sy	stem	_				•	oled with						
16	Lubricating	System	_			Forced		tion with		id Pump)			
17	Starting Sy		—					ctric Sta						
18	Charging S		—			Chargir	-	Alternato						
19	Starting Aid	4	_				Quick H	leat Glo	w Plugs					
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)				0.34 ±	0.05 (3.	5 ± 0.5)					
21	Engine Oil Pan	Dipstick Upper Limit	l					5.5						
21	Capacity	Dipstick Lower Limit	l	1.9										
22	Engine Coo Capacity	olant	l				1.8 (Engine	Only)					
23	Cooling Fa	n	mm			335 m	m O.D.	, 6 Blade	e Pushe	r-Type				
24	Crank Pulle Fan Pulley		mm/mm	ø120 / ø90				ø	110/ø1	10				

Note: * Applies to basic models/versions and may vary depending on specific applications.

3TNV84 (complies with EPA Tier2)

	Eng	jine mode						3TNV84							
	Engine	classifica	tion	C	Ľ				VM						
1	Туре					Vert	ical, 4-cycle	water-cool	ed diesel er	ngine					
2	Combustio system	n	_				Dire	ect injection	(DI)						
3	No. of cylir Bore × Stro		n – mm × mm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
4	Displacem	ent	l					1.496							
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000			
	Output	Cont. rating	kW	11.6	14.1										
5	(Gross)	Rated output	kW	12.7	15.4	16.8	18.6	20.3	21.2	22.1	23.9	25.7			
	Output	Cont. rating	kW	11.3	13.5										
	(NET)	Rated output	kW												
6	Maximum i speed	-	min-1 ±25	1600											
7	Specific fu consumption		g/kWh	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
8	Exhaust ga	as temp.	°C (°F)												
9	Compressi	on ratio						19							
10	Diesel fuel injection pi	essure	MPa (kgf/cm ²)	19.6 ^{+1.0}	(200 ₀ ⁺¹⁰)			21.6	+1.0 (220	+10 0)					
11	Main shaft	side					F	lywheel sid	e						
12	Rotation di	rection				Coun	terclockwise	e (Viewed fr	om flywhee	l side)					
13	Governor					Mechani	cal centrifug	jal governor	(All-speed	governor)					
14	Aspiration						Na	tural aspirat	ion						
15	Cooling sy	stem	_			Force-fe	eed circulati	on radiator	type cooling	j system					
16	Lubricating	i system	_			Forced	lubrication	with multi-st	tage trochoi	d pump					
17	Starting sy	stem	_				E	lectric startii	ng						
18	Charging s					Alte		VDC/40 A, S		ec.)					
19	Starting aid	d device	_				Air hea	ter (12 VDC	/400 W)						
20	Engine oil pressure	Rated speed	MPa (kgf/cm2)	0.392 ^{+0.0}	⁹⁸ (4.0 ^{+1.0})			0.441	+0.098 -0.049 (4.5	5 ^{+1.0} -0.5					
21	Oil pan	Full	l					6.7							
21	capacity	Useful	l					2.8							
22	Cooling wa capacity	ater	l	2.0 (Engine only)											
23	Cooling far dia. × No. (of blades	mm				Pusher	r, F type – φ	335 × 6						
24	Crank V-pu Fan V-pull		mm/mm	φ 1 20	/				φ110/ φ110						

Note: The above table shows the specification of a base model.

3TNV84T-Z (Electronically controlled)

Eng	ine Model							3	TNV84T	-Z					
Vers				CL						VM					
1	Туре		_				Ve	rtical In-	-line Die	sel Engi	ne				
2	Combustio	n System	_					Dire	ect Injec	tion					
3	No. of Cylii		n -						ø 84×90)					
	Bore x Stro		mm x mm												
4	Displacem		l . 1						1.496						
	Engine Spe		min ⁻¹		_				2400	2500	2600	2700	2800		
	Power Output	Cont. Rating	kW			1	i								1
5	(Gross) *1	Max. Rating	kW						25.7	26.7	27.7	28.9	30.1		
	Power Output	Cont. Rating	kW												
	(Net)	Max. Rating	kW						25.0	26.0	26.8	27.9	29.1		
6	High Idling		min ⁻¹ ±25						2590	2700	2810	2920	2995		
7	Fuel Consu	umption	g/kWh						≤245		≤2	52			
8	Exhaust Temperatu	re	°C						≤620	≤630	≤635	≤650	≤650		
9	Compressi		—							19.0					
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)					21.6	+ ^{1.0} (220	⁺¹⁰)					
11	PTO Positi	on	—						wheel E						
12	Direction o	f Rotation	—			Co	ounterclo		<u>`</u>			nd)			
13	Governor		—				Ele		all-spee		nor)				
14	Aspiration		—						rbocharç	-					
15	Cooling Sy		_					•	oled with						
16	Lubricating	System	_				Forced				d Pump				
17	Starting Sy		_						ctric Sta						
18	Charging S	-	_				Chargin	-			C, 40A)				
19	Starting Aid		_		_			Quick H	leat Glo	w Plugs					
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)						0.3	39 _{-0.05} (4.0 ^{+1.0})	0.44	0.10 0.05 (4 .	5 ^{+1.0} - 0.5)
21	Engine Oil Pan	Dipstick Upper Limit	l						6.7						
د ۲	Capacity	Dipstick Lower Limit	l						2.8						
22	Engine Co Capacity	olant	l					2.0(8	Engine (Only)					
23	Cooling Fa	n	mm				350 m	m O.D.,	6 Blade	e Pushe	r-Type				
24	Crank Pulle Fan Pulley	ey Dia./ Dia.	mm/mm						ø1	10/ø1	10				

Note: * Applies to basic models/versions and may vary depending on specific applications.

3TNV88 (complies with EPA Tier2)

	Eng	gine mode						3TNV88						
	Engine	classifica	ition	С	L				VM					
1	Туре					Vert	ical, 4-cycle	water-cool	ed diesel er	ngine				
2	Combustio system	'n	_				Dire	ect injection	(DI)					
3	No. of cylir Bore × Stro		n – mm × mm					3 – 88 × 90	1					
4	Displacem	ent	l					1.642						
	Rated eng speed	ine	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000		
	Output	Cont. rating	kW	12.7	15.4									
5	(Gross)	Rated output	kW	13.9	16.9	18.4	20.3	22.2	23.2	24.2	26	27.4		
	Output	Cont. rating	kW	12.3	$ \begin{array}{ c c c c c c } \hline 1800 & 2000 & 2200 & 2400 & 2500 & 2600 & 2800 & 3000 \\ \hline 15.4 & & & & & & & & & \\ \hline 16.9 & 18.4 & 20.3 & 22.2 & 23.2 & 24.2 & 26 & 27.4 \\ \hline 14.8 & & & & & & & & & \\ \hline 16.3 & 18 & 19.9 & 21.6 & 22.6 & 23.5 & 25.2 & 26.3 \\ \hline 1895 & 2180 & 2400 & 2590 & 2700 & 2810 & 2995 & 3210 \\ \hline & \leq 245 & & \leq 252 & \leq 258 \\ \hline \leq 5590 & \leq 570 & \leq 580 & \leq 600 & \leq 620 & \leq 650 & \leq 650 & \leq 670 \\ (1094) & (1058) & (1076) & (1112) & (1148) & (1202) & (1202) & (1238) \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$									
	(NET)	Rated output	kW											
6	Maximum i speed	-	min-1 ±25	1600										
7	Specific fu		g/kWh	≤245 ≤252										
8	Exhaust ga	as temp.	°C (°F)											
9	Compressi	ion ratio						19.1						
10	Diesel fuel injection pi		MPa (kgf/cm ²)	19.6 ^{+1.0}	(200 ₀ ⁺¹⁰)			21.6	+1.0 (220	+10 0)				
11	Main shaft	side	_				F	lywheel sid	e					
12	Rotation di	irection	—			Coun	terclockwise	e (Viewed fr	om flywhee	l side)				
13	Governor		—			Mechanic	al centrifug	jal governor	(All-speed	governor)				
14	Aspiration		—				Na	tural aspirat	ion					
15	Cooling sy	stem				Force-fe	ed circulati	on radiator	type cooling	j system				
16	Lubricating	g system				Forced	lubrication	with multi-st	tage trochoi	d pump				
17	Starting sy	stem	_				E	lectric startii	ng					
18	Charging s					Alte				ec.)				
19	Starting aid	d device					Air hea	ter (12 VDC	/400 W)					
20	Engine oil pressure	Rated speed	MPa (kgf/cm2)	0.392 ^{+0.0}	⁹⁸ (4.0 ^{+1.0})			0.441	+0.098 -0.049 (4.5	5 ^{+1.0} -0.5				
21	Oil pan	Full	l					6.7						
21	capacity	Useful	l					2.8						
22	Cooling wa capacity	ater	l	2.0 (Engine only)										
23	Cooling far dia. × No. (of blades	mm				Pusher	r, F type – φ	335 × 6					
24	Crank V-pu Fan V-pull		mm/mm	φ120	/ 90				φ110/ φ110					

Note: The above table shows the specification of a base model.

3TNV88-U/-E (complies with EPA Interim Tier4)

	Enç	gine mode	I					ЗТ	NV88-U	/-E						
		classifica		CL						VM						
1	Туре		_			Ve	ertical, 4	4-cycle v	vater-co	oled dies	el engin	e				
2	Combustio system	'n	_					Dir	ect injec	tion						
3	No. of cylin Bore × Stro		n – mm × mm						φ88 × 90)						
4	Displacem	ent	l						1.642							
	Rated engi speed	ine	min ⁻¹				2200	2300	2400	2500	2600	2700	2800		3000	
	Output	Cont. rating	kW			I		<u> </u>	1		I	1		1	I	
5	(Gross)	Rated output	kW				18.6	19.4	20.3	21.2	22.1	23.0	23.9		25.7	
	Output	Cont. rating	kW			·			•		•	1		1		
	(NET)	Rated output	kW				18.1	18.9	19.7	20.5	21.3	22.2	23.0		24.6	
6	Maximum i speed	-	min ⁻¹ ±25		2400 2510 2590 2700 2810 2920							2995		3210		
7	Specific fu		g/kWh		≤245 ≤252									≤2	58	
8	Exhaust ga	as temp.	°C (°F)		(1076) (1094) (1112) (1130) (1148) (1166) (1184) (1										≤660 (1220)	
9	Compressi	ion ratio	—		19.1											
10	Diesel fuel pressure	injection	MPa (kgf/ cm ²)		19.6 ^{+1.0} ₀ (200 ⁺¹⁰ ₀)											
11	Main shaft	side	—					Fly	/wheel s	ide						
12	Rotation di	irection	—			Со	unterclo	ockwise	(Viewed	from flyv	vheel sic	le)				
13	Governor		—	Mec	hanical gove	ernor (,	All-spe	ed gover	mor) / Ele	ectronic	governo	r (All-spe	ed gove	rnor)		
14	Aspiration		—					Natu	ıral aspir	ation						
15	Cooling sy	stem	—				R	adiator t	ype cooli	ng syste	m					
16	Lubricating	g system	—				Force	d lubrica	tion with	trochoid	pump					
17	Starting sy	stem	—					Ele	ctric star	ting						
18	Charging s	system	—					Alternate	or (12 V[DC/40 A)	1					
19	Starting aid	d device	—				Su	per-quicl	k Heating	g Glow p	lug					
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)			C	0.39 +0.	¹⁰ (4.0	+1.0 -0.5)					0.44 ^{+0.1}	⁰ ₅ (4.5 ^{+1.0} _{-0.5})	
~1	Oil pan	Full	l						6.7							
21	capacity	Useful	l						2.8							
22	Engine coo capacity	olant	l					2.0	(Engine (only)						
23	Cooling fai dia. × No. d		mm				Resin I	= type pu	usher far	ι - φ335(NF) x 6					
24	Crank V-pu Fan V-pulle		mm/mm						φ.	110/	10					

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

3TNV88-U 3TNV88-E (Electronically controlled)

Eng	ine Model						3TNV8	8-U/3TN	V88-E								
Vers	sion			CL					VM								
1	Туре		_			Ve	ertical In	-line Die	sel Eng	ine							
2	Combustio	n System					Dire	ect Injec	tion								
З	No. of Cylii Bore x Stro		n - mm x mm				(8 - 88~9	0								
4	Displacem	ent	l					1.642									
	Engine Spe	ed	min ⁻¹		2100	2200	2300	2400	2500	2600	2700	2800	30	00			
	Power Output	Cont. Rating	kW				1										
5	(Gross) *1	Max. Rating	kW		17.7	18.6	19.4	20.3	21.2	22.1	23.0	23.9	25	5.7			
	Power Output	Cont. Rating	kW			1	1	1	1	1	1						
	(Net)	Max. Rating	kW		17.3	18.1	18.9	19.7	20.5	21.3	22.2	23.0	24				
6	High Idling		min ⁻¹ ±25		2290	2400	2510	2590	2690	2810	2920	2995	32	10			
7	Fuel Consu	umption	g/kWh		≤245					≤2	52		≤258				
8	Exhaust Temperatu	re	°C		≤570 ≤580 ≤590 ≤600 ≤610 ≤620 ≤630 ≤640 ≤660												
9	Compressi		_		19.1												
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)	19.6 ^{+1.0} (200 ⁺¹⁰)													
11	PTO Positi	on	—	Flywheel End													
12	Direction o	f Rotation	—	Counterclockwise (viewed from flywheel end) Mechanical (all-speed governor) / Electronic (all-speed governor)													
13	Governor		_		Mechanical	(all-spee	ed gover	nor) / El	ectronic	(all-spe	ed gove	ernor)					
14	Aspiration		_					Natural									
15	Cooling Sy		—			L	quid-co	oled with	n Radiat	or							
16	Lubricating		—			Forced	Lubricat	ion with	Trocho	id Pump							
17	Starting Sy						Eleo	ctric Sta	rting								
18	Charging S	-				Chargir	ng with A	Alternato	or (12VD	C, 40A)							
19	Starting Aid		—				Quick H	leat Glo	w Plugs								
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)				0.34 ±	0.05 (3.	5 ± 0.5)								
21	Engine Oil Pan	Dipstick Upper Limit	l	6.7													
21	Capacity	Dipstick Lower Limit	l	2.8													
22	Engine Co Capacity	olant	l	2.0 (Engine Only)													
23	Cooling Fa	n	mm			335 m	m O.D.	6 Blade	e Pushe	r-Type							
24	Crank Pulle Fan Pulley		mm/mm	ø120 / ø90 ø110 / ø110													

Note: * Applies to basic models/versions and may vary depending on specific applications.

3TNV88-B/-Z (complies with EPA Interim Tier4)

	Enc	jine mode							31	NV88-B	/-Z					
		classifica		c	Ľ						VM					
1	Туре		_	-			۱	/ertical,	4-cycle v	vater-co		el engin	e			
2	Combustio system	n	_						Dir	ect injec	tion					
3	No. of cylir Bore × Stro		n – mm × mm							φ88 × 90)					
4	Displacem	ent	l							1.642						
	Rated engi speed		min ⁻¹	1500	1800			2200	2300	2400	2500	2600	2700	2800		3000
	Output	Cont. rating	kW	12.7	15.4			I		1	1	I	1		1	I
5	(Gross)	Rated output	kW	13.9	16.9			20.3	21.3	22.2	23.2	24.2	25.1	26.0		28.1
	Output	Cont. rating	kW	12.3	14.8			•		•	•	•	•			•
	(NET)	Rated output	kW	13.5	16.3			19.9	20.7	21.6	22.6	23.5	24.3	25.2		27.1
6	Maximum i speed	idling	min ⁻¹ ±25	1600	1895 2400 2510 2590 2700 2810 2920							2995		3210		
7	Specific fue		g/kWh				≤245					≤2	252		≤2	58
8	Exhaust ga	as temp.	°C (°F)	≤540 (1004)											≤670 (1238)	
9	Compressi	on ratio	—		19.1											
10	Diesel fuel pressure	injection	MPa (kgf/ cm ²)		19.6 ^{+1.0} ₀ (200 ⁺¹⁰)											
11	Main shaft	side	_						Fly	/wheel s	ide					
12	Rotation di	rection	_				C	ounterclo	ockwise	(Viewed	from flyv	vheel sic	le)			
13	Governor		_		Mecl	hanical g	overnor	(All-spe	ed govei	nor) / El	ectronic	governo	r (All-spe	ed gove	ernor)	
14	Aspiration		_						Natu	ıral aspir	ation					
15	Cooling sy	stem	_					R	adiator t	ype cool	ing syste	m				
16	Lubricating	system	_					Force	d lubrica	tion with	trochoid	pump				
17	Starting sy	stem	_						Ele	ctric star	ting					
18	Charging s	system	_						Alternat	or (12 VI	DC/40 A)	1				
19	Starting aid	d device	_					Su	per-quic	k Heating	g Glow p	lug				
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.34 ^{+0.1}	⁰ ₅ (3.5 ^{+1.0} _{-0.5})				0.39 ⁺⁰ -0.4	.10 05 (4.0	+1.0 -0.5)				0.44 ^{+0.1} _{-0.0}	⁰ ₅ (4.5 ^{+1.0} _{-0.5})
21	Oil pan	Full	l			•				6.7					·	
21	capacity	Useful	l							2.8						
22	Engine coo capacity	blant	l						2.0	(Engine	only)					
23	Cooling far dia. × No. (of blades	mm					Resin I	type pu	usher far	n -	NF) x 6				
24	Crank V-pu Fan V-pulle		mm/mm	φ120	/			φ110 / φ110								

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

3TNV88-B 3TNV88-Z (Electronically controlled)

Eng	ine Model						3TNV88-B/3TNV88-Z VM										
Vers				c	Ľ												
1	Туре		_			Į	Ve	rtical In	line Die	sel Engi	ine						
2	Combustio	n System	_						ect Injec	-							
3	No. of Cylir Bore x Stro		n - mm x mm					3	3 - 88~9	0							
4	Displaceme	ent	l						1.642								
	Engine Spe	ed	min ⁻¹	1500	1800		2200	2300	2400	2500	2600	2700	2800		3000		
	Power Output	Cont. Rating	kW	12.7	15.4					1	1	1					
5	(Gross) *1	Max. Rating	kW	13.9	16.9		20.3	21.3	22.2	23.2	24.2	25.1	26.0		28.1		
	Power Output	Cont. Rating	kW	12.3	14.8												
	(Net)	Max. Rating	kW	13.5	16.3		19.9	20.7	21.6	22.6	23.5	24.3	25.2		27.1		
6	High Idling		min ⁻¹ ±25	1600	1895		2400	2510	2590	2690	2810	2920	2995		3210		
7	Fuel Consu	umption	g/kWh			≤245					<u>≤2</u>	252	_	≤2	58		
8	Exhaust Temperatu		°C	≤540	≤540 ≤560 ≤590 ≤600 ≤610 ≤620 ≤630 ≤640 ≤650 ≤670												
9	Compressi								19.1								
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)		19.6 ^{+1.0} ₀ (200 ⁺¹⁰ ₀)												
11	PTO Positi		_														
12	Direction of	f Rotation		Counterclockwise (viewed from flywheel end) Mechanical (all-speed governor) / Electronic (all-speed governor)													
13	Governor					Mechanical (all-spee	d gover			(all-spe	ed gove	ernor)				
14	Aspiration								Natural								
15	Cooling Sy									n Radiat							
16	Lubricating						Forced			Trochoi	d Pump)					
17	Starting Sy		_						ctric Sta	•							
18	Charging S	-	_				Chargir	-		or (12VD							
19	Starting Aid							Quick H	leat Glo	w Plugs							
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)					0.34 ±	0.05 (3.	5 ± 0.5)							
21	Engine Oil Pan	Dipstick Upper Limit	l						6.7								
21	Capacity	Dipstick Lower Limit	l			2.8											
22	Engine Coo Capacity	olant	l					,	Engine	• ·							
23	Cooling Fa	n	mm				335 m	m O.D.,	6 Blade	e Pushe	r-Type						
24	Crank Pulle Fan Pulley		mm/mm	ø120 / ø90 ø110 / ø110													

Note: * Applies to basic models/versions and may vary depending on specific applications.

3TNV84T (complies with EPA Tier2)

	Engine model 3TNV84T Engine classification CL VM 1 Type — Vertical, 4-cycle water-cooled diesel engine													
	Engine	Engine classification CL VM De — Vertical, 4-cycle water-cooled diesel engine												
1	Туре		—			Vertical,	4-cycle water	r-cooled dies	el engine					
2	Combustio system	n	_				Direct inje	ection (DI)						
3	No. of cylir Bore × Stro		n – mm × mm				3 – 84	1 × 90						
4	Displacem	ent	l				1.4	96						
	Rated engi speed	ine	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800			
		Cont.	kW	14.4	17.3									
5	Output (Gross)	rating Rated output	kW	16.3	19.5	_	_	25.7	26.7	27.7	30.1			
		Cont.	kW	14	16.5	_	_							
	Output (NET)	rating Rated output	kW	15.8	18.8	_	_	25	26	26.8	29.1			
6	Maximum i speed	idling	min-1 ±25											
7	Specific fue		g/kWh											
8	Exhaust ga	as temp.	°C (°F)	≤570	(1058)	-	_	≤630	(1166)	≤640 (1184)	≤650 (1202)			
9	Compressi	on ratio	—				1	9						
10	Diesel fuel pressure	injection	MPa (kgf/cm ²)	19.6 ^{+1.0}	19									
11	Main shaft	side	—				Flywhe	el side						
12	Rotation di	rection				Countercl	ockwise (Viev	ved from flyv	vheel side)					
13	Governor				Ν	Vechanical c	entrifugal gov	ernor (All-sp	eed governo	r)				
14	Aspiration						Turbocharge	ed aspiration						
15	Cooling sy	stem	—			Force-feed of	circulation rac	liator type co	oling system					
16	Lubricating) system				Forced lubr	ication with m	nulti-stage tro	ochoid pump					
17	Starting sy	stem					Electric	starting						
18	Charging s	-				Alternat	or (12 VDC/4	0 A, Standa	rd spec.)					
19	Starting aid	d device	—				Air heater (12	VDC/400 W	/)					
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.343 ^{+0.0}	⁹⁸ (3.5 ^{+1.0}) 49	-	_	0.0	392 ^{+0.098} (4.0 <u>-</u>	+1.0 0.5)	$0.441 \begin{array}{c} ^{+0.098}_{-0.049} \\ (4.5 \begin{array}{c} ^{+1.0}_{-0.5} \end{array}) \end{array}$			
	Oil pan	Full	l			1	6	.7			1			
21	capacity	Useful	l	2.8										
22	Engine coo capacity	blant	l	2.0 (Engine only)										
23		of blades	mm	Pusher, F type – φ350 × 6										
24	Crank V-nulley dia /													

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

3TNV84T-B (complies with EPA Interim Tier4)

	Enç	jine mode					3	TNV84T·	·В							
	Engine	classifica	ition	CL					VM							
1	Туре		—			Vertical,	4-cycle v	vater-coo	oled dies	el engin	е					
2	Combustio system	'n	_				Dire	ect inject	tion							
3	No. of cylin Bore × Stro		n – mm × mm					φ84 × 90	1							
4	Displacem	ent	l					1.496								
	Rated engi speed	ine	min ⁻¹					2400	2500	2600	2700	2800				
	Output	Cont. rating	kW													
5	(Gross)	Rated output	kW					25.7	26.7	27.7	28.9	30.1				
	Output	Cont. rating	kW											_		
	(NET)	Rated output	kW					25.0	26.0	26.8	27.9	29.1				
6	Maximum i speed	-	min ⁻¹ ±25					2590	2700	2810	2920	2995				
7		pecific fuel g,						≤245		≤2	52					
8	Exhaust ga	as temp.	°C (°F)					≤620 (1148)	≤630 (1166)	≤635 (1175)	≤650 (1202)	≤650 (1202)				
9	Compressi	on ratio	—					19.0								
10	Diesel fuel pressure	injection	MPa (kgf/ cm ²)		21.6 $^{+1.0}_{0}$ (220 $^{+10}_{0}$)											
11	Main shaft	side	—				Fly	/wheel si	ide							
12	Rotation di	rection	_			Counterclo		•			,					
13	Governor		—			Mechan	ical gove)					
14	Aspiration		—				Turboch	-								
15	Cooling sy		_				adiator ty									
16	Lubricating	-	—			Force	d lubrica	tion with	trochoid	pump						
17	Starting sy		_					ctric star	-							
18	Charging s	-	—				Alternate	,								
19	Starting aid	1	—		i	Su	per-quicl	< Heating	g Glow p	lug			i			
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)						0.39 ^{+0.}	¹⁰ (4.0	+1.0 -0.05)		0.44 ^{+0.1} -0.0	⁰ ₅ (4.5 ^{+1.0} _{-0.5})		
21	Oil pan Full		l					6.7					•			
	Capacity Useful l			2.8												
22	capacity			2.0 (Engine only)												
23	23 Cooling fan type – dia. × No. of blades mm			Resin F type pusher fan - ∳335(NF) x 6												
24	Crank V-pullov dia /							φ [.]	110/ø1 [.]	10						

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV84 (complies with EPA Tier2)

Engine model 4TNV84 Engine classification CL VM 1 Type													
	Engine classification CL VM Type — Vertical, 4-cycle water-cooled diesel engine Combustion												
1	Туре					Vert	ical, 4-cycle	water-cool	ed diesel er	ngine			
2	Combustio system	n	_				Dire	ect injection	(DI)				
3	No. of cylin Bore × Stro		n – mm × mm					4 – 84 × 90					
4	Displaceme	ənt	l					1.995					
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000	
	Output	Cont. rating	kW	15.5	18.6								
5	(Gross) *1	Rated output	kW	16.9	20.3	22.4	24.8	27.2	28.3	29.5	31.9		
	Output	Cont. rating	kW	14.9	17.7								
	(NET)	Rated output	kW 16.9 20.3 22.4 24.8 27.2 28.3 29.5 31.9 kW 14.9 17.7 <										
6	Maximum i speed	_	min ⁻¹ ±25	1600	1895	2180	2400	2590	2700	2810	2995	3210	
7	Specific fue consumption											≤258	
8	Exhaust ga	as temp.	°C (°F)									≤650 (1202)	
9	Compressi	on ratio	_					19					
10	Diesel fuel injection pr	essure		19.6 ^{+1.0}	(200 ₀ ⁺¹⁰)			21.6	+1.0 0 (220	+ ¹⁰)			
11	Main shaft	side	_				F	lywheel sid	e				
12	Rotation di	rection	_			Coun	terclockwise	e (Viewed fr	om flywhee	l side)			
13	Governor		—			Mechanic	al centrifug	al governor	(All-speed	governor)			
14	Aspiration		—				Na	tural aspirat	tion				
15	Cooling sy:	stem						on radiator					
16	Lubricating		_			Forced		with multi-s	-	d pump			
17	Starting sy		—					lectric startii	5				
18	Charging s		—			Alte	· ·	VDC/40 A, S		ec.)			
19	Starting aid	device	—				Air heat	ter (12 VDC	/400 W)				
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.392 ^{+0.0}	⁹⁸ (4.0 ^{+1.0} _{-0.5})			0.441	+0.098 -0.049 (4.5	5 ^{+1.0} -0.5			
21	Oil pan	Full	l					7.4					
<u> </u>	capacity	Useful	l					3.4					
22	Engine Co capacity		l				2.7	7 (Engine or	nly)				
23	Cooling far dia. × No. d	of blades	mm				Pusher	r, F type – ∳	370 × 6				
24	Crank V -p dia./ Fan V dia.		mm/mm	φ 1 20	/				φ110/ φ110				

Note: The above table shows the specification of a base model.

4TNV88 (complies with EPA Tier2)

Engine model 4TNV84 Engine classification CL VM 1 Type — Vertical, 4-cycle water-cooled diesel engine																	
	Engine	De classification CL VM — Vertical, 4-cycle water-cooled diesel engine															
1	Туре		—			Verti	ical, 4-cycle	water-cool	ed diesel er	ngine							
2	Combustio system	n	_				Dire	ect injection	(DI)								
3	No. of cylin Bore × Stro		n – mm × mm					4 – 88 × 90	1								
4	Displaceme	ənt	l					2.190									
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000					
	Output	Cont. rating	kW	16.9	20.5												
5	(Gross) *1	Rated output	kW	18.5	22.5	24.6	27.1	29.7	31	32.3	35	36.9					
	Output	Cont. rating	kW	16.4	19.6												
(NET) Rated output kW 18 21.6 24.1 26.5 28.8 30.1 31.3 6 Maximum idling speed min ⁻¹ ±25 1600 1895 2180 2400 2590 2700 2810 2 7 Specific fuel g/kWb sector sector										33.7	35.4						
6	speed		min ⁻¹ ±25	1600	1895	2180	2400	2590	2700	2810	2995	3210					
7	Specific fue consumptio		g/kWh			≤2	45				≤252						
8	Exhaust ga	as temp.	°C (°F)	≤500 (932)													
9	Compressi	on ratio	—			_		19.1									
10	Diesel fuel injection pr	essure	MPa (kgf/cm ²)	19.6 ^{+1.0} ₀	(200 ₀ ⁺¹⁰)			21.6	21.6 ^{+1.0} ₀ (220 ⁺¹⁰ ₀)								
11	Main shaft	side	—				F	lywheel sid	е								
12	Rotation di	rection	—			Count	terclockwise	e (Viewed fr	om flywhee	l side)							
13	Governor		_			Mechanic	al centrifug	al governor	(All-speed	governor)							
14	Aspiration							tural aspirat									
15	Cooling sy	stem						on radiator									
16	Lubricating		_			Forced		with multi-s		d pump							
17	Starting sy		_					lectric starti	<u> </u>								
18	Charging s	-				Alte		VDC/40 A, S		ec.)							
19	Starting aid						Air heat	ter (12 VDC	/400 W)								
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.392 ^{+0.09} -0.04	$0.392_{-0.049}^{+0.098}(4.05_{-0.5}^{+1.0}) \qquad \qquad 0.441_{-0.049}^{+0.098} (4.52_{-0.5}^{+1.0})$												
21	Oil pan	Full	l					7.4									
	capacity	Useful	l					3.4									
22	Engine Co capacity		l				2.7	7 (Engine or	ıly)								
23	Cooling far dia. × No. d	of blades	mm				Pushe	r, F type – ≬)37 × 6								
24	Crank V -p dia./ Fan V dia.		mm/mm	φ120 / φ90 φ110/ φ110													

Note: The above table shows the specification of a base model.

4TNV88-U/-E (complies with EPA Interim Tier4)

Engine model 4TNV88-U/-E Engine classification CL VM 1 Type — Vertical, 4-cycle water-cooled diesel engine															
<u> </u>				CL											
1	Туре		—			Vertical, 4-cycle	water-coole)						
2	Combustio system	n	_			Di	rect injectio	'n							
3	No. of cylir Bore × Stro		n – mm × mm				$\phi 88 imes 90$								
4	Displacem	ent	l				2.190								
	Rated engi speed	ne	min ⁻¹						2700	2800					
	Output	Cont. rating	kW												
5	(Gross) *1	Rated output	kW						30.7	31.9					
	Output	Cont. rating	kW												
	(NET)	output	Rated butput kW 29.6 30.7 ling min ⁻¹ ±25 Image: Constraint of the second												
6	Maximum i speed	_	min ⁻¹ ±25						2920	2995					
7	Specific fue		g/kWh		≤252										
8	Exhaust ga	as temp.	°C (°F)						≤630 (1166)	≤640 (1184)					
9	Compressi	on ratio	—				19.1								
10	Diesel fuel injection pr	essure	MPa (kgf/cm ²)		19.6 $^{+1.0}_{0}$ (200 $^{+10}_{0}$)										
11	Main shaft		—				ywheel side								
12	Rotation di	rection	—			ounterclockwise		-							
13	Governor		—	Mecl	hanical governo	r (All-speed gove			(All-spe	ed governo	or)				
14	Aspiration		—				ural aspirati								
15	Cooling sy		—				ype cooling	-							
16	Lubricating	-	_		Fo	rced lubrication w			mp						
17	Starting sy		_				ectric startin	-							
18	Charging s	-	_				or (12 VDC	,							
19	Starting aid		_		i	Super-quic	k Heating (Glow plug							
20	Engine oil pressure	speed	MPa (kgf/cm ²)				0.37 ^{+0.1} -0.05	$^{0}_{5}$ (3.8 $^{+1.0}_{-0.5}$)							
21	Oil pan capacity	Full Useful	l				7.4 3.4								
22	Engine Co capacity		l			2.7	(Engine on	ly)							
23	Cooling far dia. × No. d		mm			Pusher	, F type – ∳	37 × 6							
24	Crank V -p dia./ Fan V dia.		mm/mm				φ 1 1	IO/							

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV88-U 4TNV88-E (Electronically controlled)

Eng	ine Model						4TNV88	3-U/4TNV88-E	Ξ			
Vers	sion			CL				VM				
1	Туре		_			Ve	ertical In-I	line Diesel En	gine			
2	Combustio	n System	_				Dire	ct Injection				
3	No. of Cylir Bore x Stro		n - mm x mm				4	- 88~90				
4	Displaceme	ent	l					2.189				
	Engine Spe	∋ed	min ⁻¹							2700	2800	
	Power Output	Cont. Rating	kW					I				I
5	(Gross) *1	Max. Rating	kW							30.7	31.9	
	Power Output	Cont. Rating	kW									
	(Net)	Max. Rating	kW							29.6	30.7	
6	High Idling		min ⁻¹ ±25							2920	2995	
7	Fuel Consu	umption	g/kWh		≤24	5			≤25	52		≤258
8	Exhaust Temperatu	re	°C							≤630	≤640	
9	Compressi	on Ratio	—					19.1				
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)				19.6 ⁺	^{1.0} (200 ⁺¹⁰ ₀)				
11	PTO Positi		—				,	wheel End				
12	Direction of	f Rotation	—					viewed from fl				
13	Governor		_		Mechanica	al (all-spee	=	ior) / Electroni	ic (all-spee	ed gove	rnor)	
14	Aspiration		—					Natural				
15	Cooling Sy	stem	—			L	iquid-coo	led with Radia	ator			
16	Lubricating		—			Forced	Lubricatio	on with Troch	oid Pump			
17	Starting Sy		—				Elect	tric Starting				
18	Charging S		—			Chargir	ng with Al	lternator (12V	DC, 40A)			
19	Starting Aid		—				Quick He	eat Glow Plug	IS			
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)				0.34 ± 0	0.05 (3.5 ± 0.5	i)			
21	Engine Oil Pan	Dipstick Upper Limit	l					7.4				
<u>د</u> ا	Capacity	Dipstick Lower Limit	l					3.4				
22	Engine Coo Capacity	olant	l				2.7 (E	Engine Only)				
23	Cooling Fa	n	mm			370 m	nm O.D., (6 Blade Push	er-Type			
24	Crank Pulle Fan Pulley		mm/mm	ø120 / ø90				ø110/ø	110			

Note: * Applies to basic models/versions and may vary depending on specific applications.

4TNV88-B/-Z (complies with EPA Interim Tier4)

	Eng	ine mode	9						41	NV88-B	/-Z					
		classifica		C	Ľ						VM					
1	Туре		_				١	/ertical,	4-cycle v	vater-co	oled dies	el engin	е			
2	Combustio system	n	_						Dir	ect injec	tion					
3	No. of cylin Bore × Stro		n – mm × mm						4	– 88 × 9	90					
4	Displaceme	ənt	l							2.190						
	Rated engi speed	ne	min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500	2600	2700	2800		3000
	Output	Cont. rating	kW	16.9	20.5											
5	(Gross) *1	Rated output	kW	18.5	22.5	24.6	25.9	27.1	28.4	29.7	31.0	32.3	33.6	35.0		36.9
	Output	Cont. rating	kW	16.4	19.6							-				
	(NET)	Rated output	kW	18.0	21.6	24.1	25.3	26.5	27.7	28.8	30.1	31.3	32.5	33.7		35.4
6	Maximum i speed	-	min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700	2810	2920	2995		3210
7	Specific fue consumption		g/kWh			-	≤2	45						≤252		
8	Exhaust ga	ıs temp.	°C (°F)	≤520 (968)	≤540 (1004)	≤560 (1040)	≤570 (1058)	≤580 (1076)	≤590 (1094)	≤600 (1112)	≤610 (1130)	≤620 (1148)	≤630 (1166)	≤640 (1184)		≤660 (1220)
9	Compressi	on ratio	—							19.1						
10	Diesel fuel injection pr	essure	MPa (kgf/cm ²)						19.6 ⁺	^{1.0} (20	0 ⁺¹⁰)					
11	Main shaft	side	—						Fly	/wheel s	ide					
12	Rotation di	rection	—							(Viewed			,			
13	Governor		—		Mecl	hanical g	governor	(All-spe	-			governo	r (All-spe	eed gove	rnor)	
14	Aspiration									ıral aspir						
15	Cooling sys		—							/pe cooli						
16	Lubricating	-						Force		tion with		pump				
17	Starting sy									ctric star	-					
18	Charging s	-	—							or (12 VI	,					
19	Starting aid		-					Su	per-quici	k Heating	g Glow p	lug				
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.34 ^{+0.1} -0.0	⁰ ₅ (3.5 ^{+1.0} _{-0.5})						0.10).05 (3. 8	8 ^{+1.0} _{-0.5})				
21	Oil pan capacity	Full Useful	l							7.4 3.4						
22	Engine Coo capacity	olant	l						2.7	(Engine o	only)					
23	Cooling far		mm					Push	er (resin)	, F type	- φ370(E	F) x 6				
24	dia. × No. of blades Crank V -pulley dia./ Fan V-pulley mm/mm dia.			φ12C)∕					φ	110/	0				

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV88-B 4TNV88-Z (Electronically controlled)

Ena	ine Model								4TNV8	8-B/4T	V88-Z				
Vers				c	L						VM				
1	Туре							Ve	rtical In	-line Die	sel Eng	ine			
2	Combustio	n System							Dire	ect Injec	tion				
3	No. of Cylir		n -						4	4 - 88~9	0				
	Bore x Stro		mm x mm								-				
4	Displaceme		ℓ min ⁻¹	1500	1000	0000	2100	0000	0000	2.189	0500	0600	0700	0000	200
	Engine Spe	ea Cont.	min	1500	1800	2000	2100	2200	2300	2400	2500	2600	2700	2800	300
	Power Output	Rating	kW	16.9	20.5		1	I		1		1			
5	(Gross) *1	Max. Rating	kW	18.5	22.5	24.6	25.9	27.1	28.4	29.7	31.0	32.3	33.6	35.0	36.
	Power Output	Cont. Rating	kW	16.4	19.6										
	(Net)	Max. Rating	kW	18.0	21.6	24.1	25.3	26.5	27.7	28.8	30.1	31.3	32.5	33.7	35.
6	High Idling		min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700	2810	2920	2995	321
7	Fuel Consu	umption	g/kWh				≤2	45						≤252	
8	Exhaust Temperatu	re	°C	≤520	≤540	≤560	≤570	≤580	≤590	≤600	≤610	≤620	≤630	≤640	≤6€
9	Compressi	on Ratio	_				•			19.1	•				1
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)						19.6	+1.0 0 (200	0 ⁺¹⁰)				
11	PTO Positi	on								wheel E					
12	Direction o	f Rotation									from fly				
13	Governor		—			Mecl	hanical (all-spee	d gover		ectronic	(all-spe	ed gove	ernor)	
14	Aspiration		—							Natural					
15	Cooling Sy		—								n Radiat				
16	Lubricating	-						Forced			Trocho	id Pump)		
17	Starting Sy									ctric Sta	-				
18	Charging S	-						Chargir	-		or (12VD				
19	Starting Aid								QUICK F	leat Glo	w Plugs				
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)						0.34 ±	0.05 (3.	5 ± 0.5)				
21	Engine Oil Pan	Dipstick Upper ℓ								7.4					
21	Capacity	Dipstick Lower Limit	l							3.4					
22	Engine Coo Capacity	olant	l						2.7 (Engine	Only)				
23	Cooling Fa	n	mm					370 m	m O.D.,	, 6 Blade	e Pushe	r-Type			
24	Crank Pulle Fan Pulley		mm/mm	ø120	/ø90					ø.	110/ø1	10			

Note: * Applies to basic models/versions and may vary depending on specific applications.

4TNV84T (complies with EPA Tier2)

	Enç	gine mode						4TNV84T				
	Engine	classifica	ation	C	Ľ				VM			
1	Туре		—			Vert	ical, 4-cycle	water-cool	ed diesel er	ngine		
2	Combustic system	'n	_				Dire	ect injection	(DI)			
3	No. of cylir Bore × Stre		n – mm × mm					4 – 84 × 90				
4	Displacem	ent	l					1.995				
	Rated eng speed	ine	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000
	Output	Cont. rating	kW	19.6	25.1							
5	(Gross)	Rated output	kW	21.8	27.7	28.5	31.2	34.3	35.5	36.7	39.9	
	Output	Cont. rating	kW	19.1	24.3							
	(NET)	Rated output	kW	21.3	26.9	27.9	30.5	33.5	34.5	35.7	38.6	
6	Maximum speed	_	min ⁻¹ ±25	1600	1895	2180	2400	2590	2700	2810	2995	3210
7	Specific fu consumpti		g/kWh		≤2	238		≤245	≤2	52	≤2	58
8	Exhaust ga	as temp.	°C (°F)	≤550 (1022)	≤560 (1040)	≤530 (986)	≤550 (1022)	:	≤570 (1058)	≤590 (1094)	≤630 (1166)
9	Compress	ion ratio	—					18.9				
10	Diesel fuel injection p		MPa (kgf/cm ²)	19.6 ^{+1.0}	(200 ₀ ⁺¹⁰)			21.6	+1.0 (220	+10 0)		
11	Main shaft	side	—				F	lywheel sid	е			
12	Rotation d	irection	_				terclockwise		-	-		
13	Governor		_			Mechani	cal centrifug			governor)		
14	Aspiration		_					charged asp				
15	Cooling sy						ed circulati					
16	Lubricating					Forced	lubrication			d pump		
17	Starting sy					A 14.		ectric starti	-	\		
18 19	Charging s					Alte	ernator (12 \ Air boat	er (12 VDC		ec.)		
19	Starting ai					1	Air neat					
20	Engine oil pressure	speed	MPa (kgf/cm ²)	0.343 ^{+0.0}	⁹⁸ (3.5 ^{+1.0} _{-0.5})				+0.098 -0.049 (4.2	2 ^{+1.0} -0.5		
21	Oil pan	Full	l i					7.4				
	capacity	Useful	l					3.4				
22	Engine Co capacity		l				3.2	2 (Engine or	ıly)			
23	Cooling fai dia. × No.	of blades	mm				Pusher	, F type – φ	370 × 6			
24	Crank V -p dia./ Fan V dia.		mm/mm					φ120 / φ90 φ110/ φ110				

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

4TNV84T-Z/-B (complies with EPA Interim Tier4)

	En	gine mode	.					4TNV84T-Z	Z/-B			
	Engine	e classifica	ition	С	Ľ				VM			
1	Туре		—				Vertical, 4-cyc	le water-coo	oled diesel er	ngine		
2	Combustion system	on	_					Direct inject	tion			
3	No. of cyli Bore × Str		n – mm × mm					φ84 × 90)			
4	Displacem	nent	l					1.995				
	Rated eng speed	gine	min ⁻¹	1500	1800			2400	2500	2700	2800	3000
	Output	Cont. rating	kW	19.6	25.1							
5	(Gross)	Rated output	kW	21.8	27.7			34.3	35.5	38.3	39.9	42.7
	Output	Cont. rating	kW	19.1	24.3							
	(NET)	Rated output	kW	21.3	26.9			33.5	34.5	37.1	38.6	41.2
6	Maximum speed	-	min ⁻¹ ±25	1600	1895			2590	2700	2850	2950	3150
7	Specific fu consumpt		g/kWh	≤2	38		≤245				52	
8	Exhaust g	as temp.	°C (°F)	≤560	(1040)			≤575 (1067)	≤580 (1076)	≤595 (1103)	≤600 (1112)	≤640 (1184)
9	Compress	ion ratio	_					18.9				
10	Diesel fue injection p		MPa (kgf/cm ²)				21.6	6 ^{+1.0} (22	20 ⁺¹⁰)			
11	Main shaf	t side	—					Flywheel s	ide			
12	Rotation c	lirection	—				Counterclockwi		-			
13	Governor		—		Mecl	hanical governo				ernor (All-spe	ed governo	r)
14	Aspiration		—					ocharged a				
15	Cooling sy	/stem	—					or type cooli				
16	Lubricatin		—				Forced lub	rication with	rochoid pum	р		
17	Starting sy		—					Electric star	-			
18	Charging	-	_					nator (12 VI	,			
19	Starting ai	-	_				Air he	ater (12 VD	C/400 W)			
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)	0.34 ^{+0.1} _{-0.0}	¹⁰ (3 ^{+1.0} _{-0.5})			0.41	+0.10 -0.05 (4.2 +1.0	')		
21	Oil pan capacity	Full Useful	l l			-		7.4				
22	Engine Co capacity		l				3	8.2 (Engine	only)			
23	Cooling fa dia. × No.		mm				Pusher (re	sin), F type	- φ370(EF) x	6		
24	Crank V -r dia./ Fan V dia.		mm/mm	φ120	ŀ∕			ф	110/ 110			

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV84T-Z

Eng	ine Model							4TN	IV84T	-Z			
Vers	sion			С	Ľ					VM			
1	Туре		_			•	Vei	rtical In-lir	ne Die	sel Engine			
2	Combustio	n System	_					Direct	t Injec	tion			
3	No. of Cylir Bore x Stro		n - mm x mm					Ø	34×90	I			
4	Displaceme	ent	l					1	.995				
	Engine Spe	ed	min ⁻¹	1500	1800			2	2400	2500	2700	2800	3000
	Power Output	Cont. Rating	kW	19.6	25.1			· ·					
5	(Gross) *1	Max. Rating	kW	21.8	27.7			;	34.3	35.5	38.3	39.9	42.7
	Power Output	Cont. Rating	kW	19.1	24.3					I I		1	
	(Net)	Max. Rating	kW	21.3	26.9			;	33.5	34.5	37.1	38.6	41.2
6	High Idling		min ¹ ±25	1600	1895			2	2550	2650	2850	2950	3150
7	Fuel Consu	umption	g/kWh	≤2	38		≤245				≤2	:52	
8	Exhaust Temperatu	re	°C	≤5	60			-	≤575	≤580	≤595	≤600	≤640
9	Compressi								18.9				
10	Fuel Injecti Pressure		MPa (kgf/cm ²)					21.6 ^{+1.} 0		-			
11	PTO Positi								heel E				
12	Direction o	f Rotation	—							from flywhe	,		
13	Governor		—			Electronic (a	ll-speed				-speed gove	ernor)	
14	Aspiration		—						ochar	·			
15	Cooling Sy		—							n Radiator			
16	Lubricating	-	—				Forced L			Trochoid P	ump		
17	Starting Sy		—					Electr					
18	Charging S	-	_					-		or (12VDC, 4	10A)		
19	Starting Aid		_				Ai	r Heater (12VD	C, 400W)			
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)	0.34 ^{+0.1}	⁰ (3 ^{+1.0} _{-0.5})				0.41	$^{0.10}_{0.05}$ (4.2 ^{+1.0})		
21	Engine Oil Pan	Dipstick Upper Limit	l						7.4				
21	Capacity	Dipstick Lower Limit	l						3.4				
22	Engine Coo Capacity	olant	l					3.2 (Er	ngine (Only)			
23	Cooling Fa		mm				370 m	m O.D., 6	Blade	e Pusher-Ty	ре		
24	Crank Pulle Fan Pulley		mm/mm	ø120	/ø90				ø1	110/ø110			

Note: * Applies to basic models/versions and may vary depending on specific applications.

4TNV94L (complies with EPA Tier2)

	Enç	gine mode					4TN	V94L			
	Engine	classifica	ation	C)L			V	М		
1	Туре		_			Vertical,	4-cycle wate	r-cooled dies	el engine		
2	Combustic system		—				Direct inje	ection (DI)			
3	No. of cylir Bore × Stro		n – mm × mm				4 – 94	× 110			
4	Displacem		l				3.0	53			
	Rated eng speed		min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500
	Output	Cont. rating	kW	26.4	31.7						
5	(Gross)	Rated output	kW	29.3	35	35.9	37.4	39	40.5	42.4	44
	Output	Cont. rating	kW	26.1	31.3						
	(NET)	Rated output	kW	29.1	34.6	35.3	36.8	38.2	39.7	41.6	43
6	Maximum speed	-	min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700
7	Specific fu consumpti		g/kWh			≤231				≤238	
8	Exhaust ga	as temp.	°C (°F)	≤590	(1094)	≤580 (1076)	≤590 (1094)	≤600 (1112)	≤610 (1130)	≤620 (1148)	≤640 (1184)
9	Compress	ion ratio	—				1	9			
10	Diesel fuel injection p		MPa (kgf/cm ²)				21.6 ^{+1.0} ₀	(220 ⁺¹⁰ ₀)			
11	Main shaft	side					Flywhe				
12	Rotation d	irection	—				ockwise (Viev		,		
13	Governor		—			Mechanical c			eed governoi	r)	
14	Aspiration		—				Natural a				
15	Cooling sy		—				rculation rac				
16	Lubricating		—			Forced lubr	ication with m	-	choid pump		
17	Starting sy		—				Electric	-			
18	Charging s	-	—				or (12 VDC/4	-	• •		
19	Starting aid	1	—				Air heater (12	VDC/500 W)		
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)				0.34 ± 0.05	(3.5 ± 0.5)			
21	Oil pan capacity	Full Useful	l).5 .5			
22	Engine Co capacity		l l				4.2 (Eng				
23	Cooling fai dia. × No.	n type – of blades	mm				Pusher, F typ	be – φ410 × 6	;		
24	Crank V -p dia./ Fan V dia.	ulley	mm/mm				φ 1 30 /	[/]			

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

4TNV98 (complies with EPA Tier2)

	Eng	gine mode					4TN	V98			
	Engine	classifica	ition	C)L			V	Μ		
1	Туре		—			Vertical,	4-cycle water	-cooled dies	el engine		
2	Combustic system	'n	_				Direct inje	ection (DI)			
3	No. of cylir Bore x Stro		n – mm x mm				4 – 98	x 110			
4	Displacem		l				3.3	19			
	Rated eng speed	ine	min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500
	Output	Cont. rating	kW	31.2	37.2						
5	(Gross)	Rated output	kW	34.9	41.6	42.5	44.4	46.3	48.2	50.2	52.1
	Output	Cont. rating	kW	30.9	36.8						
	(NET)	Rated output	kW	34.6	41.2	41.9	43.8	45.6	47.4	49.3	51.1
6	Maximum speed		min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700
7	Specific fu consumpti		g/kWh			≤231				≤238	
8	Exhaust ga	as temp.	°C (°F)	≤600	(1112)	≤590 (1094)	≤600 (1112)	≤610 (1130)	≤620 (1148)	≤630 (1166)	≤650 (1202)
9	Compress	ion ratio	_				18	.5			
10	Diesel fuel injection p		MPa (kgf/cm ²)				21.6 ^{+1.0} ₀	(220 ⁺¹⁰ ₀)			
11	Main shaft						Flywhe				
12	Rotation d	irection	—				ockwise (View		,		
13	Governor				I	Mechanical ce			eed governoi	·)	
14	Aspiration		—				Natural a	•			
15	Cooling sy						irculation rac				
16	Lubricating		—			Forced lubri	cation with m	-	choid pump		
17	Starting sy		—				Electric	-			
18	Charging s						or (12 VDC/4				
19	Starting a	1	— MDa			/	Air heater (12	VDC/500 W)		
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)				0.34 ± 0.05	. ,			
21	Oil pan	Full	l				10				
22	capacity Engine Co capacity	Useful olant	l				4. 4.2 (Eng				
23	Cooling fai dia. × No.		mm				Pusher, F typ	e – φ410 x θ	3		
24	Crank V -p dia./ Fan V dia.		mm/mm				φ130 <i>/</i>	′φ130			

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

4TNV98-E (complies with EPA Interim Tier4)

	Enç	gine mode				4TN\	/98-E			
	Engine	classifica	ation	CL			V	M		
1	Туре		_		· Vertical,	4-cycle wate	r-cooled dies	el engine		
2	Combustic system		_			Direct i	njection			
3	No. of cylir Bore x Stro		n – mm x mm			4 – 98	x 110			
4	Displacem		l			3.3	319			
	Rated eng speed	ine	min ⁻¹			2100	2200	2300	2400	2500
	Output	Cont. rating	kW							
5	(Gross)	Rated output	kW			37.4	39.0	40.5	42.4	44.0
	Output	Cont. rating	kW					1	1	
	(NET)	Rated output	kW			36.8	38.2	39.7	41.6	43.0
6	Maximum speed	-	min ⁻¹ ±25			2250	2350	2400	2550	2650
7	Specific fu consumpti		g/kWh		≤2				≤2	231
8	Exhaust ga	as temp.	°C (°F)			≤610 (1130)	≤620 (1148)	≤630 (1166)	≤640 (1184)	≤650 (1202)
9	Compress	ion ratio	—			18	8.5			
10	Diesel fuel injection p		MPa (kgf/cm ²)			21.6 ^{+1.0} ₀	(220 ⁺¹⁰ ₀)			
11	Main shaft		_			Flywhe				
12	Rotation d	irection				ockwise (Viev				
13	Governor		—		Mechan	ical governor		overnor)		
14	Aspiration		—			Natural a	•			
15	Cooling sy		—			adiator type c				
16	Lubricating	-	—		Force	d lubrication		pump		
17	Starting sy		_			Electric	-			
18	Charging s		_			Alternator (1				
19	Starting ai	1	—		/	Air heater (12	VDC/500 W)		
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)			0.34 ± 0.05	(3.5 ± 0.5)			
21	Oil pan	Full	l				0.2			
	capacity	Useful	l			4	.5			
22	Engine Co capacity		l			4.2 (Eng	ine only)			
23	Cooling fai dia. × No.	of blades	mm		Push	er (resin), F t	ype -	l) x 6		
24	Crank V -p dia./ Fan V dia.		mm/mm			φ130 <i>,</i>	[/]			

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV98-E

Eng	ine Model					4TN\	/98-E			
Vers	sion			CL			V	M		
1	Туре		_		Ve	ertical In-line	Diesel Engir	ne		
2	Combustio	n System	_			Direct I	njection			
3	No. of Cylin Bore x Stro		n - mm x mm			4 - 98	3~110			
4	Displacem		l			3.3	318			
	Engine Sp		min ⁻¹			2100	2200	2300	2400	2500
	Power Output	Cont. Rating	kW							
5	(Gross) *1	Max. Rating	kW			37.4	39.0	40.5	42.4	44.0
	Power Output	Cont. Rating	kW				I	I	I	1
	(Net)	Max. Rating	kW			36.8	38.2	39.7	41.6	43.0
6	High Idling		min ⁻¹ ±25			2290	2400	2510	2590	2700
7	Fuel Consi	umption	g/kWh		≤22	24	1	1	≤2	31
8	Exhaust Temperatu	re	°C			≤610	≤620	≤630	≤640	≤650
9	Compressi	on Ratio	_			18	3.5			
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)			21.6 ^{+1.0}	(220 ⁺¹⁰ ₀)			
11	PTO Positi	on	-			Flywhe	eel End			
12	Direction o	f Rotation	-				wed from flyv			
13	Governor		-		Ele	ctronic (all-s	speed govern	or)		
14	Aspiration		—			Nat	ural			
15	Cooling Sy	stem	—		L	iquid-cooled	with Radiato	or		
16	Lubricating	System	-		Forced	Lubrication	with Trochoid	d Pump		
17	Starting Sy	rstem	-			Electric	Starting			
18	Charging S	System	—		Charging	y with Alterna	ator (DC12VI	DC, 40A)		
19	Starting Ai	b	_		P	vir Heater (12	2VDC, 500W)		
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)			0.34 ± 0.05	5 (3.5 ± 0.5)			
21	Engine Oil Pan	Dipstick Upper Limit	l			10).2			
21	Capacity	Dipstick Lower Limit	l			4	.5			
22	Engine Co Capacity	olant	l			4.2 (Eng	ine Only)			
23	Cooling Fa	n	mm		410 n	nm O.D., 6 E	Blade Pusher	-Туре		
24	Crank Pulle Fan Pulley		mm/mm			ø130	/ø130			

Note: * Applies to basic models/versions and may vary depending on specific applications.

4TNV98-Z (complies with EPA Interim Tier4)

	Eng	gine mode					4TN\	/98-Z			
	Engine	classifica	ation	C	L			V	М		
1	Туре		_			Vertical,	4-cycle wate	r-cooled dies	el engine		
2	Combustio system		_				Direct i	njection			
3	No. of cylir Bore x Stro		n – mm x mm				4 – 98	x 110			
4	Displacem		l				3.3	319			
	Rated engi speed		min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500
	Output	Cont. rating	kW	31.2	37.2						
5	(Gross)	Rated output	kW	34.9	41.6	42.5	44.4	46.3	48.2	50.2	52.1
	Output	Cont. rating	kW	30.9	36.8						
	(NET)	Rated output	kW	34.6	41.2	41.9	43.8	45.6	47.4	49.3	51.1
6	Maximum i speed	-	min ⁻¹ ±25	1530	1830	2150	2250	2350	2450	2550	2650
7	Specific fuel g/kWh					≤2	24			≤2	31
8	Exhaust gas temp. °C (°F)			≤580 (1076)	≤600 (1112)	≤600 (1112)	≤610 (1130)	≤620 (1148)	≤630 (1166)	≤640 (1184)	≤650 (1202)
9	Compressi	ion ratio	—				18	3.5			
10	Diesel fuel injection pi		MPa (kgf/cm ²)				21.6 ^{+1.0} ₀	(220 ⁺¹⁰ ₀)			
11	Main shaft		_				Flywhe				
12	Rotation di	irection					ockwise (Viev		,		
13	Governor					Mechan	ical governor		overnor)		
14	Aspiration		_					aspiration			
15	Cooling sy						adiator type o				
16	Lubricating	-	_			Force	d lubrication		pump		
17	Starting sy		—				Electric				
18	Charging s	-	—				Alternator (1				
19	Starting ai	1					Air heater (12	2 VDC/500 W)		
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)				0.34 ± 0.05	. ,			
21	Oil pan capacity	Full Useful	l).2 .5			
22	Engine Co capacity		c l				4.2 (Eng				
23	Cooling far	n type – of blades	mm			Push	er (resin), F t	type -	l) x 6		
24	dia. × No. of blades mm Crank V -pulley dia./ Fan V-pulley mm/mm dia.						φ 1 30	/ ¢130			

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

4TNV98-Z

Engi	ine Model						4TN	/98-Z			
Vers	sion			C	Ľ			V	Μ		
1	Туре		_			' v	ertical In-line	Diesel Engi	ne		
2	Combustio	n System	_				Direct I	njection			
3	No. of Cylir Bore x Stro		n - mm x mm				4 - 98	3~110			
4	Displaceme	ənt	l				3.3	318			
	Engine Spe	ed	min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500
	Power Output	Cont. Rating	kW	31.2	37.2				•		•
5	(Gross) *1	Max. Rating	kW	34.9	41.6	42.5	44.4	46.3	48.2	50.2	52.1
	Power Output	Cont. Rating	kW	30.9	36.8						
	(Net)	Max. Rating	kW	34.6	41.2	41.9	43.8	45.6	47.4	49.3	51.1
	High Idling		min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700
7	Fuel Consu	umption	g/kWh		1	≤2	24			≤2	31
8	Exhaust Temperatu	re	°C	≤580	≤600	≤600	≤610	≤620	≤630	≤640	≤650
9	Compressi		—				18	3.5			
10	Fuel Injecti Pressure	on	MPa (kgf/cm ²)				21.6 ^{+1.0}	(220 ⁺¹⁰)			
11	PTO Positi	on	—				Flywhe	eel End			
12	Direction of	f Rotation	—				ockwise (vie				
13	Governor		—			El	ectronic (all-s	speed govern	ior)		
14	Aspiration		—					tural			
15	Cooling Sy		—				_iquid-cooled				
16	Lubricating	-	—			Forced	Lubrication		d Pump		
17	Starting Sy		—					Starting			
18	Charging S	-	_			-	ing with Alter				
19	Starting Aid		_				Air Heater (1	2VDC, 500W	/)		
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)				0.34 ± 0.05	5 (3.5 ± 0.5)			
21	Engine Oil Pan	Dipstick Upper ℓ Limit					10	0.2			
21	Capacity	Dipstick Lower Limit	l				4	.5			
22	Engine Coo Capacity	olant	l				4.2 (Eng	ine Only)			
23	Cooling Fa		mm			410	mm O.D., 6 E	Blade Pusher	-Туре		
24	Crank Pulle Fan Pulley		mm/mm				ø130	/ø130			

Note: * Applies to basic models/versions and may vary depending on specific applications.

4TNV98T (complies with EPA Tier2)

Engine model			4TNV98T									
Engine classification			CL VM									
1 Type —				Vertical, 4-cycle water-cooled diesel engine								
2	Combustio system	'n	—				Direct inje	ection (DI)				
3	No. of cylir Bore x Stro		n – mm x mm				4 – 98	x 110				
4	Displacem	ent	l			_	3.3	319				
	Rated engi speed	ine	min ⁻¹	1500	1800	2000	2100	2200	2300	2400	2500	
	Output	Cont. rating	kW	38.2	46.2							
5	(Gross)	Rated output	kW	42.3	51.0	51.6	54.1	56.6	59.2	61.8	64.1	
	Output	Cont. rating	kW	37.9	45.6							
	(NET)	Rated output	kW	41.9	50.4	50.7	53.2	55.5	58.0	60.3	62.5	
6	Maximum i speed	-	min ⁻¹ ±25	1600	1895	2180	2290	2400	2510	2590	2700	
7	Specific fuel g/kWh			≤238					≤245			
8	Exhaust gas temp.		°C (°F)	≤580	(1076)	≤560 (1040)	≤570 (1058)	≤580 (1076)	≤590 (1094)	≤600 (1112)	≤620 (1148)	
9	Compressi	on ratio		18.1								
10	Diesel fuelMPainjection pressure(kgf/cm²)			21.6 $^{+1.0}_{0}$ (220 $^{+10}_{0}$)								
11	Main shaft		—	Flywheel side								
12	Rotation di	rection	—	Counterclockwise (Viewed from flywheel side)								
13	Governor		—	Mechanical centrifugal governor (All-speed governor)								
14	Aspiration		—	Turbocharged aspiration								
15	Cooling sy		—	Force-feed circulation radiator type cooling system								
16	Lubricating		—	Forced lubrication with multi-stage trochoid pump								
17	Starting sy		—	Electric starting								
18	Charging s		—	Alternator (12 VDC/40 A, Standard spec.)								
19	Starting aid		—			1	Air heater (12	2 VDC/500 W	/)			
20	Engine oil pressure	Rated speed	MPa (kgf/cm ²)		$0.34 \pm 0.05 \; (3.5 \pm 0.5)$							
21	Oil pan	Full	l).5				
	capacity Useful		l	4.5								
22	Engine Coolant capacity		l	4.2 (Engine only)								
23	Cooling fan type – dia. × No. of blades m		mm				Pusher, F ty	ce - φ430 × 8	3			
24	24 dia./ Fan V-pulley dia.a.			φ130 / φ130								

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

4TNV98T-Z (complies with EPA Tier3)

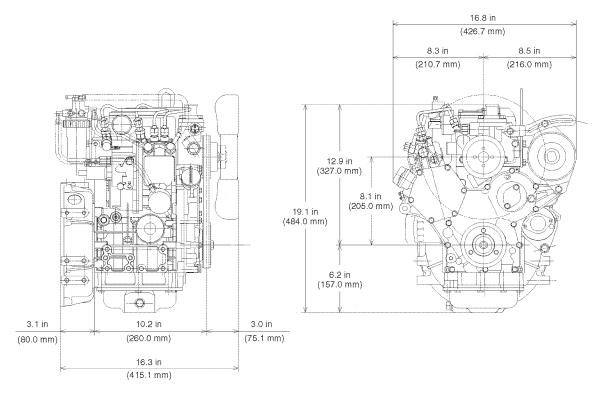
Engine model			4TNV98T-Z								
Engine classification			CL VM								
1 Type —				Vertical, 4-cycle water-cooled diesel engine							
2	Combustio system	'n	_	Direct injection							
3	No. of cylir Bore x Stro		n – mm x mm			4 – 9	8 x 110				
4	Displacem	ent	l			3	.319				
	Rated eng speed		min⁻¹	1500	1800		2200	2300	2400	2500	
	Output	Cont. rating	kW	38.2	46.2						
5	(Gross)	Rated output	kW	42.3	51.0		56.6	59.2	61.8	64.1	
	Output	Cont. rating	kW	37.9	45.6						
	(NET)	Rated output	kW	41.9	50.4		55.5	58.0	60.3	62.5	
6	Maximum idling speed min ⁻¹ ±2		min ⁻¹ ±25	1530	1830		2350	2450	2550	2650	
7	Specific fuel g/kWh consumption		≤231			≤2	≤231		35		
8	Exhaust gas temp.		°C (°F)	≤620 (1148)	≤620 (1148)		≤610 (1130)	≤620 (1148)	≤625 (1157)	≤630 (1166)	
9	Compressi	ion ratio	_	18.1							
10	Diesel fuel MPa injection pressure (kgf/cm ²)			21.6 $^{+1.0}_{0}$ (220 $^{+10}_{0}$)							
11	Main shaft	side		Flywheel side							
12	Rotation di	rection	_	Counterclockwise (Viewed from flywheel side)							
13	Governor		—	Mechanical governor (All-speed governor)							
14	Aspiration		_	Turbocharged aspiration							
15	Cooling sy		_	radiator type cooling system							
16	Lubricating			Forced lubrication with rochoid pump							
17	Starting sy			Electric starting							
18 19	Charging s Starting aid	-		Alternator (12 VDC/40 A) Air heater (12 VDC/400 W)							
	Engine oil	Rated	 MPa					()			
20	pressure	speed	(kgf/cm ²)	0.34 ± 0.05 (3.5 ± 0.5)							
21	Oil pan	Full	l				0.2				
22	Engine Coolant		4.5 4.2 (Engine only)								
23	Cooling fan typo		mm	Puller (resin), F type -							
24	Crank V -pulley			φ130 / φ130							

Note: The above table shows the specification of a base model.

The net power rating may be different in each individual model depending on the type of applications.

A blank column indicates that there is no setting.

4TNV98T-Z

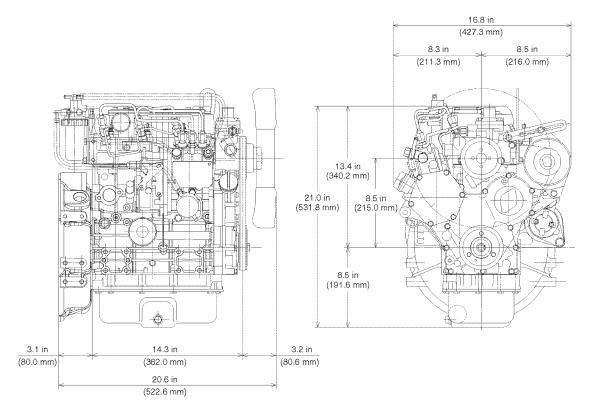

Engine Model			4TNV98T-Z										
Version			CL VM										
1 Type —				Vertical In-line Diesel Engine									
2	Combustio	n System	_				Direct Ir	ijection					
3	No. of Cylii Bore x Stro		n - mm x mm				4 - 98	~110					
4	Displacem	ent	l				3.3	18					
	Engine Spe	ed	min ⁻¹	1500									
	Power Output	Cont. Rating	kW	38.2	46.2								
5	(Gross) *1	Max. Rating	kW	42.3	51.0			56.6	59.2	61.8	64.1		
	Power Output	Cont. Rating	kW	37.9	45.6						Γ		
	(Net)	Max. Rating	kW	41.9	50.4			55.5	58.0	60.3	62.5		
6	High Idling		min ⁻¹ ±25	1600	1895			2350	2450	2550	2650		
7	Fuel Consu	umption	g/kWh	≤2	31			≤2	31	≤2	35		
8	Exhaust Temperature		°C	≤620	≤620			≤610	≤620	≤625	≤630		
9	Compressi	on Ratio	—				18	.1					
10	Fuel Injection Pressure		MPa (kgf/cm ²)	21.6 ^{+1.0} ₀ (220 ⁺¹⁰ ₀)									
11	PTO Position —		_	Flywheel End									
12	Direction of Rotation		_	Counterclockwise (viewed from flywheel end)									
13	Governor		—	Electronic (all-speed governor)									
14	Aspiration		—	Turbocharged									
15	Cooling Sy	stem	—	Liquid-cooled with Radiator									
16			—	Forced Lubrication with Trochoid Pump									
17	Starting Sy		—	Electric Starting									
18	Charging S		—	Charging with Alternator (12VDC, 40A)									
19	Starting Aid		_	Air Heater (12VDC, 500W)									
20	Engine Oil Pressure	Rated Speed	MPa (kgf/cm ²)				0.34 ± 0.05	(3.5 ± 0.5)					
01	Engine Oil Pan	Dipstick Upper Limit	l				10	.2					
21	Capacity	Dipstick Lower Limit	l				4.	5					
22	Engine Coolant Capacity		l				4.2 (Engi	ne Only)					
23	Cooling Fa	n	mm			430 mr	m O.D., 8 Bl	ade Suction	-Туре				
24	Crank Pulley Dia /		mm/mm				ø130/	ø130					

Note: * Applies to basic models/versions and may vary depending on specific applications.

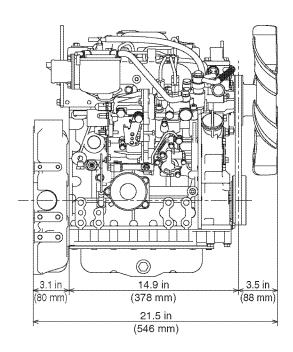

DIMENSIONS

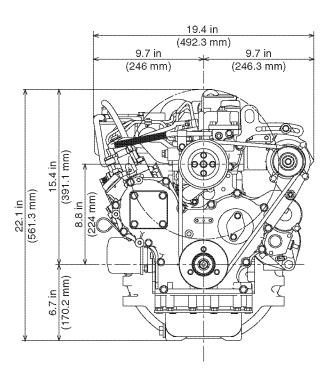
IDI Series

2TNV70



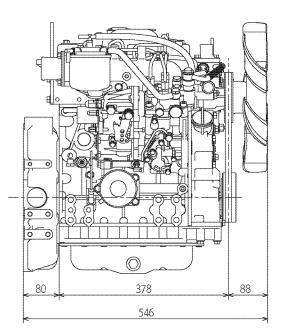
3TNV70

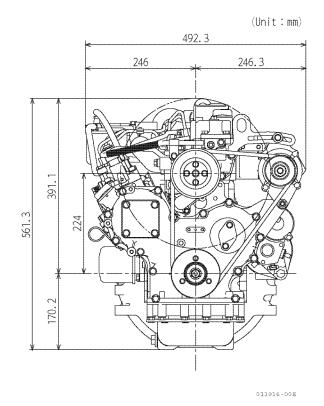



3TNV76

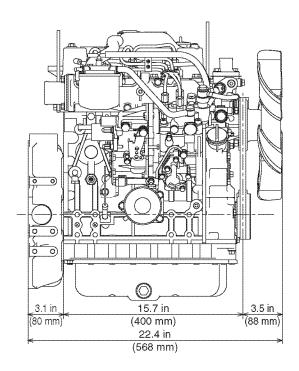
DI Series

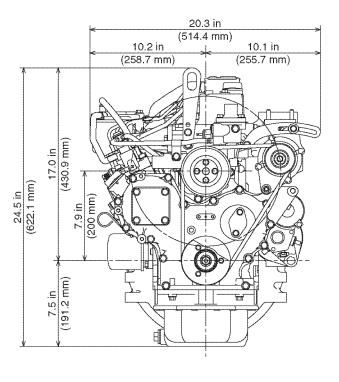
3TNV82A/3TNV82A-B

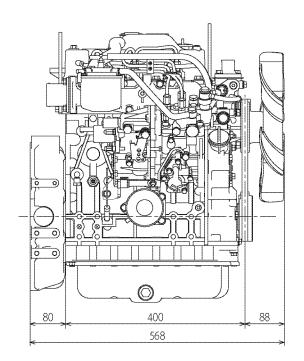


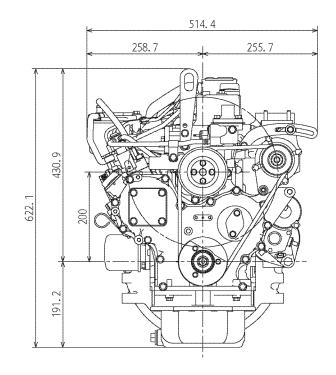


013916-00X

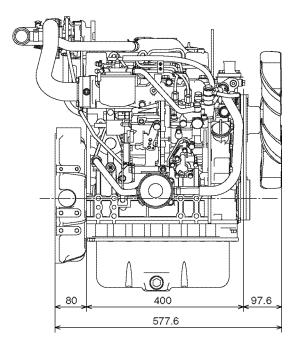


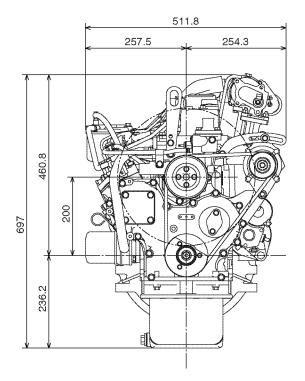

3TNV82A-B 3TNV82A-Z (Electronically controlled)


3TNV84/3TNV88/3TNV88-U/3TNV88-B

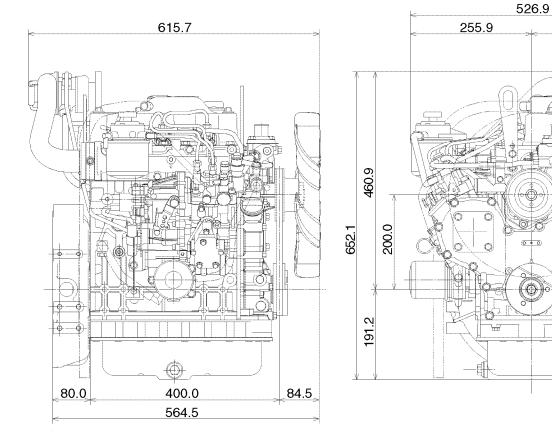


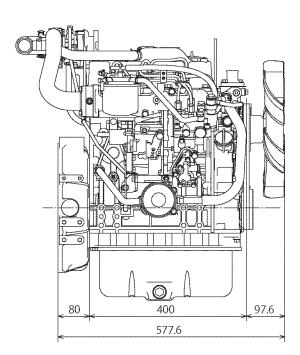
013918-00X


3TNV88-U/3TNV88-B 3TNV88-E/3TNV88-Z (Electronically controlled)



013918-00J


3TNV84T-B




015977-00E

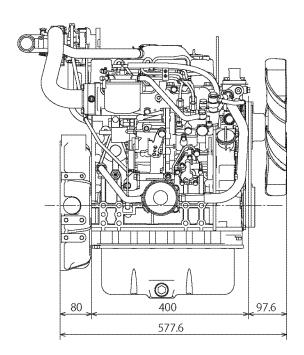
3TNV84T

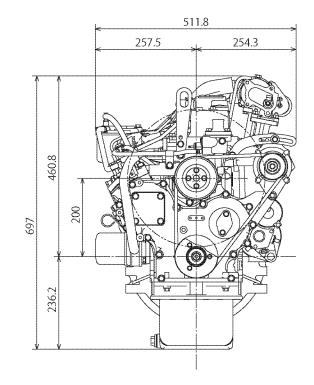
3TNV84T-Z

253.2

EQ520

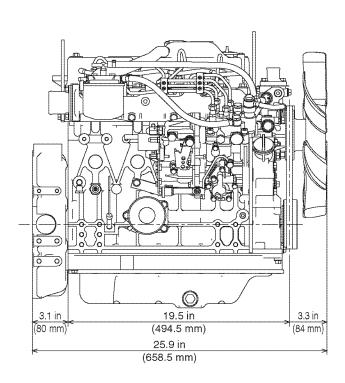
٢

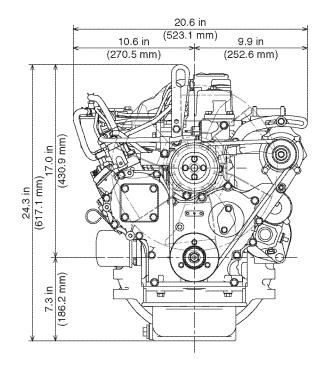

41


ΝÖ

0

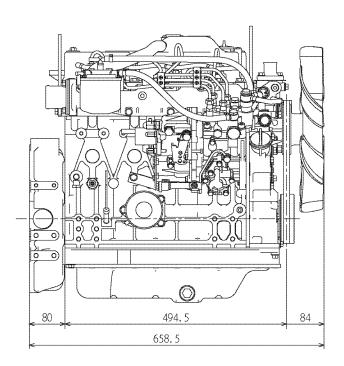
Ē

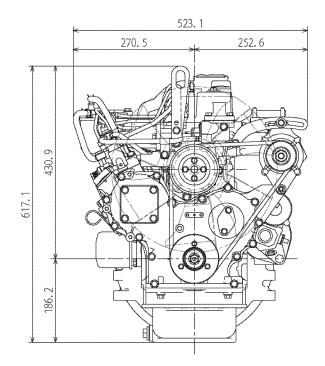

3TNV84T-Z



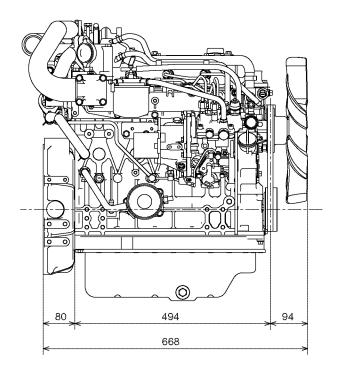
015977-00X

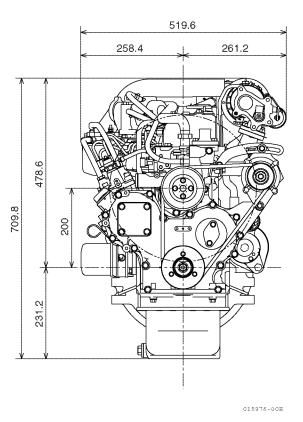
4TNV84/4TNV88/4TNV88-U/4TNV88-B



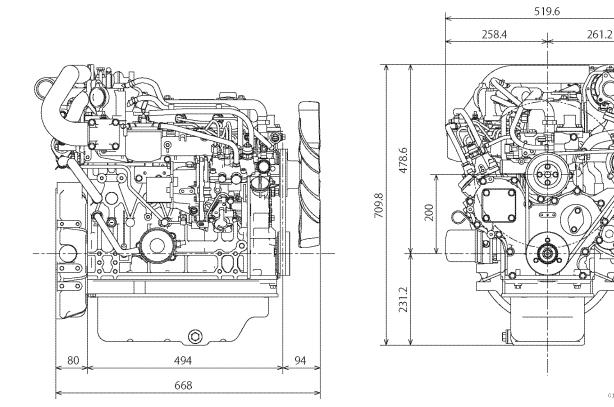


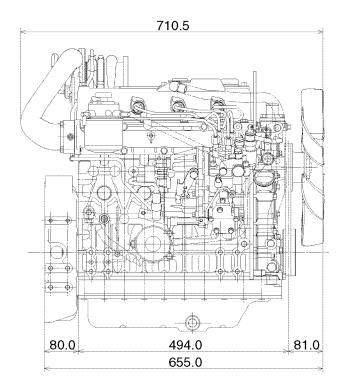
013919-00X

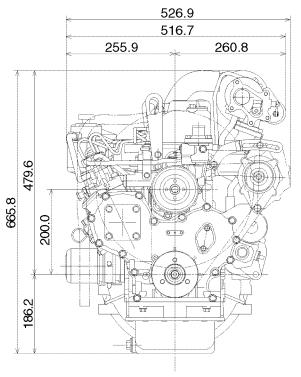

4TNV88-U/4TNV88-B 4TNV88-E/4TNV88-Z (Electronically controlled)



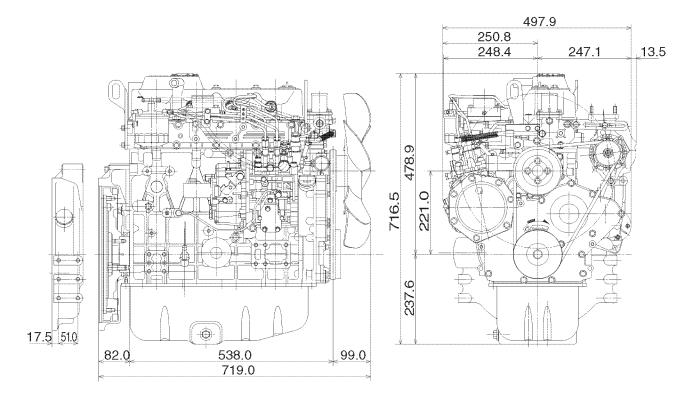
013919-00J


4TNV84T-Z

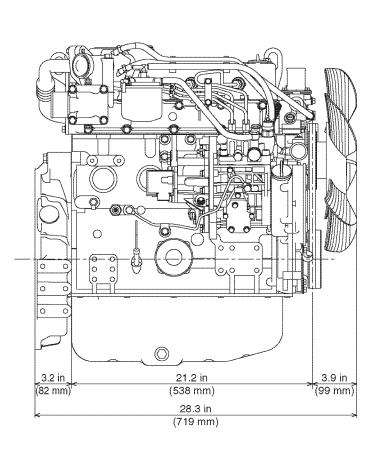

4TNV84T-Z

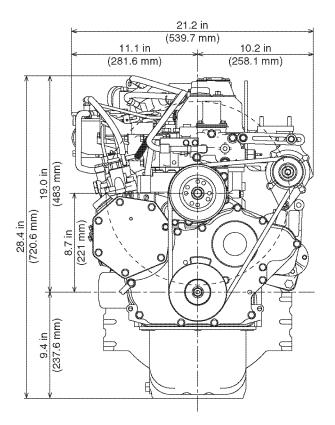


015978-00X

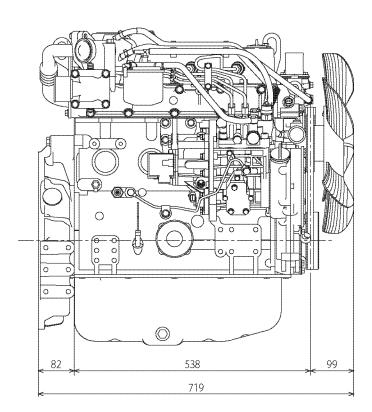

6

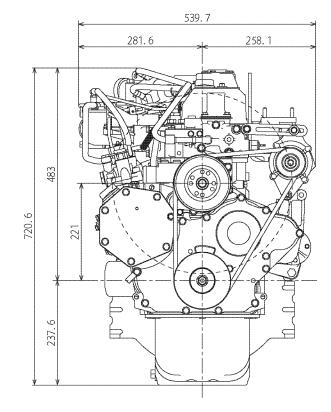
4TNV84T



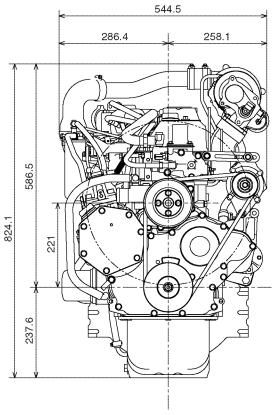


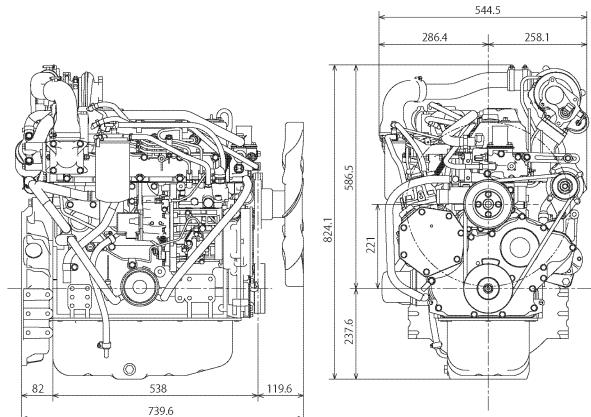
4TNV94L/4TNV98


4TNV98-E/4TNV98-Z

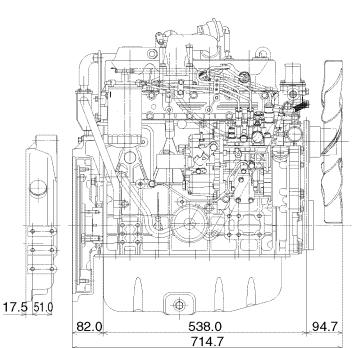


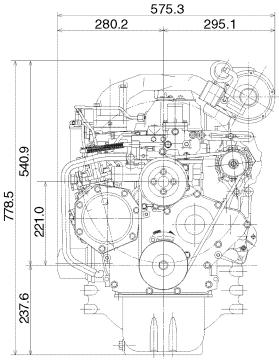
013917-00X


4TNV98-E/4TNV98-Z



4TNV98T-Z




4TNV98T-Z (Conforming to EPA Tier 3 Standards)

015979-00X

4TNV98T

Section 4

CORRECTING OBSERVED POWER

Page

Power Corrections
Correction Formula (A) 4-4
Correction Formula (B) 4-8
Corrections for Reducing Exhaust Smoke Density at
Altitude 4-10
Atmospheric Pressure Calculation for Change in Altitude 4-11
Atmospheric Temperature Calculation for Change in Altitude 4-11
Relationships among Altitude, Atmospheric Pressure and
Atmospheric Temperature 4-11
How to Obtain Relative Humidity by Dry and Wet-Bulb
Thermometer 4-12
Relationship between Atmospheric Temperature and
Saturation Vapor Pressure 4-12
Altitude Characteristics
Reduction of Output 4-13
Reduction of Torque-rise (Reduction of Maximum Torque) 4-13
Startability at Each Altitude 4-14
Exhaust White Smoke 4-14
Misfire at High Altitude 4-14
Others 4-14

This Page Intentionally Left Blank

as atmospheric pressure):

Engine output basically depends on the oxygen concentration in the air, which varies with atmospheric conditions such as atmospheric pressure, atmospheric temperature and relative humidity.

When discussing engine output, it is important to specify the atmospheric conditions. Conversely, the maximum level of engine output at a given atmospheric pressure, atmospheric temperature and relative humidity are also important when considering the engine application.

The output correction formula shows the relationship between atmospheric conditions and the engine output.

Also note the applicable formula varies with the degree of difference between actual and standard conditions. The concept and formulas are the same in the JIS and ISO.

In addition, the estimated value of output reduction which is determined by the correction formulas tends to be higher compared to the actual measurement value. The possible causes for this difference can be the variables which are not included in the correction formulas, such as changes in combustion temperature or fan loss.

POWER CORRECTIONS

The following two power correction formulas are provided for selection according to the actual or specified atmospheric conditions:

• Use the power correction formula (A) in *Correction Formula (A) on page 4-4* when atmospheric conditions are judged to be relatively close to standard conditions:

Standard atmospheric conditions:

Engine intake air temperature: 10 to 40°C (50 to 104°F)

25°C (77°F)	Dry intake air pressure
100 kPa (750 mmHg)	(may simply be regarded as atmos
30%	80 to 110 kPa (600 to 825 mmHg)
	(at 2,000 m or less in altitude)

Correction factor *k*: 0.9 to 1.1 [See calculation in *Obtain correction factor k. on page 4-6.*]

• Use the power calculation formula (B) in *Correction Formula (B) on page 4-8* when atmospheric conditions are much different from standard atmospheric conditions.

Correction Formula (A)

Use correction formula (A) when the actual test conditions are judged to be relatively close to the standard atmospheric conditions.

- 1. Obtain atmospheric factor f_a . This factor is calculated by the two formulas shown below depending on whether a turbocharger is used.
 - (a) For a naturally aspirated engine

$$f_{a} = \left(\frac{\mathsf{P}_{\mathsf{r}} - \phi_{\mathsf{r}} \bullet \mathsf{P}_{\mathsf{sr}}}{\mathsf{P}_{\mathsf{x}} - \phi_{\mathsf{x}} \bullet \mathsf{P}_{\mathsf{sx}}}\right) \left(\frac{\mathsf{T}_{\mathsf{x}}}{\mathsf{T}_{\mathsf{r}}}\right) 0.7$$

(b) For a turbocharged engine

$$f_a = \left(\frac{\mathsf{P}_r - \phi_r \bullet \mathsf{P}_{sr}}{\mathsf{P}_x - \phi_x \bullet \mathsf{P}_{sx}}\right) \left(\frac{\mathsf{T}_x}{\mathsf{T}_r}\right)^{0.7} \left(\frac{\mathsf{T}_x}{\mathsf{T}_r}\right)^{1.5}$$

Subscript r represents the value under standard atmospheric conditions, and x the value under actual test conditions.

Pr	:	Standard atmospheric pressure	100 kPa (750 mmHg)
Φ_r	:	Relative humidity under standard atmospheric conditions	0.30 (30%)
Τ _r	:	Intake air temperature under atmospheric standard conditions	298 K (25°C [77°F])
P _{sr}	:	Saturation vapor pressure under standard atmospheric conditions	3.172 kPa (23.80 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)
P _x	:	Atmospheric pressure under actual test conditions	kPa (mmHg)
$\Phi_{\mathbf{X}}$:	Relative humidity under actual test conditions	%
Τ _x	:	Intake air temperature under actual test conditions	K (°C)
P _{sx}	:	Saturation vapor pressure under actual test conditions	kPa (mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)

Pay attention to the unit of each value in actual calculation.

If kPa is used for standard atmospheric pressure P_r, all of P_{sr}, P_x and P_{sx} must also be expressed in kPa. Similarly when mmHg is used, all other pressures must be expressed in mmHg.

Always use absolute temperature in K [Kelvin without degrees (x)] for representing the intake air temperatures T_r and T_x . The relationship between °C on ordinary thermometers- meters and absolute temperature K is as follows:

K = 273 + °C

Obtain e Engine f point is l consum

Obtain engine factor fm

Engine factor f_m for each engine should be calculated in a matching test for which high precision is required. In most cases the important point is how the rated output changes under the actual test conditions. Estimate the f_m using the output and empirical average fuel consumption derived from the Engine Factor: f_m at Rated Output of TNV Engines' table.

	Engine Factor: <i>f_m</i> at Rated Output of TNV Engines													
		Rated speed, min ⁻¹												
Model	For industrial use											For generators		
	2000	2200	2400	2500	2600	2800	3000	3200	3400	3600	1500	1800	3000	3600
2TNV70	0.516	0.539	0.591	0.601	0.593	0.63	0.69	0.598	0.584	0.591			0.389	0.456
3TNV70	0.473	0.496	0.541	0.545	0.55	0.582	0.605	0.563	0.591	0.573	0.323	0.325	0.402	0.507
3TNV76	0.446	0.518	0.513	0.526	0.533	0.585	0.605	0.548	0.624	0.549	0.287	0.294	0.294	0.393
3TNV82A	0.426	0.427	0.444	0.455	0.487	0.515	0.551				0.2	0.254		
3TNV84	0.36	0.391	0.44	0.458	0.47	0.52	0.531				0.232	0.274		
3TNV88	0.386	0.407	0.432	0.459	0.472	0.471	0.487				0.256	0.296		
3TNV84T			0.2	0.2	0.2	0.2	0.2				0.2	0.2		
4TNV84	0.381	0.402	0.416	0.449	0.456	0.482	0.503				0.234	0.244		
4TNV88	0.412	0.431	0.432	0.437	0.437	0.456	0.464				0.2	0.218		
4TNV84T	0.2	0.2	0.2	0.2	0.2	0.2	0.2				0.2	0.2		
4TNV94L	0.323	0.28	0.236	0.264							0.268	0.295		
4TNV98	0.481	0.471	0.501	0.501							0.432	0.464		
4TNV98T	0.2	0.2	0.2	0.2							0.286	0.2		

CORRECTING OBSERVED POWER

2. Obtain correction factor *k*.

 $k = f_{a}^{fm}$

Proceed with the calculation if the value of k satisfies the condition 0.9 < k < 1.1.

3. Obtain the corrected output under the actual test conditions as follows:

 $P = P_0 / k$

- P₀ : Rated output under standard atmospheric (kW) conditions
- P : Output under actual test conditions (kW)
- k : Correction factor

Example:

The rated output of the 3TNV88 engine under standard atmospheric conditions is 27.1 kW at $3,000 \text{ min}^{-1}$.

What will be the output under actual test conditions of 98 kPa (approximately 200 m), intake air temperature of 313K ($40^{\circ}C$ [$104^{\circ}F$]), atmospheric temperature of 309K ($36^{\circ}C$ [$96.8^{\circ}F$)) and relative humidity of 40%?

First determine the power correction formula to be applied according to *Correction Formula (A) on page 4-4* or *Correction Formula (B) on page 4-8*.

Since the engine intake air temperature and atmospheric pressure are in the ranges of 10 to 40°C and 80 to 110 kPa, respectively, the correction formula (A) in *Correction Formula (A) on page 4-4* applies.

The atmospheric temperature is not taken into consideration in selecting the power correction formula to be applied.

Pr	:	Standard atmospheric pressure	100kPa (750 mmHg}
F _r	:	Relative humidity under standard atmospheric conditions	0.30 (30%)
Τ _r	:	Intake air temperature under standard atmospheric conditions	298K (25°C [77°F])
P _{sr}	:	Saturation vapor pressure under standard atmospheric conditions	3.172 kPa (23.80 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)
P _x	:	Atmospheric pressure under actual test conditions	98 kPa (735 mmHg)
F _x	:	Relative humidity under actual test conditions	0.40 (40%)
Τ _x	:	Intake air temperature under actual test conditions	313K (40°C [104°F])
P _{sx}	:	Saturation vapor pressure under actual test conditions	7.377 kPa (55.35 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)

1. Obtain atmospheric factor f_a . Since 3TNV88 is a naturally aspirated engine, $(P_a = \phi_a \times P_{abc}) (T_a)$

$$f_{a} = \left(\frac{1}{P_{x} - \phi_{x} \times P_{sx}}\right) \left(\frac{1}{T_{r}}\right) 0.7$$
$$= \frac{100 - 0.30 \times 3.172}{98 - 0.40 \times 7.377} \left(\frac{313}{298}\right) 0.7$$
$$= \frac{99.0484}{95.0492} \times 1.0350$$

= 1.0785

2. Obtain engine factor f_m .

It is 0.487 for 3TNV88 at 3,000 min⁻¹ from the engine factor table.

3. Obtain correction factor k.

 $k = f_a^{fm} = 1.0785^{0.487} = 1.0375$

Since this value of k satisfies the condition 0.9 < k < 1.1 for application of the example formula, proceed with the calculation.

4. Obtain the corrected output under the actual test conditions as follows:

P = P0 / k = 27.1 / 1.0375

= 26.1 kW

Therefore, the output is down by 1.0 kW or approximately 3.6% in this example.

Correction Formula (B)

Use correction formula (B) when the actual test conditions are very different from the standard atmospheric conditions.

- 1. First obtain the *K* value expressed as follows for the cases with and without the turbocharger.
 - (a) For naturally aspirated engine

$$\mathsf{K} = \ \frac{\mathsf{P}_{\mathsf{x}} - \phi_{\mathsf{x}} \times \mathsf{P}_{\mathsf{sx}}}{\mathsf{P}_{\mathsf{r}} - \phi_{\mathsf{r}} \times \mathsf{P}_{\mathsf{sr}}} \times \left(\frac{\mathsf{T}_{\mathsf{r}}}{\mathsf{T}_{\mathsf{x}}}\right)^{0.75}$$

(b) For turbocharged engine

$$\mathsf{K} = \left(\frac{\mathsf{P}_x}{\mathsf{P}_r}\right)^{0.7} \left(\frac{\mathsf{T}_r}{\mathsf{T}_x}\right)^{2.0}$$

Subscripts r and x represent the values under standard atmospheric conditions and actual test conditions, respectively.

Pr	: Standard atmospheric pressure	100kPa (750 mmHg)
Φ_{r}	: Relative humidity under standard atmospheric conditions	0.30 (30%)
Τ _r	: Intake air temperature under standard atmospheric conditions	298K (25°C [77°F])
P _{sr}	: Saturation vapor pressure under standard atmospheric conditions	3.172 kPa (23.80 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)
P _x	: Atmospheric pressure under actual test conditions	kPa (mmHg)
Φ_{χ}	: Relative humidity under actual test conditions	%
Τ _x	: Intake air temperature under actual test conditions	K (°C)
P _{sx}	: Saturation vapor pressure under actual test conditions	kPa (mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)

2. Obtain correction factor α as follows:

 α = K - 0.7 (1 - K) (1 / η - 1) η = 0.8 (machine efficiency)

$$= K - 0.175 (1 - K)$$

3. Obtain the corrected output under the actual test conditions.

 $P = \alpha \bullet P_0$

Where,

- P₀ : Rated output under standard conditions kW
- P : Output under actual test conditions kW
- α : Correction factor

Example:

The rated output of the 3TNV88 engine under standard conditions is 27.1 kW at 3,000 min⁻¹. What will be the output under actual test conditions of any atmospheric state, 90 kPa (approximately 1000 m), intake air temperature of 323 K (50°C [122°F]), atmospheric temperature of 313 K (40°C [104°F]) and relative humidity of 80%?

First study which power correction formula is to be applied according to *Correction Formula (A) on page 4-4* or *Correction Formula (B) on page 4-8*.

Since the atmospheric pressure is in the range of 80 to 110 Kpa but the engine intake air temperature is far above the range of 10 to 40°C (50 to 104°F), the correction formula (B) in *Correction Formula (B) on page 4-8* applies.

The atmospheric temperature is not taken into consideration in the application of the power correction formula.

Pr	: Standard atmospheric pressure	100 kPa (750 mmHg)
Φ_{r}	: Relative humidity under standard atmospheric conditions	0.30 (30%)
Τ _r	: Intake air temperature under standard atmospheric conditions	298 K (25°C [77°F])
P _{sr}	: Saturation vapor pressure under standard atmospheric conditions	3.172 kPa (23.80 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)
Px	: Atmospheric pressure under actual test conditions	90 kPa (675 mmHg)
$\Phi_{\mathbf{X}}$: Relative humidity under actual test conditions	0.8 (80%)
T_{X}	: Intake air temperature under actual test conditions	323 K (50°C [122°F])
P _{sx}	: Saturation vapor pressure under actual test conditions	12.338kPa (92.56 mmHg) (Obtain from the table <i>on</i> <i>page 4-12</i> .)

1. First obtain the K-value. Since the 3TNV88 is a naturally aspirated engine,

$$K = \frac{P_x - \phi_x \times P_{sx}}{P_r - \phi_r \times P_{sr}} \left(\frac{T_r}{T_x}\right) 0.75$$
$$= \frac{90 - 0.38 \times 12.338}{100 - 0.30 \times 3.172} \left(\frac{298}{323}\right) 0.75$$
$$= \frac{80.1296}{99.0484} \times 0.9414$$
$$= 0.7616$$

2. Obtain correction factor α as follows:

 $\alpha = K - 0.175 (1 - K) = 0.7616 - 0.175 (1 - 0.7616)$

= 0.7616 - 0.0417 = 0.7199

CORRECTING OBSERVED POWER

3. Obtain the corrected output under the actual test conditions as follows:

 $P = \alpha \times P_0 = 0.7199 \times 27.1$

= 19.5 kW

The output is down by 7.6 kW or approximately 28.0% in this example.

Corrections for Reducing Exhaust Smoke Density at Altitude

The power correction explained so far is based on the physical phenomenon that the oxygen concentration in the air decreases under certain atmospheric conditions to cause incomplete combustion and a drop in output. In such cases, a decrease in output due to incomplete combustion and an increase of exhaust smoke density may occur.

To prevent an increase in engine exhaust smoke density, decrease the diesel fuel to match the decreased oxygen concentration. Decreasing the diesel fuel injection volume means a corresponding decrease in output. It is necessary to add power correction for reducing exhaust smoke density to the power correction calculated before and to keep the required output of the driven machine under the corrected output level.

This study is not for lessening the exhaust smoke density at the time of starting or upon sudden change in the load.

The following empirical equation has been obtained to reduce the exhaust smoke density:

Power correction for reducing exhaust smoke density = 0.5% per each 100 m in altitude

This % should be added to the calculation result of power correction in *Power Corrections on page 4-3*. Though the factors influencing an increase of exhaust smoke density are not limited to the altitude or the atmospheric pressure, the altitude is used instead of the atmospheric pressure because it has the greatest influence and simplifies the calculation.

Example:

The rated output of the 3TNV88 engine under standard atmospheric conditions is 27.1 kW at $3,000 \text{ min}^{-1}$.

The rated output of the 3TNV88 engine under standard conditions is 27.1 kW at 3,000 min⁻¹. What will be the output under actual test conditions of 90 kPa (approximately 1000 m), intake air temperature of 323 K (50°C [122°F]), and relative humidity of 80%? What will be the available output without worsening the exhaust smoke density?

The example is the same as that in *Correction Formula (A) on page 4-4*. The calculation result was down by 7.6 kW or approximately 28.0% in engine output. This means that the rated output under standard conditions is 27.1 kW and the exhaust smoke density increases by 19.5 kW under the above conditions.

To reduce exhaust smoke density, further correction for 1,000 m in altitude is necessary.

Correction for reducing exhaust smoke density

= 0.5% for each 100 m in altitude \times 1,000 m

= 5%

Therefore, the required output reduction is 28.0% + 5% = 33.0%.

In other words, the 3TNV88 engine can be operated without excessive smoke provided the required output for the driven machine or the load does not exceed the following value:

27.1 – 27.1 x 0.33 = 18.2 kW

ATMOSPHERIC PRESSURE CALCULATION FOR CHANGE IN ALTITUDE

 $P_x = P_r (1 - 0.00002257h)^{5.256}$

Where,

- P_x : Atmospheric pressure in kPa (mmHg) at h (m) above sea level
- $\mathsf{P}_r~$: Standard atmospheric pressure 100 kPa (750 mmHg) at 0 (m) above sea level
- h : Altitude (m)

ATMOSPHERIC TEMPERATURE CALCULATION FOR CHANGE IN ALTITUDE

 $T_x = T_r - 0.0065h$

Where,

- T_x : Atmospheric temperature (°C [°F]) at h (m) above sea level
- $T_r~$: Standard atmospheric temperature (25°C [77°F]) at 0 (m) above sea level
- h : Altitude (m)

RELATIONSHIPS AMONG ALTITUDE, ATMOSPHERIC PRESSURE AND ATMOSPHERIC TEMPERATURE

Altitude	Atmospheric pressure	Altitude	Atmospheric pressure
(m)	kPa (mmHg)	(m)	kPa (mmHg)
0	101.3 (759.81)	2600	73.7 (552.80)
100	100.0 (750.06)	2800	71.9 (539.30)
200	96.9 (741.81)	3000	70.7 (530.30)
400	96.7 (725.31)	3200	68.4 (513.04)
600	94.4 (708.06)	3400	66.7 (500.29)
800	92.1 (690.81)	3600	64.9 (486.79)
1000	89.9 (674.31)	3800	63.2 (474.04)
1200	87.7 (657.81)	4000	61.5 (461.29)
1400	85.6 (642.05)		·
1600	83.5 (626.30)		
1800	81.5 (611.30)		
2000	79.5 (596.30)		
2200	77.6 (582.05)		
2400	75.6 (567.05)		

HOW TO OBTAIN RELATIVE HUMIDITY BY DRY AND WET-BULB THERMOMETER

* Relative humidity is given by the following table when the wet bulb is not frozen.

																		ne	ative	unniuity	(%)
Dry bulb		Difference between dry and wet bulb temperatures tt'																			
temperature t	(0.0)	(0.5)	(1.0)	(1.5)	(2.0)	(2.5)	(3.0)	(3.5)	(4.0)	(4.5)	(5.0)	(5.5)	(6.0)	(6.5)	(7.0)	(7.5)	(8.0)	(8.5)	(9.0)	(9.5)	(10.0)
40 (104)	100	97	94	91	88	85	82	79	76	73	71	68	66	63	61	58	56	53	51	49	47
35 (95)	100	97	93	90	87	83	80	77	74	71	68	65	63	60	57	55	52	49	47	44	42
30 (86)	100	96	92	89	85	82	78	75	72	68	65	62	59	56	53	50	47	44	41	39	36
25 (77)	100	96	92	88	84	80	76	72	68	65	61	57	54	51	47	44	41	38	34	31	28
20 (68)	100	95	91	86	81	77	73	68	64	60	56	52	48	44	40	36	32	29	25	21	18
1 (33.8)	100	95	89	84	78	73	68	63	58	53	48	44	39	34	30	25	21	16	12	8	4
10 (50)	100	93	87	81	74	68	62	56	50	44	38	32	27	21	16	10	5				
5 (41)	100	92	84	76	68	60	53	46	38	31	24	16	9	2							
0 (32)	100	90	80	70	60	50	40	31	21	12	3										
-5 (23)	100	87	74	61	48	35	22	9													
-10 (14)	100	82	64	47	29	12															

t:Dry bulb temperature °C (°F)

t':Wet bulb temperature °C (°F)

RELATIONSHIP BETWEEN ATMOSPHERIC TEMPERATURE AND SATURATION VAPOR PRESSURE

Atmospheric temperature	Saturation vapor pressure	Atmospheric temperature	Saturation vapor pressure
K (°C [°F])	kPa (mmHg)	K (°C)	kPa (mmHg)
263 (–10 [14])	0.260 (1.948)	295 (22 [71.6])	2.642 (19.82)
265 (–8 [17.6])	0.310 (2.323)	297 (24 [75.2])	2.983 (22.38)
267 (–6 [21.2])	0.368 (2.764)	299 (26 [78.8])	3.360 (25.21)
269 (-4 [24.8])	0.437 (3.279)	301 (28 [82.4])	3.779 (28.35)
271 (–2 [28.4])	0.517 (3.880)	303 (30 [86])	4.243 (31.83)
273 (0 [32])	0.611 (4.581)	305 (32 [89.6])	4.755 (35.67)
275 (2 [35.6])	0.705 (5.292)	307 (34 [93.2])	5.319 (39.90)
277 (4 [39.2])	0.813 (6.098)	309 (36 [96.8])	5.941 (44.57)
279 (6 [42.8])	0.934 (7.010)	311 (38 [100.4])	6.625 (49.70)
281 (8 [46.4])	1.072 (8.042)	313 (40 [104])	7.377 (55.34)
283 (10 [50])	1.227 (9.205)	315 (42 [107.6])	8.201 (61.52)
285 (12 [53.6])	1.402 (10.51)	317 (44 [111.2])	9.103 (68.29)
287 (14 [57.2])	1.597 (11.98)	319 (46 [114.8])	10.088 (75.68)
289 (16 [60.80])	1.814 (13.61)	321 (48 [118.4])	11.164 (83.75)
291 (18 [64.4])	2.062 (15.47)	323 (50 [122])	12.338 (92.56)
293 (20 [68])	2.337 (17.53)		·

Relative humidity (%)

ALTITUDE CHARACTERISTICS

Engine output drops as the altitude increases, resulting in an increase of the exhaust smoke density as described in *Power Corrections on page 4-3*. Other problems at high altitudes are engine startability, exhaust white smoke and misfire.

These problems must be considered when using engines at high altitude.

Generally, the practical upper limit of operation altitude is as shown below, considering the production of black smoke and reduction of output due to increased altitude or decreased air density and engine durability.

Naturally aspirated engine: 1200 m

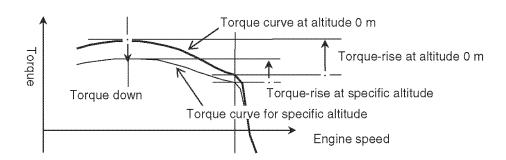
Turbocharged engines: 2000 m.

When operating the engines at an altitude higher than the above, if possible limit the load of the driven machines (for backhoes, use bucket with smaller capacity) or use machines equipped with an engine of higher displacement.

Reduction of Output

Reduction of output with regard to increase and decrease of altitude is summarized below, on the basis of actual measurement.

Note: The table below shows the value assuming that environmental temperature does not change even if the operating altitude increases.


A	0	1000	2000	3000	
Reduction of rated	Naturally aspirated engines	0%	2.5%	7.0%	13.5%
output (%) Turbocharged engines		0%	0.5%	2.0%	4.5%

Reduction of Torque-rise (Reduction of Maximum Torque)

The operating altitude of an engine affects the maximum torque because the excess air ratio is too low to allow the engine to attain the rated output. The reduction of the torque-rise (maximum torque) is described below.

Naturally aspirated engines:

Altitude (m)	0	1000	2000	3000
Torque down (%)	0	2.5	6.5	12
Torque-rise (%)	20	17.0	12.0	5.5

A turbocharged engine is less affected by the altitude.

Startability at Each Altitude

As the altitude increases, the atmospheric pressure is reduced, and the engine starting becomes more difficult due to the lack of air relative to the amount of diesel fuel injection, resulting in the lack of power for starting the engine.

A rough guideline of standard minimum starting temperatures with regard to the altitude is shown in the following table. Since various machines may be connected to the engine, it is necessary to study the altitude limit for startability for each application.

			Altitude (m)						
		0	1000	2000	3000				
Minimum starting	K	253	253	258	263				
temperature	°C (°F)	-20 (68)	-20 (68)	-15 (59)	-10 (50)				

The above table represents the standard specification.

Exhaust White Smoke

White smoke generation immediately after starting the engine increases and lasts longer at higher altitudes due to ignition delay caused by decreased air density and temperature.

The following measures are available for these problems.

- Use of diesel fuel with higher cetane number: 52 or greater
- Energization of glow plug or air heater after starting: 3 minutes or longer (Requires alteration such as addition of wiring and controller.)

The diesel fuel injection timing cannot be advanced because of compliance with emission control regulations such as EPA or EC.

Misfire at High Altitude

If engine is operated at high speed immediately after starting at high altitudes, a misfire is likely to occur due to ignition delay caused by the decreased air density and outdoor temperature.

Actions similar to those against white smoke generation in *Exhaust White Smoke on page 4-14* are required in order to reduce misfire. Sufficient warming up of the engine (at least 5 minutes) at medium or lower speed is also required.

Others

In addition to the above, the following problem can occur.

Increased heat load due to rise of exhaust temperature

Altitude	0	1000	2000	3000	
Rise of exhaust temperature	Indirect injection system	0%	10%	25%	36%
at rated output	Direct injection system	0%	10%	20%	28%

Engines can have a durability problem at altitudes higher than the operable altitude.

• Deterioration of performance due to accumulation of carbon in and around the combustion chamber and/or clogging of muffler with carbon

To avoid this problem, set the maintenance interval to half that for altitude 0 m as follows:

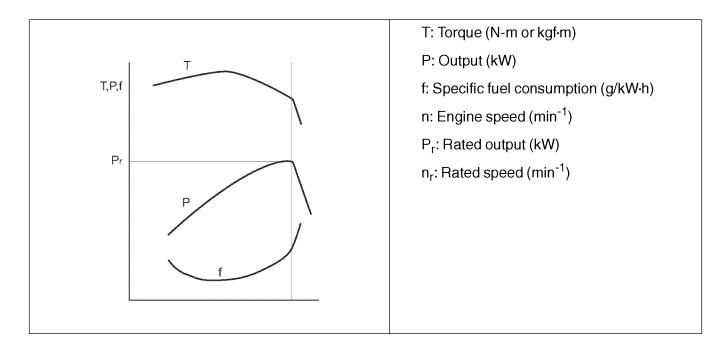
Cleaning of combustion chamber and exhaust port/manifold related areas: every 1000 hours

Replacement of muffler: every 1000 hours

Section 5

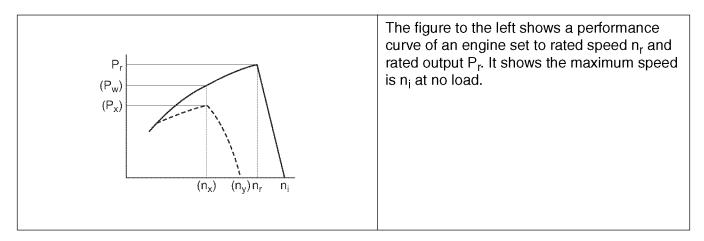
ENGINE PERFORMANCE

Page


Performance Curves Output Curve: P Specific Diesel Fuel Consumption Curve: f	5-4
Torque Curve: T	5-5
Partial Recovery Ratio	5-6
Governor Performance	

This Page Intentionally Left Blank

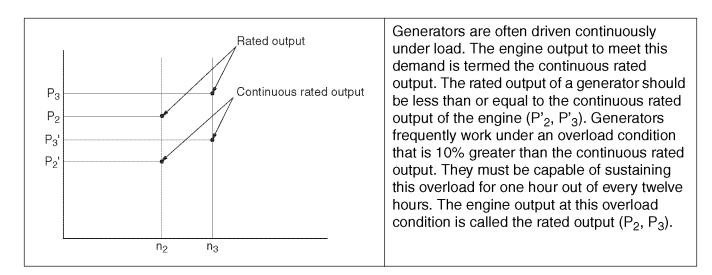
PERFORMANCE CURVES


Engine performance is generally expressed with three curves: output, specific fuel consumption and torque curves, as shown in the figure below:

The engine performance curves represent the performance of an engine at rated speed n_r that produces rated output P_r . The output of the same engine at another speed cannot be read from these curves. Consequently, the performance curves shown in a catalog or this manual show a rated output only at a specific rated speed. If you need performance curves at other rated speeds, please contact Yanmar.

Each of the performance curves has the following meaning.

Output Curve: P



For example, the output curve of a 3TNV84 diesel engine shows the no-load maximum speed n_i of 2810 min⁻¹ and the rated output P_r of 21.3 kW when the rated speed is set to 2600 min⁻¹.

When you look at the performance curves make sure that you do not confuse the values of Rated Speed (n_r) and Rated Output (P_r) with Output (P_w) if the rated speed is set to (n_x) . For example, if you run a 3TNV84 engine at a rated speed (n_x) of 2400 min⁻¹, what will be the rated output (P_x) in kW? The rated output will be 19.7 kW. This is shown as the "broken line" in the performance curve. The no-load maximum speed (n_y) is 2590 min⁻¹ from the specification tables in *3TNV84 (complies with EPA Tier2) on page 3-11*.

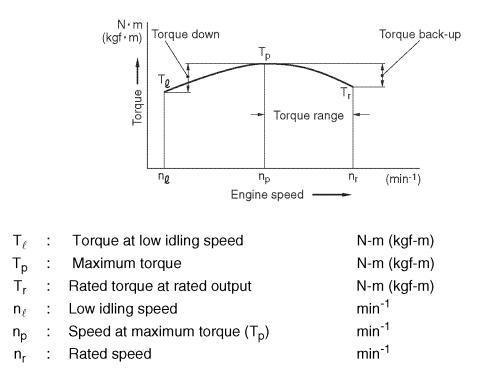
Refer to the catalog and / or the specifications of this manual for the rated output at various rated engine speeds. Note that rated output at the flywheel must be reduced for fan and other auxiliary loads.

The arrows on the following output curves show the rated output of a 2P (or 4P) generator and continuous rated output, respectively. They apply to engines used exclusively for driving generators.

The rated engine speeds of n_2 and n_3 correspond to the generator frequencies of 50 Hz and 60 Hz. The rated engine speed must be either fixed or adjusted to n_2 or n_3 during operation.

Consequently, the performance curves for engines designed for generator applications will be the rated output and continuous rated output at the rated speeds n_2 and n_3 as indicated by the arrows shown in this example.

Specific Diesel Fuel Consumption Curve: f


TORQUE CURVE: T

One of the important characteristics of industrial machinery is the torque backup value expressed with the torque curve.

The curve should be smooth with a peak in the middle. The tenacity of the engine can be expressed with this torque backup value or torque backing ratio (torque rise) and the size of the torque range.

The greater those values, the better the tenacity of the engine. Ultimately, however, it is necessary to determine the level of torque characteristics in a matching test of the driven machine. An engine driving a generator has a smaller torque backup ratio (torque rise) than industrial machinery engines in general. This is because a generator does not require good tenacity on the part of the engine.

The engine torque curve is shown below.

ENGINE PERFORMANCE

• Torque backup value refers to the difference between the maximum torque and the torque at rated output.

Torque backup = Maximum torque (T_p) – torque at rated output (T_r)

Torque backup ratio (torque rise) =
$$\frac{T_p - T_r}{T_r} \times 100(\%)$$

• Torque down value refers to the difference between the maximum and minimum torque values.

Torque down =
$$T_p - T_\ell$$

Torque down ratio =
$$\frac{T_{\ell}}{T_{p}} \times 100(\%)$$

Torque range refers to the difference (n_r-n_p) between the speed (n_p) at maximum torque (T_p) and the rated speed (n_r),

PARTIAL RECOVERY RATIO

Partial recovery ratio refers to the recovery of output expressed as a percentage to the maximum output curve at 80% of the rated speed, when an engine set to a rated speed and rated output is loaded from 80% of maximum no-load speed (Figure 5-1).

The 80% referred to above is a definition and does not have any practical significance, but if this characteristic is low, it may cause engine to stall when coupled with a driven machine that requires a wide range of engine speeds. (Figure 5-1, dashed line.)

The TNV engine has a partial recovery ratio of 90% or more for standard specifications, but the user must check the characteristics after installing it in the driven machine.

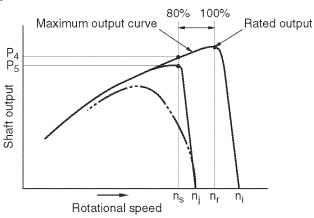
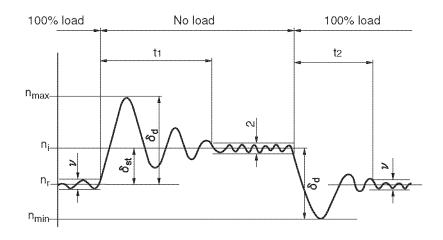


Figure 5-1


- nr : Rated engine speed
- n_i : No-load maximum speed
- n_{s} : $n_{r} \times 0.8$
- n_i : n_i x 0.8

Partial recovery ratio =
$$\frac{P_5}{P_4}$$
 x 100(%)

Partial recovery ratio curve

GOVERNOR PERFORMANCE

n_{max.}

Transient Engine speeds under varying loads

n_{min.}

- n_r: Rated speed
- n_i: No-load speed
- Steady-state governed speed band (Range of speed variation in steady state expressed as a percentage of the rated speed. The width of variation expressed in min-1 is called the speed variation.)
- t₁, t₂: Recovery time (Time for steady-state governed speed band from the start of speed variation to the setting to the steady state in transient state, or the time after departure from band n to entry to band n.)
- δ_{st} : Speed droop (Deviation in speed after setting governor to rated output and rated speed until transition to no load, expressed by the ratio (%) to the rated speed. Also referred to as permanent speed change ratio.)

$$\delta_{st} = \frac{n_i - n_r}{n_r} \times 100 \ (\%)$$

- δ_d : Instantaneous speed difference (Ratio (%) of maximum speed change to rated speed when the load is suddenly varied while the engine is running in the governed state. Also referred to as transient speed difference.
 - *1) When 100% load is removed momentarily (in a naturally aspirated engine and turbo-charged engine)

$$\delta_{d}^{+} = \frac{n_{max} - n_{r}}{n_{r}} \times 100 \ (\%)$$

*2) When a load is input momentarily (naturally aspirated engine)

$$\delta_{d}^{-} = \frac{n_{min} - n_{i}}{n_{r}} \times 100 \ (\%)$$

YANMAR. TNV Application Manual

Governor Performance of TNV Series Engines

1. All Tier2 compatible series engines and Intermiddle Tier4 compatible engines (except for those in (2) below) which are specified for mechanical governor.

		Constant speed specification				Variable speec specification	1
		IDI DI			I	וכ	DI
		CL	СН	CL	VM	VH	VM
Instantaneous speed difference (δ_d^+, δ_d^-)	%	≤8 to 10	≤8 to 10	≤8 to 10	≤12	≤12	≤12
Speed droop (δ_{st})	%	≤4 to 5	≤4 to 5	≤4 to 5	≤7 to 8	≤6	≤6 to 9
Recovery time (t ₁ , t ₂)	sec.	≤5	6	≤5	≤6	≤6	≤6
Speed variation (v)	min ⁻¹	≤15	≤20	≤15	≤30	≤30	≤22

2. Intermiddle Tier4 compatible engines and Tier3 compatible engines which are specified for electronic governor equipped <3TNV84T-Z, 4TNV84T-Z, 4TMV98-Z, 4TNV98-E, 4TNV98T-Z>

	Constant speed specification	Variable speed specification	
	C)	
		CL	VM
Instantaneous speed difference (δ_d^+, δ_d^-)	%	≤8 to 10	≤12
Speed droop (δ_{st})	%	≤1	≤4 to 6
Recovery time (t ₁ , t ₂)	sec.	≤5	≤6
Speed variation (v)	min⁻1	≤15	≤22

Section 6

COLD STARTING AIDS

Page

Glow Plug	6-3
Glow Plug Structure	6-4
Control Circuit Diagram for Standard Glow Plug	6-4
Control Circuit Parts for Glow Plug	6-4
Control Circuit Diagram for On-Glow® (Mechanical Governor)	6-6
Control Circuit Diagram for On-Glow (Eco Governor)6	S-10
Inlet Air Heater 6	S-11
Inlet Air Heater Structure 6	3-11
Control Circuit Diagram for Standard Inlet Air Heater	3-11
Inlet Air Heater Capacity and Power Relay6	5-12
Control Circuit for Specific Driven Machine Applications6	ծ-12
Inlet Air Heater Control Circuit Components6	3-13
After-Heat (Eco Governor Option)6	ծ-14
Control Circuit Diagram for On-Glow (Eco Governor)6	3-15
Engine Block Heater	ò-18
Block Heater Configuration6	6-19
Block Heater Connection Diagram6	6-19
Cold Start Device (CSD) for MP Pump6	ò-20
Features of CSD	
Confirmation of Safety at Cold Start6	

This Page Intentionally Left Blank

TNV series engines are equipped with cold starting aids. There are two types of cold starting aids; glow plugs and air heaters. Engines which are equipped with glow plugs can be started without energizing the plugs if the atmospheric temperature is equal to or above $5^{\circ}C$ ($41^{\circ}F$). Engines which are equipped with air heaters can be started without using the inlet air heater if the atmospheric temperature is equal to or above $-5^{\circ}C$ ($23^{\circ}F$).

If an optional block heater is applied, the engine can be started with ease even at very low temperature.

For use of cold starting aids by ambient temperature, see Low-temperature startability on page 1-7.

This section describes the cold starting aids shown in the tables below and their control circuits.

	IDI		DI		
Applicable model 2/3TNV70 3TNV76		3TNV82A-B 3/4TNV88-B,U	3TNV82A 3/4TNV84 3/4TNV88 3TNV84T(-B)	4TNV84T-Z 4TNV98-Z,E 4TNV98T-Z	
Starting aid Control Circuit	Glow plug	Glow plug	Inlet Air Heater	Inlet Air Heater	
Standard (preheat) control mechanical/eco governor	 Control Circuit Diagra (Figure 6-2) 	am for Standard Glow Plug	 Control Circuit Diagram for Standard Inlet Air Heater, (Figure 6 12) (400/500W) Inlet Air Heater Capacity and Power Relay, (Figure 6-13) (800 1000W) After-Heat (Eco Governor Option),(Figure 6-15) 		
On-Glow control mechanical governor	Control Circuit Diagra	am for On-Glow (Figure 6-4)		-	
On-Glow control eco governor	-	Control Circuit Diagram for On-Glow (eco governor) (Figure 6-9)	-	Control Circuit Diagram for On-Glow(eco governor) (Figure 6-16)	

GLOW PLUG

The glow plug is an electrically heated coil that is installed in the swirl chamber of the IDI engine. The glow plug is heated by an electric current from the battery before starting the engine. The combustion chamber is heated by the red-hot glow plug for easier starting.

A glow plug is installed for each cylinder.

Applicable Model		IDI	DI
		(2,3TNB20, 3TNV76)	(3TNV82A-B, 3TNV88-U, B,
			4TNV88-U, B)
Nominal voltage	V	12	12
Type name		Standard glow plug	Standard glow plug
Part code		119717-77800	129008-77800
Standard preheating time	Sec	4	15
Rated capacity	V/A	11/ 9.0 ± 1.0	11/ 9.0 ± 1.0
Identification color		Red	Red

When using the IDI glow plug, it is recommended to equip it with a 4-second timer (Part Code: 129155-77925).

When using the DI glow plug, it is recommended to equip it with a 15-second timer (Part Code: 128300-77920).

Glow Plug Structure

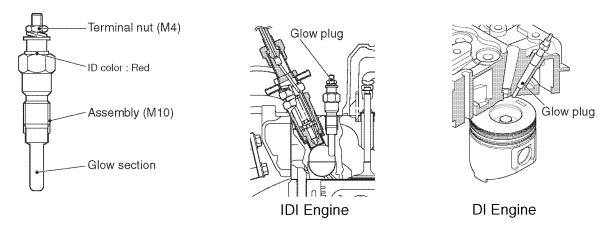


Figure 6-1

Control Circuit Diagram for Standard Glow Plug

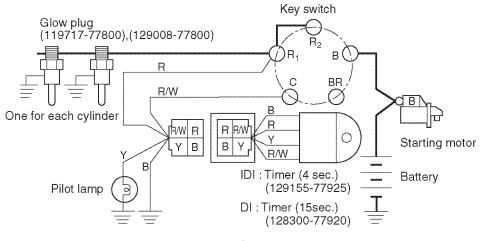


Figure 6-2

Control Circuit Parts for Glow Plug

Pattern of Key Switch Terminal: Yanmar Part No. 129115 - 91250

The key switch terminal connection patterns illustrated in *Control Circuit Diagram for Standard Glow Plug on page 6-4* are as follows:

	В	R ₁	ACC	R ₂	BR	С
Preheat	0	0			0	
OFF	0					
ON	0		0		0	
Start	0		0	0	0	0

In the *Control Circuit Diagram for Standard Glow Plug on page 6-4* circuit diagram, the current flow for the preheating operation starts at the battery and flows to the glow plug via B, R₂, and external wiring and R₁.

The key switch is available in a variety of configurations. Terminal connection patterns and terminal codes differ by manufacturer. Installation should be performed only if the terminal connection patterns and codes are fully understood.

Timer and Preheat Indicator

When the key switch is in the PREHEAT position, the timer (part code: 129155-77925 or 128300-77920) starts counting down for the specified time. The preheat indicator (pilot lamp) stays lit during the countdown process. After about 4 or 15 seconds of preheating (may fluctuate slightly depending on the ambient temperature), the timer turns off the preheat indicator. Refer to the specifications supplied by the operator's console manufacturer for the actual key switch label that indicates the PREHEAT key switch position.

During cold weather, the operator may continue to hold the switch in PREHEAT after the preheat indicator goes out. Note that the timer illustrated in *Control Circuit Diagram for Standard Glow Plug on page 6-4* circuit diagram only controls the length of time the preheat indicator stays lit.

Turn the key switch to the START position immediately after the preheating cycle has completed. The preheat indicator does not light during the starting operation because terminal R_1 of the key switch is not powered during the START mode.

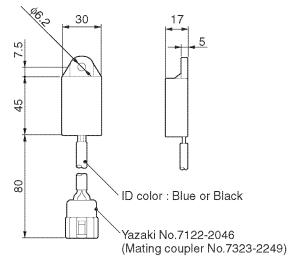


Figure 6-3

Applicable Model	IDI	DI
Rated voltage (V)	12	12
Part code	129155-77925	128300-77920
Set time (sec)	4	15
ID color	Blue	Black
Manufacturer's model	HC0107	HC0108
Applicable preheat lamp	3.4W/DC12V	3.4W/DC12V

Relay for Starting Aids (Power Relay)

Use a power relay if the wiring distance between the engine and the key switch is too long. As the length of wire between the engine and key switch increases, so does the resistance of the wire. This will cause a voltage drop and reduce glow plug performance. Install a power relay between the glow plug and the key switch as a countermeasure. See the description on inlet air heaters in *Control Circuit for Specific Driven Machine Applications on page 6-12* for details.

COLD STARTING AIDS

Control Circuit Diagram for On-Glow[®] (Mechanical Governor)

Some key switches are turned counterclockwise for the preheat mode. After the preheat cycle has completed, the operator turns the key switch clockwise to the START position.

On-Glow[®] control refers to a method of automatically initiating the preheat cycle by turning the key switch clockwise to the ON position. With this configuration the timer controls the length of time the glow plugs and preheat indicator are energized. When the preheat indicator goes out continue turning the key switch clockwise to the START position to start the engine.

The key switch returns to the ON position after start procedure is completed. To disable the preheating circuit, a special controller is needed for controlling the On-Glow[®].

The circuit of a currently available On-Glow[®] system is shown below. It is a combination of a super quick glow plug, engine coolant temperature switch and power relay to control the preheating time with a special controller.

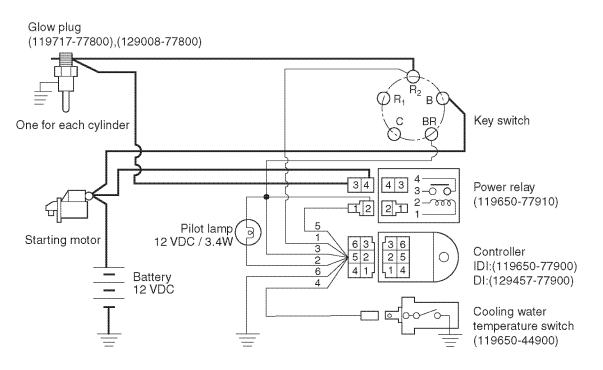


Figure 6-4

Controller (IDI)

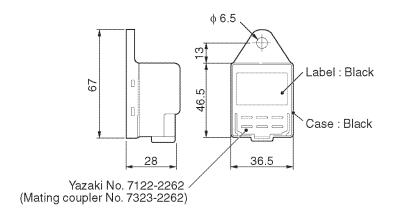


Figure 6-5

Part code		119650-77900	
	Voltage V	Cooling water temperature	Lamp and power relay control time (sec)
Glow plug applied voltage	12	5°C (41°F) and over	$0.7 \pm \frac{0.6}{0.3}$
	10		$1.0 \pm {0.8 \atop 0.3}$
	8		$1.6 \pm \frac{1.1}{0.6}$
	12		$2.1 \pm \frac{1.2}{0.3}$
	10	Under 5°C (41°F)	$4.0 \pm \frac{1.6}{1.4}$
	8		$7.5 \pm \frac{5.0}{2.5}$

COLD STARTING AIDS

Controller (IDI)

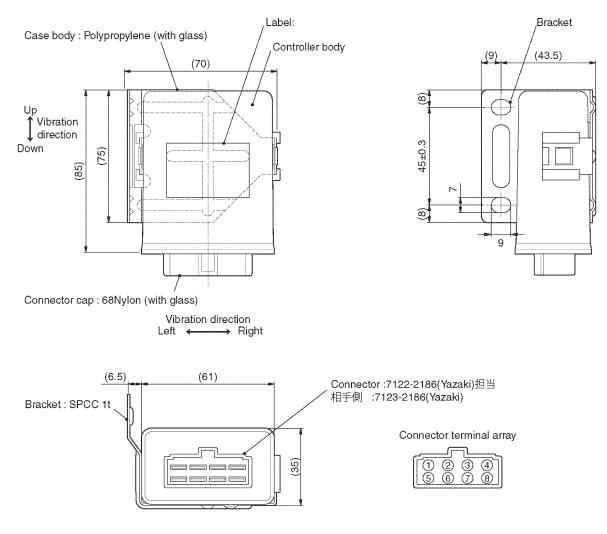


Figure 6-6

Characteristics

Part code			129457-77900	
	Item	Specific resistance	Time (sec)	NOTE
Property 1 Indicator/ preheat time	28.5 (-30°C)	25.0±3.0	Power supply voltage: 12V	
	12.1 (-15°C)	20.0±4.0		
	3.8 (+10°C)	1.0±0.4		

Power Relay

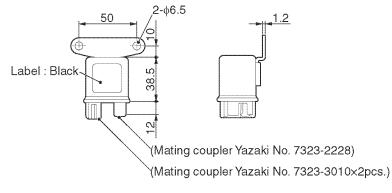
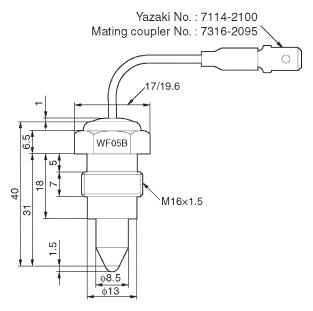



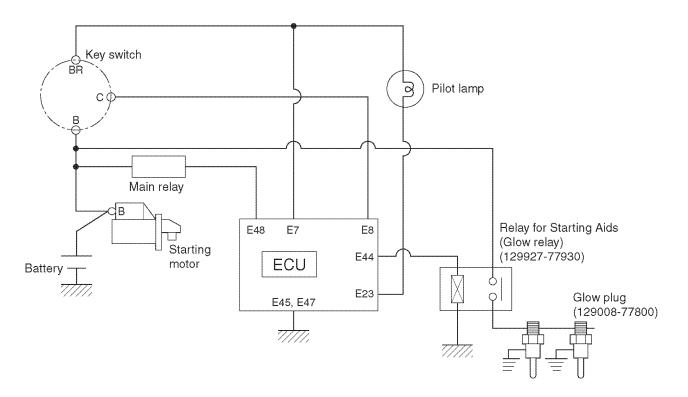
Figure 6-7

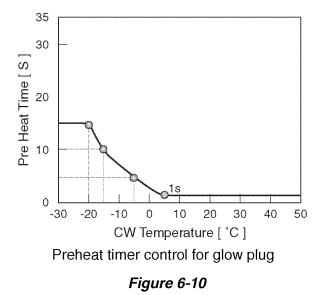
Part code	119650-77910
Rating	12 VDC / 10 min
Contact capacity	40 A / a-Contact
Exciting current	0.5 A

Engine Coolant Temperature Switch

Part code	119650-44900	
Operating temperature	Open Close 5°C 10°C	
Contact capacity	0.7 A/12 VDC (signal use only)	

Control Circuit Diagram for On-Glow (Eco Governor)




Figure 6-9

Timer and Preheat Indicator

When turn the key switch ON, ECU detect the temperature of coolant, then indicate the pilot lamp and preheating during a pre-set heating time. (Figure 6-10).

Relay for Starting Aids

If On-Glow control is conducted for eco governor option, use the relay for starting aid. (Figure 6-18 to Figure 6-20).

After-Heat (Eco Governor Option)

Subject model: 3TNV82A-Z, 3/4TNV88-E,Z

The time until the whit smoke goes out can be reduced by changing the setting of eco governor controller to keep energizing the glow plug even after the engine is started.

INLET AIR HEATER

An inlet air heater is installed in the intake manifold of an engine to heat the intake air to help the engine start in cold temperatures.

Capacities differ by the engine model. Refer to the *Yanmar TNV Option Menu* for details on the change of inlet air heater capacity, combination of 24V specification and wiring method.

Applicable engine	Rated voltage (V) / Capacity (W)	Standard preheat time (sec)	Standard inlet air heater
3TNV82A, 3TNV84(T)(T-B) 3TNV88, 4TNV84(T) 4TNV88, 4TNV84T-Z	12 VDC/400 W	15	129120-77501
4TNV94L, 4TNV98-E,Z 4TNV98, 4TNV98T-Z	12 VDC/500 W	15	129915-77050

Installation of a 15-second timer (part code: 128300-77920) is recommended on the standard inlet air heater.

Inlet Air Heater Structure

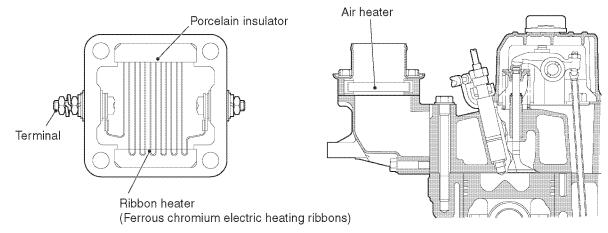


Figure 6-11

Control Circuit Diagram for Standard Inlet Air Heater

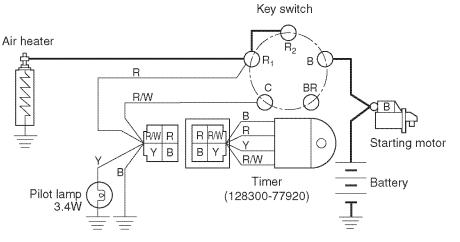


Figure 6-12

COLD STARTING AIDS

Inlet Air Heater Capacity and Power Relay

Figure 6-12 shows the basic inlet air heater wiring connection. A large current flows in the standard type inlet air heater. Depending on conditions, a larger capacity is produced by combining various types of inlet air heaters to improve engine startability.

Before starting, check the contact capacity of the key switch preheating circuit B-R and B-R₂ to determine if it is sufficient for the required current flow from the inlet air heaters.

If the contact capacity (allowable current) of the key switch preheating circuit is smaller than the required current of the inlet air heater, the current to the inlet air heater will be suppressed, causing insufficient preheating. Damage to the key switch contacts and other problems may occur.

If the contact capacity of the key switch preheating circuit seems to be insufficient, install a power relay.

Application of the power relay is not limited to covering the lack of key switch contact capacity. It is also used to prevent the voltage drop that occurs as the distance between the engine installation point and the key switch location increases.

A typical wiring example is shown (Figure 6-13). Refer to the separate *Yanmar TNV Option Menu* for combinations of various types of inlet air heater capacity.

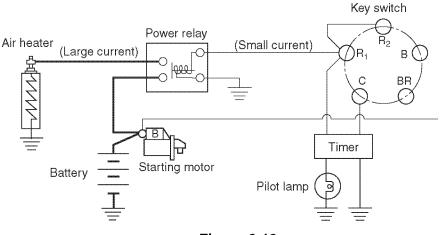


Figure 6-13

Refer to the Yanmar TNV Option Menu for the various types of power relay and key switches manufactured by Yanmar.

Control Circuit for Specific Driven Machine Applications

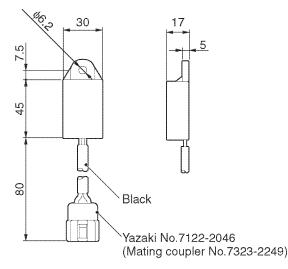
The typical control circuits we discussed previously are commonly used for driven machines where the current flows to the inlet air heater when the key switch is in the START position. Startability improves significantly if the current to the inlet air heater is cut off while the engine is cranking. For example, if a driven machine application has a large drag torque and will experience severe cold starting conditions, cutting the off the current flow to the inlet air heater while the engine is cranking increases the amount of current available for the starter motor. This provides better starting efficiency by increasing the cranking torque.

Use actual vehicle tests done under cold conditions to determine whether or not the inlet air heater current should be cut off during cranking.

Inlet Air Heater Control Circuit Components

Key Switch Terminal Pattern

The key switch terminal pattern used with an inlet air heater is identical to the one shown in *Control Circuit Diagram for On-Glow® (Mechanical Governor) on page 6-6.*


Key switches are available in various configurations and terminal connecting patterns. Terminal codes differ by manufacturer. Installation should be performed only if the terminal connection patterns and codes are fully understood. This is especially important if the application will use an inlet air heater. The amount of current required to energize an inlet air heater is considerably greater than a glow plug so you must carefully consider the contact rating of the key switch during the selection process.

Timer and Preheat Indicator

When the key switch is in the PREHEAT position, the timer (part code: 128300-77920) starts counting down for the specified time. The preheat indicator (pilot lamp) stays lit during the countdown process. After about 15 seconds of preheating (may fluctuate slightly depending on outside temperature), the timer turns off the preheat indicator. Refer to the specifications supplied by the operator's console manufacturer for the actual key switch label that indicates the PREHEAT key switch position.

During cold weather, the operator may continue to hold the switch in PREHEAT after the preheat indicator goes out. Note that the timer illustrated in the *Control Circuit Diagram for Standard Glow Plug on page 6-4* circuit diagram only controls the length of time the preheat indicator stays lit.

Turn the key switch to the START position immediately after the preheating cycle has completed. The preheat indicator does not light during the starting operation because terminal R_1 of the key switch is not powered during the START mode.

12 VDC 15-sec Timer

Figure 6-14

Rated voltage	12 VDC
Part code	128300-77920
Set time (sec)	15
ID color	Black (tube)
Manufacturer's model	HC0108
Applicable pilot lamp	3.4 W

After-Heat (Eco Governor Option)

Subject model: 4TNV98-E, 4TNV98-Z, 4TNV98T-Z, 4TNV84T-Z

The time until the whit smoke goes out can be reduced by changing the setting of eco governor controller to keep energizing the air heater even after the engine is started.

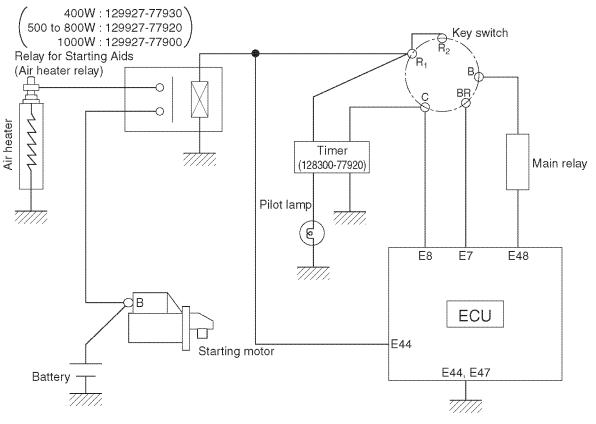
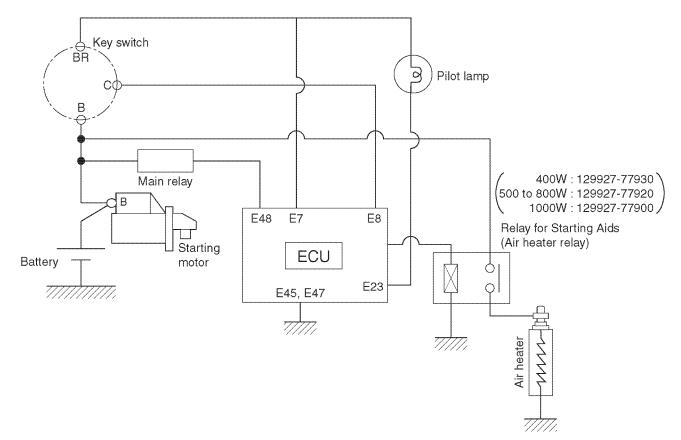


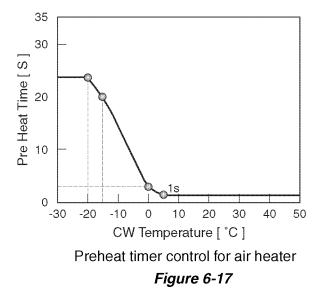
Figure 6-15

Relay for Starting Aids

Use a relay for starting aids when using the after heat function for eco governor specific engines. (Figure 6-18 to Figure 6-20)

Control Circuit Diagram for On-Glow (Eco Governor)




Figure 6-16

Timer and Preheat Indicator

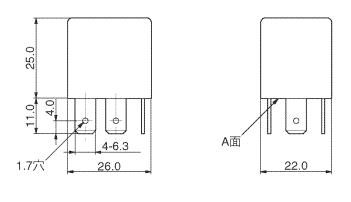
When turn the key switch ON, ECU detect the temperature of coolant, then indicate the pilot lamp and preheating during a pre-set heating time.(Figure 6-17).

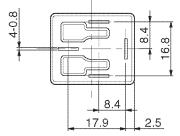
Relay for Starting Aids

If On-Glow control is conducted for eco governor option, use the relay for starting aid. (Figure 6-18 to Figure 6-20).

After-Heat (Eco Governor Option)

Subject model: 4TNV84T-Z, 4TNV98-E, 4TNV98-Z, 4TNV98T-Z

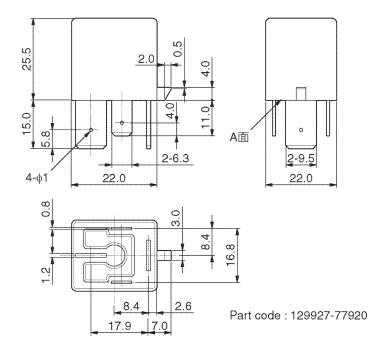

The time until the whit smoke goes out can be reduced by changing the setting of eco governor controller to keep energizing the glow plug even after the engine is started.


COLD STARTING AIDS

Relay for Starting Aids

Application	Glow Plug 400W Air heater	500 to 800W Air heater	1000W Air heater
Part code	129927-77930	129927-77920	129927-77900
Rating	12 VDC/Cont.	12 VDC/Cont.	12 VDC / 4 min
Contact capacity	40A / a-Contact	70A / a-Contact	90A / a-Contact
Exciting current	0.117A	0.117A	0.2A or less

Installation of a 15-second timer (part code: 128300-77920) is recommended on the standard inlet air heater.



Part code : 129927-77930

Figure 6-18

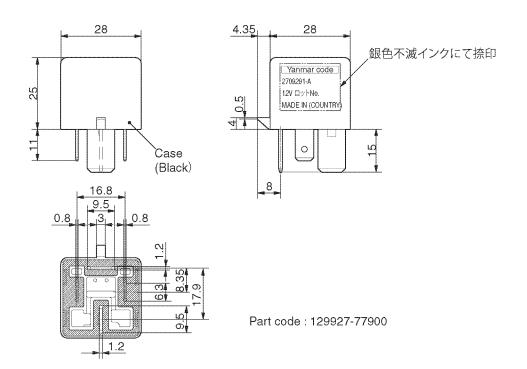


Figure 6-20

COLD STARTING AIDS

ENGINE BLOCK HEATER

An optional engine block heater may be installed on the cylinder block using the special screw mount provided with the unit. The engine block heater uses an AC power supply instead of a battery.

The engine block heater heats the engine coolant in the cylinder block jacket. It indirectly heats the engine oil, which lowers the viscosity of the oil to reduce drag torque. It also heats the cylinder head combustion chamber to make diesel fuel ignition easier and improve cold startability.

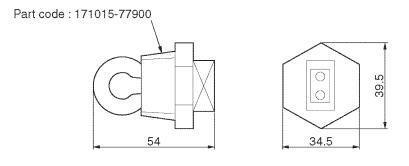
Connect the engine block heater to the AC power supply several hours prior to starting the engine depending on the ambient temperature condition and the engine size.

The engine block heater is quite effective in starting engines in cold weather (below -20°C [-4°F]) for a driven machine with a large drag torque.

Engine block heaters are standard equipment on engines used for disaster prevention or for those mounted on emergency generators to ensure starting in case of an emergency. If the engine block heater is permanently connected to the power supply when the ambient temperature is high, the engine coolant may reach the boiling point or the heater life may be shortened. To prevent this hazard, use an automatic control circuit that will turn the engine block heater power supply On or Off to control the duration of energization.

Automatic block heater control option is also available for eco governor specific engines.Refer to Electronic Control Manual for more information.

Since alternating current is supplied at various voltages, the engine block heater can be set to meet the requirements of various voltages. The following table indicates parts frequently used for industrial engines:


Part name	Part code	Remarks
Block heater	171015-77900	Rated capacity: 115 VAC/400 W
DIOCK Healer	124097-77900	Rated capacity: 200 VAC/200 W
Connecting code	171015-77910	Approx. 300 mm long
Bracket	119621-11950	For IDI system engines only. For more details, see the <i>Yanmar Option Menu</i> .

NOTE

- NEVER connect the engine block heater to the power supply without engine coolant the engine block heater will overheat.
- NEVER use the engine block heater at ordinary temperature as the engine coolant will boil and the engine block heater will overheat.
- When the engine starts, turn the commercial power supply off and disconnect the cord from the engine.

Block Heater Configuration

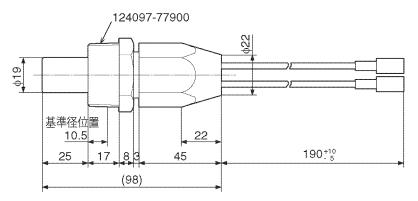


Figure 6-22

Block Heater Connection Diagram

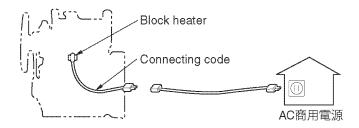


Figure 6-23

COLD STARTING AIDS

COLD START DEVICE (CSD) FOR MP PUMP

TNV engine has several diesel fuel injection timing control devices for exhaust emission reduction. The Cold Start Device (CSD) presents some safety concerns that you should be aware of.

Features of CSD

At cold start (engine coolant temperature below 5°C [41°F]), diesel fuel injection timing is advanced and diesel fuel injection volume is increased with CSD. This has the following effects on engine:

- High idle/low idle speed will be increased
- Engine output will be increased
- · Some black smoke will be visible during acceleration
- Engine will be somewhat noisy

Confirmation of Safety at Cold Start

- When the TNV engine is installed, check the idle-up revolution speed of the engine at low temperature and perform creep characteristics to make sure there are no safety problem.
- Instruct the user that the idling engine speed of the TNV engine will increase when the engine is cold and the engine should warm-up for at least five minutes before operating the driven machine. The specific warning is shown in the TNV Operation Manual.

Section 7

AIR INTAKE SYSTEM

Page

Air Capacity Required for Combustion	7-3
Calculation of the Air Capacity	
Air Cleaner Selection Table	7-6
Air Cleaner	
Dust Removing Principle of the Air Cleaner	
Structure of Air Cleaner	
Dust Indicator	
Air Cleaner Installation	
Air Intake System Hose Routing	7-10
Air Intake Restriction	
Measurement of Air Intake Restriction	
Allowable Air Intake Restriction	7-12

This Page Intentionally Left Blank

The amount of air supplied to the combustion chamber in the intake stroke of the engine is directly related to the combustion performance of the engine. The amount of air greatly affects basic engine performance such as engine output, specific diesel fuel consumption, exhaust system and engine service life. You must take these factors into consideration when you select the air intake system for your application.

AIR CAPACITY REQUIRED FOR COMBUSTION

Theoretically, the minimum amount of air required for complete combustion of approximately 1 kg of diesel fuel is approximately 14.6 kg (about 12.5 m³/ standard atmospheric condition). This is not enough air, however, to ensure complete combustion. The ratio of extra air needed to the theoretical minimum amount of air for complete combustion is called the excess air ratio. In the case of a diesel engine, the excess air ratio at full load is 1.5 to 2.0. That means the engine requires 1.5 to 2.0 times the theoretical minimum amount of air for complete combustion. It is not true, however, that the greater the excess air ratio, the better. Excess air ratio is calculated to ensure optimal engine performance under near full load conditions (actual output is close to the rated output of the engine). For a smaller load, less diesel fuel is injected which increases the excess air ratio. This also causes a drop in combustion temperature and problems in the exhaust system. Therefore you should avoid low-load operation for an extended period of time.

Calculation of the Air Capacity

There are two types of air capacity, the air flow actually needed for combustion and the apparent intake air flow for checking air cleaner capacity. Different calculation formulas are used accordingly.

Air Capacity Required for Combustion

There are a number of ways to determine the air capacity necessary for diesel fuel combustion. The simplest calculation method is based on engine displacement as follows:

 $Q_1 = \eta_V \cdot V_S \cdot N \cdot C \cdot 10^{-3}$

Where,

Q_1	: Required air capacity m ³ /min			
η <i>γ</i>	: Volumetric efficiency:			
	Naturally aspirated engine	0.85 to 0.9		
	Turbocharged engine	1.3		
$V_{\rm S}$: Engine displacement	l		
Ν	: Speed of engine	min ⁻¹		
С	: Constant, 4-cycle engine:	1/2		

AIR INTAKE SYSTEM

Volumetric efficiency h_V differs slightly depending on the range of engine speeds encountered during actual use but h_V can assumed to be constant when you calculate air capacity. If η_V is 0.9 for the naturally aspirated engine and 1.3 for the turbocharged engine and the engine speed N is a variable, then required air capacity for combustion in the respective engines is given by the following calculation formula:

N: Engine speed (min⁻¹)

No.	Engine model	Engine displacement: liter	Required air capacity Q ₁ for combustion: m ³ /min (cfm)
1	2TNV70	0.569	2.56 × 10 ^{−4} x N (9.04 x 10 ^{−3} x N)
2	3TNV70	0.854	3.84 x 10 ⁻⁴ x N (1.356 x 10 ⁻² x N)
3	3TNV76	1.115	5.02 x 10 ⁻⁴ x N (1.773 x 10 ⁻² x N)
4	3TNV82A	1.331	5.99 x 10 ⁻⁴ x N (2.115 x 10 ⁻² x N)
5	3TNV84	1.496	6.73 x 10 ⁻⁴ x N (2.377 x 10 ⁻² x N)
6	3TNV88	1.642	7.39 x 10 ⁻⁴ x N (2.610 x 10 ⁻² x N)
7	4TNV84	1.995	8.98 x 10 ⁻⁴ x N (3.171 x 10 ⁻² x N)
8	4TNV88	2.190	9.85 x 10 ⁻⁴ x N (3.479 x 10 ⁻² x N)
9	3TNV84T	1.496	9.72 x 10 ⁻⁴ x N (3.433 x 10 ⁻² x N)
10	4TNV84T	1.995	1.30 x 10 ⁻³ x N (4.591 x 10 ⁻² x N)
11	4TNV94L	3.054	1.37 x 10 ⁻³ x N (4.838 x 10 ⁻² x N)
12	4TNV98	3.319	1.49 x 10 ⁻³ x N (5.262 x 10 ⁻² x N)
13	4TNV98T	3.319	2.16 x 10 ⁻³ x N (7.628 x 10 ⁻² x N)

Example:

How many cubic meters of air capacity will be required per minute for burning diesel fuel in a 3TNV84 diesel engine at 21.3 kW/2600 min⁻¹?

From the above table, the calculation formula for the air capacity required for burning diesel fuel in the 3TNV84 diesel engine is

$Q_1 = 6.73 \times 10^{-4} N$

The required air capacity can be obtained by substituting N with 2600 min⁻¹.

 $Q_1 = 6.73 \times 10^{-4} \times 2600$ = 1.75 (m³/min)

Apparent Air Capacity

Apparent air capacity should be determined when selecting air cleaner capacity. The air capacity that is calculated using the formula in *Calculation of the Air Capacity on page 7-3*, *Air capacity required for combustion*, is called the mean air capacity. Since air flows into the engine once every two revolutions, considerable air flow pulsation is created. As the number of cylinders in the engine decreases, the amount of pulsation increases. To reduce the amount of air flow pulsation, it is necessary to increase the capacity of the air cleaner so it is slightly larger than the mean air capacity. This increase is called apparent air capacity.

Use the following formula to calculate the apparent air capacity. This formula applies to both naturally aspirated engines and turbocharged engines.

$$Q_2 = Q_1 \times K$$

Where,

Q ₂ : Apparent air capacity	m ³ /min
Q ₁ : Required air capacity for combustion	m ³ /min
K : Coefficient depending on the number of cylinders	

- : 2 cylinders: 2.0
- : 3 cylinders: 1.7 : 4 cylinders: 1.0

Air Cleaner Selection Table

The intake air capacity of an engine is approximately proportional to the engine speed. Yanmar uses the following table when selecting the air cleaner for TNV engines. We may recommend an air cleaner that is one size larger depending on the intended use of the driven machine and its service environment.

Air clear	ner	Single element											
Engine		C	Ľ				VM			VH/CH			
	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000	3200	3400	3600
2TNV70			,				4 iı	hch					
3TNV70							4 iı	nch					
3TNV76					4 i	nch				5 inc	ch (incluc	le 2900 m	nin ⁻¹)
3TNV82	A												
3TNV84			5 inch										
3TNV88													
3TNV84	Т	5 inch											
4TNV84		5 inch											
4TNV88		5 inch 6 inch											
4TNV84T		6 inch											
4TNV94L				6 inch						•			
4TNV98			7 inch										
4TNV98	Т			7 iı	nch								

Refer to the Yanmar TNV Option Menu for details.

Air clear	ner	Double element											
Engine		С	L				VM				VH/CH		
	min⁻1	1500	1800	2000	2200	2400	2500	2600	2800	3000	3200	3400	3600
2TNV70							4 iı	nch					
3TNV70						4 iı	nch				5 inch		
3TNV76				4 inch						5 inch			
3TNV82	A					5 inch							
3TNV84				5 inch 6 inch									
3TNV88					5 inch				6 ii	nch			
3TNV84	Т		5 inch 6 inch										
4TNV84						5 inch							
4TNV88			5 iı	nch				6 inch					
4TNV84	Т				6 inch								
4TNV94	L			6 iı	6 inch								
4TNV98				7 iı	nch								
4TNV98	Т			7 iı	nch								

Refer to the Yanmar TNV Option Menu for details.

AIR CLEANER

In the preceding subsection, the air capacity required for combustion was calculated. The purpose of the calculation was mainly to determine the air capacity for assuring the engine output performance.

For the engine to operate at full capacity, the intake air capacity should be sufficient, and the air has to be clean. Dust in the intake air has an adverse effect on the life of the main moving parts such as the piston, piston ring, cylinder block and the intake / exhaust valves. The air cleaner removes dust in before it gets into the engine. The air cleaner used for TNV series engine is called a cyclone paper element type and the element is a paper filter.

The air cleaner size is expressed by measuring its diameter in inches. Four types of air cleaners, 4, 5, 6, and 7 inches, are used for TNV series engines. Air cleaners of various configurations with different air intake / exhaust port positions are available for various driven machines and mounting positions. Refer to the *Yanmar TNV Option Menu* for details.

Although air cleaners are essential for general-purpose engines, if the application calls for indoor, emergency use purposes, and the engine will only run for short periods of time, no cleaner is generally provided. The chance that dust will degrade the life of the engine in these applications is minimal. In these types of applications, the air inlet must be covered with metal wire mesh or equivalent material.

Dust Removing Principle of the Air Cleaner

Dust is removed from the air as follows.

Air is sucked in the direction of the tangent from the air inlet (1) on the air cleaner body close to the circumference and is forced to swirl along the guides (vanes) on the inside of the main body.Larger particles of dust are separated by centrifugal force. The outer element (2) removes more than 99.9% of dust and allows the clean air to enter the engine from the air cleaner outlet (3).

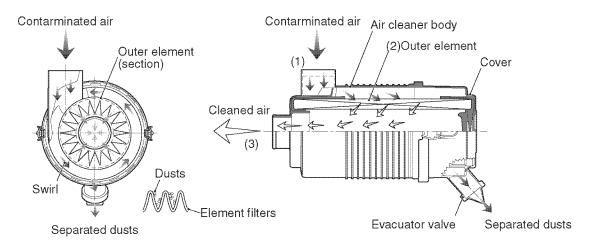


Figure 7-1

Structure of Air Cleaner

Types of Air Cleaner Element

Two types of air cleaner are available as described below, depending not only on their size but also on the structure of the element inside the air cleaner:

- Single Element Type
- Double Element (Safety Element) Type

A double element type air cleaner has the inner element installed. This inner element is intended to prevent dust or foreign matters from entering inside the engine when the outer element is removed for cleaning and/ or replacing the element.

A double element type air cleaner is necessary to be applied especially when the engine is installed on driven machines which handle particulates (sands, cement, volcanic ashes, etc.) which will significantly accelerate the wear inside the engine, or when the engine is used in a dusty environment. However, please note that the capacity as an air cleaner and the maintenance period of a double element are the same as those of a single element which is the same size.

Precautions for air cleaners:

- 1. Be sure to perform periodic maintenance/replacement for both element types.
- 2. For the double element type, do not remove the inner element during a normal maintenance.(Check the inner element if the dust indicator actuates soon after the outer element is replaced.)
- 3. Also for the single element type, be careful not to allow the entrance of dust or foreign matters inside the engine during the maintenance.
- 4. In general, the inner element can be installed even on a single element type air cleaner if the element is of the same manufacturer and the same size.(Consult with manufacturer for more information.)

Structure of Single Element Type

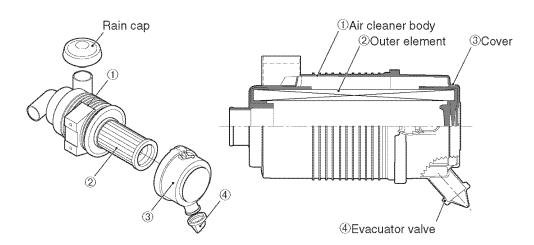


Figure 7-2

Structure of Double Element Type

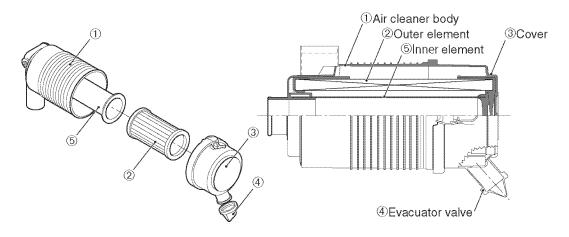


Figure 7-3

Dust Indicator

A dust indicator is mounted on the air outlet of the air cleaner to indicate the degree of air restriction and is available in a mechanical or electric type. Both types actuate when the intake air flow restriction reaches 6.23 kPa (635 mmAq). When the mechanical type of dust indicator actuates, a "red band" appears inside of the indicator's body. The mechanical indicator has a latching feature and reset button. When the electric type of dust indicator actuates, an indicator lamp or LED comes on.

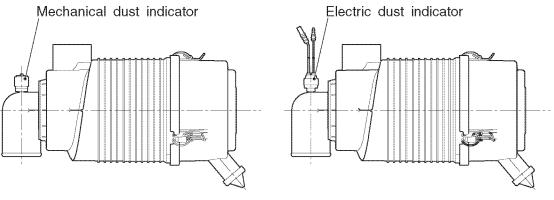
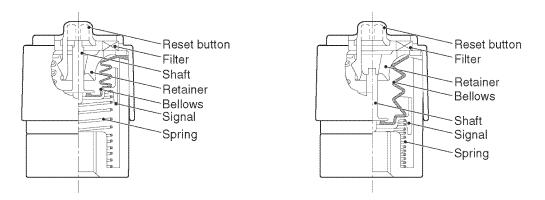



Figure 7-4

AIR INTAKE SYSTEM

Mechanical Dust Indicator: Part Code: 126650-12680

Electric Dust Indicator: Part Code: 119140-12680

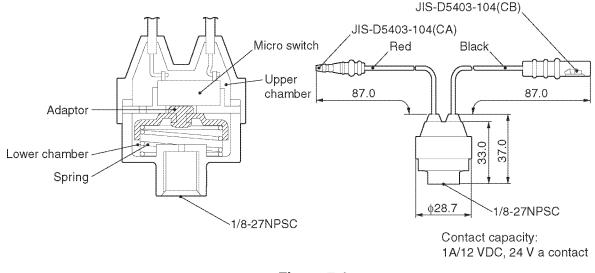


Figure 7-6

Air Cleaner Installation

Maintenance of the air cleaner greatly affects engine service life. The air cleaner should be installed in a position that facilitates maintenance. Since the air cleaner requires space for element replacement, air cleaner layout must be considered carefully when designing a driven machine.

In addition, when installing an air cleaner on the engine body, select the bracket rigidity to keep vibration acceleration within 78 m/sec² (8G) for an air cleaner made of steel or 88 m/sec² (9G) for an air cleaner made of plastic. Make sure the air cleaner is installed to avoid resonance with the engine vibration isolators after the unit is installed on the driven machine. Check vibration and durability after the engine is installed. If vibration acceleration exceeds the target value, consider changing the position of the air cleaner.

Install the air cleaner body where the ambient air temperature is 80°C (176°F) or below.

Air Intake System Hose Routing

Carefully plan the location of the air cleaner and routing of the air intake hoses when you design a TNV engine application. Prevent vibration of the air intake hose and avoid contact with other components. If the intake air temperature is high according to *Heat Balance Evaluation on page 12-16*, reconsider the air intake position. Make sure that no water, snow or dust can enter from the intake port.

Intake Port Position

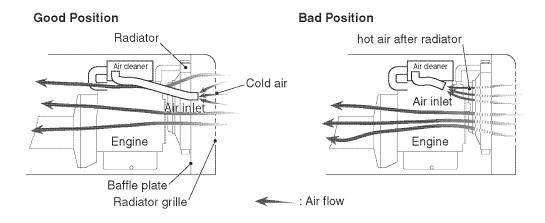


Figure 7-7

Inlet (a) of air hose should be lower than air cleaner inlet port (b) to keep water out of air cleaner canister.

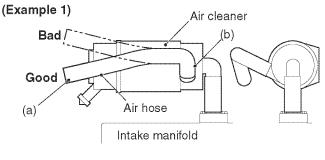


Figure 7-8

Select air intake hose materials that meet or exceed the following characteristics.

		Naturally aspirated engine	Turbocharged engine
Heat resistance		120°C (248°F) or higher	
Pressure resistance	Negative pressure	13 kPa (0.13 kgf/cm ²) or higher (air cleaner to air intake manifold)	29 kPa (0.3 kgf/cm ²) or higher (air cleaner to turbocharger)
	Positive pressure	_	196 kPa (2 kgf/cm ²) or higher (turbocharger to air intake manifold)
Materials		Ethylenepropylene rubber (EPDM)	·

Note: Do not use vinyl hose. It may be deformed under heat or intake negative pressure or become hard and brittle at low temperature.

AIR INTAKE RESTRICTION

Factors that contribute to the increase or decrease of air intake restriction include the following:

- (a) Engine intake air capacity
- (b) Air cleaner capacity
- (c) Length and diameter of the air intake hoses
- (d) Number of air intake hose bends and the angles they are bent at

If these factors cause the air intake restriction to increase, it is impossible to obtain the necessary air capacity for proper combustion. This adversely affects engine combustion performance. If air intake restriction exceeds the allowable value, increased diesel fuel consumption, increased engine exhaust temperature, decreased engine output, increased emissions, and shorter engine life could result.

Reduction of air intake restriction requires proper engine and air intake system design. It is necessary to conduct a negative pressure test after installing the parts and components of the air intake system. If the test results exceed the allowable value, check factors b), c) or d) listed previously to determine the cause.

Measurement of Air Intake Restriction

Air intake restriction is measured between the air cleaner outlet and the beginning of the engine intake manifold. Typically, a negative pressure sensor is attached to the hose that runs between the air cleaner output and the intake manifold. Negative pressure is measured by a manometer that is connected to the sensor with a piece of hose. Be sure that there is no water in the hose as it will affect the accuracy of the measurement.

The measuring device is typically configured as follows:

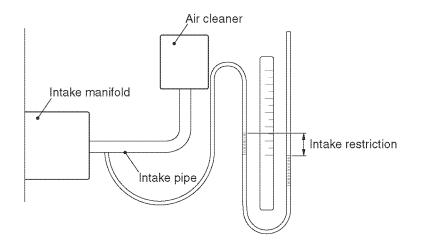


Figure 7-9

Allowable Air Intake Restriction

If air intake restriction exceeds the allowable value, review the air intake system before starting production of the driven machine. For the values of allowable restriction, See *Allowable Air Intake Restriction and Exhaust Back Pressures on page 1-30.*

Allowable restriction consists of the initial upper limit and the upper limit for air cleaner replacement. Apply the initial upper limit value to the development stage of the driven machine and the upper limit for air cleaner replacement to the maintenance check stage.

Section 8

EXHAUST SYSTEM

Page

8-3
8-3
8-4
8-6
8-8
8-8
8-8
8-10
8-10
8-11
8-13
8-13
8-14
8-14
8-14
8-18
8-18
8-19
8-19
8-20

This Page Intentionally Left Blank

The purpose of an engine exhaust system is to release high temperature gases generated during fuel combustion to the air and to reduce exhaust noise using a muffler. The engine exhaust system has been playing important roles by adding functions such as EGR equipment for decreasing exhaust emissions/black smoke, or turbocharger equipment to improve engine performance and to provide high altitude capability.Components of the exhaust system, including the exhaust pipes and mufflers, produce resistance (exhaust back pressure) to the flow of exhaust gas and can cause increase of fuel consumption, reduction of engine output, and worsened exhaust gas emissions/smoke density. In addition, engine performance can also be adversely affected.

This section describes the considerations about the structures, functions, and applications of these major equipments, and the importance of exhaust back pressure which affects the engine performance together with the major equipments.

The surfaces of components in exhaust system become extremely hot, and the engine can be very dangerous especially after operation and immediately after shutdown. Be sure to check the heat shielding design and safety of the driven machine, and give instructions to the users.

EGR EQUIPMENT

Role and Operation of EGR

EGR (Exhaust Gas Recirculation) is a technology which has been widely used for automotive diesel engines. EGR lowers the combustion temperature and reduces NOx which is a composition subject to emission control regulations by introducing a part of exhaust gas into the intake air.By applying this EGR technology, we can now comply with emission control regulations in each country, including the emission control regulation Tier3 of the Environmental Protection Agency (EPA).

The figure below shows the schematic diagram of EGR equipment. There is an appropriate value for the circulating exhaust gas volume (referred as "EGR rate" below), and it is controlled by the EGR valve which is installed between the intake and exhaust flow. EGR valves are driven by step motors and they adjust the EGR rate according to the appropriate opening indicated by the E-ECU (Electronic Engine Control Unit, see "Electronic Control Manual") depending on engine speed or load conditions.

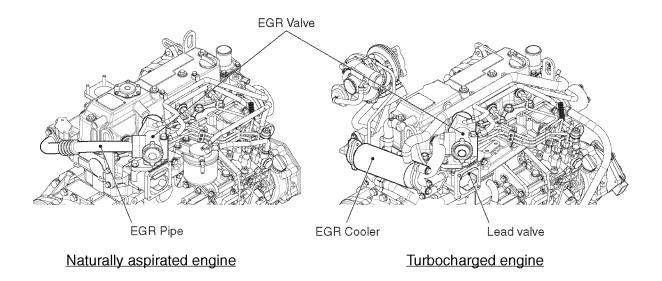


Figure 8-1

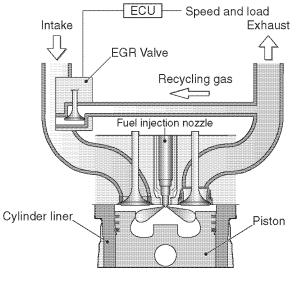


Figure 8-2

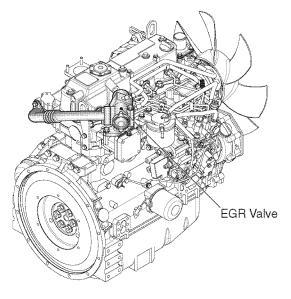


Figure 8-3

Structure of Each Device

EGR Valve

• EGR Operation Principle

Employ the EGR valve of step motor type. The roter (magnet) rotates or holds the same position by energizing the coil with electric current to excite the stator core. The rotating motion is converted to the reciprocating motion by a shaft which is coupled with the rotor, and the shaft presses a rod to open or close the valve.

• Definition of EGR Rate

The EGR rate which represents the percentage of the EGR gas in the total gas introduced into the cylinder can be defined by the formula below:

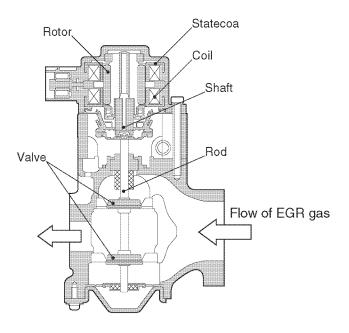
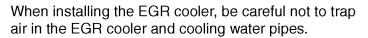


Figure 8-4

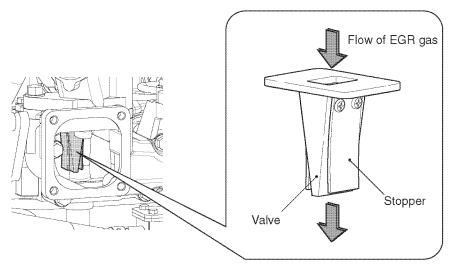
EGR Rate = $\frac{CO_2 \text{ Concentration in mixture gas at cylinder inlet - CO_2 Concentration in atmosphere}}{CO_2 \text{ Concentration in exhaust gas - CO_2 Concentration in atmosphere}}$



Flow of cooling water

Figure 8-5

EGR Cooler


The EGR cooler is a technology to lower the combustion temperature and greatly reduce NOx. By using the EGR cooler, the EGR gas is cooled with cooling water before going to the intake side and the cooled EGR gas is mixed with the intake air to lower the intake air temperature leading to even lower combustion temperature, and the NOx is greatly reduced. The heat load of the lead valve located in the downstream can also be reduced to lower the EGR gas temperature and the durability of the EGR valve can be maintained.

Lead Valve

With turbocharged engines, the intake restriction can be higher than the exhaust back pressure in the middle speed range, and it may cause the EGR gas to flow back into the exhaust side without flowing into intake side although the EGR valve is open. Because It will become difficult to reduce NOx in such cases, the lead valve is installed in the downstream of the EGR valve to improve reduction of Nox. The lead valve functions as check valve and the EGR gas can be introduced into the cylinder with the air flow pulsation even in the area where the intake/exhaust pressure reverses. As a result, the NOx can be reduced.

Flow of EGR gas

Lead valve

Figure 8-6

INTAKE/EXHAUST PRESSURE

As you can see, the EGR is an effective system to reduce NOx. However, if you fail to follow the correct usage as well as the proper maintenance, the adequate engine performance cannot be obtained and the exhaust gas emission will also be worsened.

The EGR rate is determined basically by the difference between the intake pressure and exhaust pressure (intake/exhaust differential pressure). The EGR valve is only adjusting it according to the operating conditions of the engine. Therefore, the EGR system cannot operate properly as an emission control equipment unless the intake/exhaust differentil pressure is within a certain range.

The figure below shows an example. The intake restriction and exhaust back pressure in the initial condition must be set within the range indicated by the diagonal lines in the figure below. For the actual measurement instructions, refer to 12. Matching Test Procedure. For the allowable values of each model, refer to 1. Application Standard.

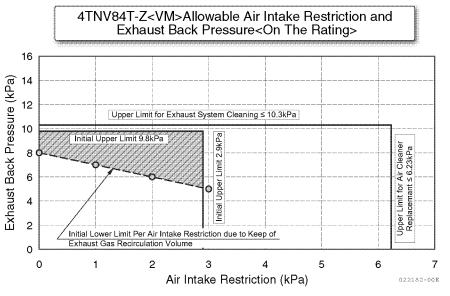


Figure 8-7

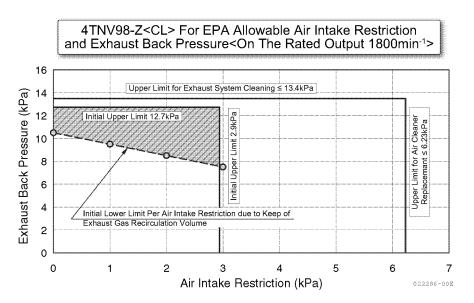
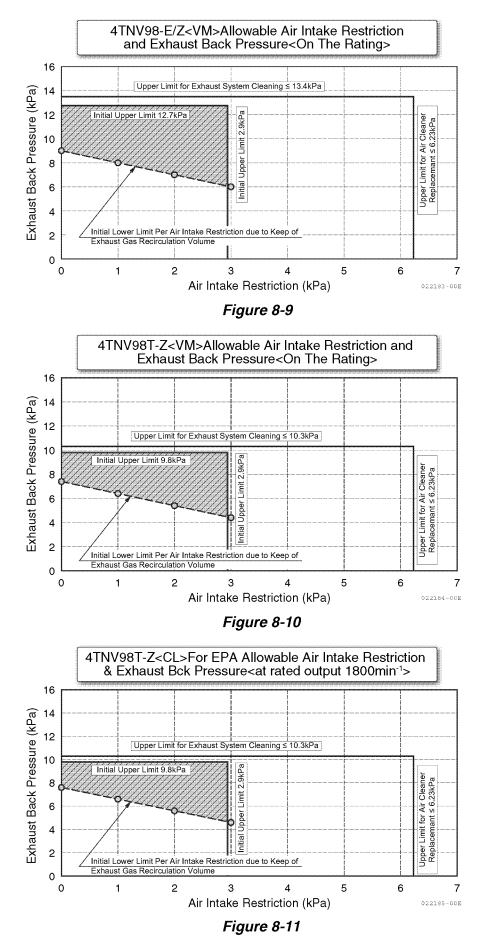



Figure 8-8

TURBOCHARGER

Engines achieve the most efficient combustion at a certain air-fuel ratio. Although the amount of fuel injection can be increased, the amount of air that can be introduced into the cylinder is limited.

The turbocharger improves the output performance of the engine by compressing the intake air with a compressor. Exhaust gas from the engine is used to drive a gas turbine which in turn drives the compressor.

Turbocharged engines are developed by matching the following criteria: the desired output performance, thermal load and durability.

The turbocharger is a precision unit that is operated in high temperature gas, rotating at a rate as high as approximately 150,000 min⁻¹. Continuous use of the unit for a long time with excellent performance requires proper handling.

Structure of Turbocharger

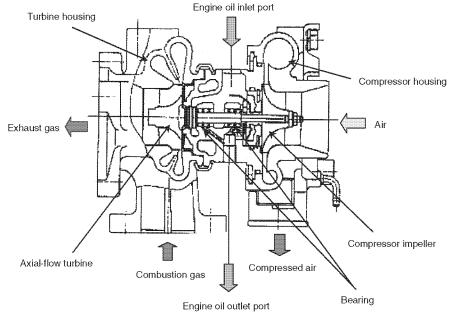


Figure 8-12

Handling the Turbocharger

 Like naturally aspirated engines, turbocharged engines require idling operation for five minutes or more, especially when starting in cold weather (0°C [32°F])or below).
 When an angine is leaded immediately after cold starting, engine oil viscosity is still high which may

When an engine is loaded immediately after cold starting, engine oil viscosity is still high which may damage the bearing due to insufficient turbocharger lubrication.

The engine should also run at idle for a sufficient period of time before stopping the engine. Stopping the engine immediately after loaded operation can lead to damage to the bearing because the lubricant supply stops, causing the component temperature to rise abnormally.

- Engine oil is used as the turbocharger lubricant. For the grade of the lubricant to be used, refer to *Selection of Engine Oil on page 11-5*.
- Replace engine oil every 250 hours.
- When discharging exhaust gas from the turbocharger directly to the outside, a waste gate valve, located inside the exhaust outlet flange, protrudes from the flange surface during each stroke as shown (Figure 8-13). Provide enough space around the waste gate valve to prevent interference.

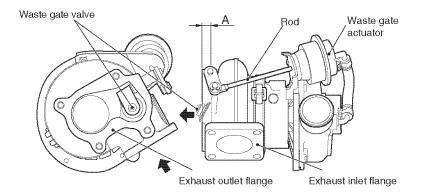
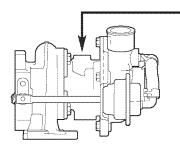



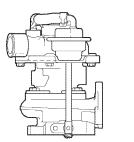
Figure 8-13

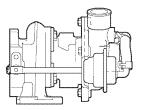
Applicable Model	Protrusion (A)	Required space
3TNV84T	4.5 mm	8.0 mm
4TNV84T 4TNV98T	8.5 mm	12.0 mm

- Do not support the weight of the exhaust system components with the outlet flange. The turbine housing may break or become deformed and cause internal damage.
- When you connect the air hose to the turbocharger, do not apply too much torque to the connection. Excess torque may damage the compressor housing, resulting in internal damage.
- Select an air hose with the proper rigidity and length so that will not become deformed at a negative pressure of 300 kPa (at 80°C [176°F]). A deformed hose can cause the turbocharger to overload and damage internal turbocharger components.
- Allowable vibration of turbocharger

Engine oil inlet : Allowable acceleration...5.0 G

Note: Check when evaluating the installation. If the allowable vibration limit is exceeded, it is necessary to change the flexible engine mount.


Figure 8-14


• Running the turbocharger at high speed can cause high frequency rotation noise and fluid noise. The noise occurs out of phase with the engine noise especially during acceleration or deceleration. Consider sound insulation when designing the driven machine application.

EXHAUST SYSTEM

Remove the turbocharger from the engine to perform maintenance. Be sure to keep the unit horizontal when you remove it from the engine (Figure 8-15).

Holding the unit vertically can cause engine oil to leak into the compressor housing or turbine housing, leading to abnormal operation after reassembly.

Do not place unit like this.

Place unit like this.

Figure 8-15

• Be sure to follow the procedures in the *TNV Service Manual* when you remove the turbocharger from the engine.

EXHAUST BACK PRESSURE

Factors contributing to the increase or decrease of exhaust back pressure (exhaust resistance) include the following:

- Exhaust gas quantity
- Muffler capacity and type
- · Length and diameter of exhaust pipe
- Number of bends of exhaust pipe and the angles at which they are bent

Using the above items as factors, the back pressure can be calculated at the design stage of the driven machine. See *Exhaust Gas Volume and Exhaust Back Pressure on page 8-14* for the calculation method. The calculation formula is for general application and discrete engine characteristics are not considered. The back pressure should be confirmed during the driven machine prototyping phase using the test equipment described in this section. This section describes how to measure the back pressure of the driven machine exhaust system and provides references to the allowable exhaust back pressure value. If the calculation or actual test results exceed the allowable value, items b), c), and d) above must be reconsidered.

Allowable Exhaust Back Pressure

If the measured exhaust back pressure (see *Measurement of Exhaust Back Pressure on page 12-9*) exceeds the allowable exhaust back pressure, review the exhaust system before putting the driven machine into production. See *Allowable Air Intake Restriction and Exhaust Back Pressures on page 1-30* for the value of allowable exhaust back pressure.

The allowable exhaust back pressure value consists of an initial upper limit value and a upper limit value. The initial upper limit value should be used during the design stage of the driven machine. The upper limit value should be used during periodic maintenance procedures.

Refer to Intake/Exhaust Pressure on page 8-6 for engines with EGR equipment.

EXHAUST MUFFLER

The purpose of the exhaust muffler is to reduce the amount of exhaust noise to an allowable level.

The structure and appearance of exhaust mufflers may vary, but in general they fall into three types: expansion, resonance and absorption. The following is a description of how each type of muffler attenuates exhaust system noise:

Expansion type

Guides the exhaust gas to the muffler to be expanded and diffused, thus attenuating the noise energy.

Divides the silencing chamber into several cells with the shielding plates and attenuates the sound by resonance with the combination of cells.

Absorption type

Absorbs the sound with material such as glass wool on the outside of the exhaust tube with multiple holes. This is also called a non-resistance type.

Mufflers with structures based on the principle of sound attenuation are frequently used on fixed engine installations, such as generators. Industrial engine applications generally use a complex structure that effectively combines all three muffler types.

To reduce exhaust noise, examine the length of the tailpipe and installation of the muffler.

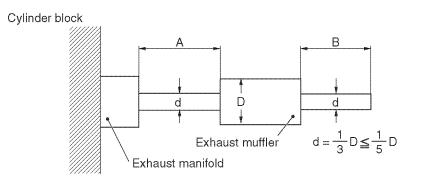
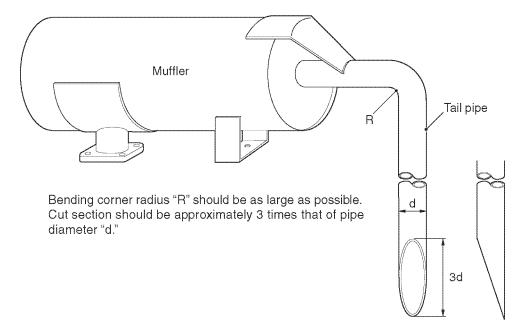


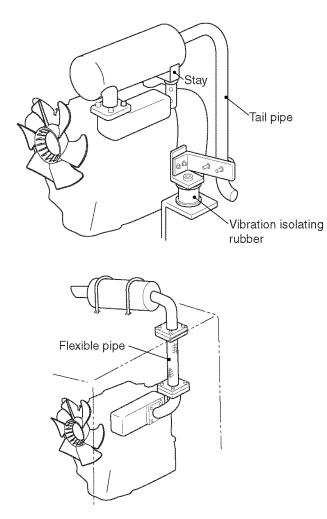
Figure 8-17

EXHAUST SYSTEM

For a standard installation, the tail pipe should have a diameter "d" that is 1/3 to 1/5 the diameter "D" of the exhaust muffler. The greater the ratio, the greater the silencing effect, but make sure that the exhaust resistance does not increase too much. Another way to reduce the amount of exhaust noise is to you balance the length of exhaust pipe ("A" that connects the exhaust manifold to the muffler) with the length of length of tail pipe "B.". The length needed for maximum silencing is determined as part of the noise reduction measure test.

Arrange the exhaust pipe and the tail pipe as straight as possible. If bending is necessary, use as large a corner radius (R) as possible for maximum noise reduction,. For the best effect, machine the end of the tail pipe diagonally rather than at right angles. The standard length of the cut section of the tail pipe is approximately three times the tail pipe diameter (d).




Figure 8-18

FITTING PRECAUTIONS FOR EXHAUST SYSTEM

Fitting the exhaust system requires a careful examination from a performance viewpoint and safety aspect. Also consider expansion of the system components due to heat. Carefully check the installation for the following points to prevent fire and personal injury.

Installation of Exhaust Muffler

The exhaust muffler should be installed on the driven machine to reduce the amount of vibration as much as possible. When installing the muffler on the engine, mount the muffler and tail pipe with highly rigid brackets. Mount the brackets to the engine block.

If the exhaust muffler is not installed on the engine, insert a flexible pipe between the engine and exhaust muffler. If the engine is equipped with a turbocharger, do not connect the rigid pipe directly to the turbocharger. Use a flexible exhaust interconnecting pipe. (Refer to *Turbocharger on page 8-8* for turbocharger installations.)

Rain cap (Snap-open cover)

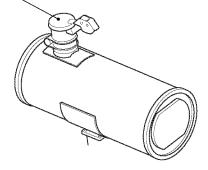


Figure 8-19

Deposits of water inside the exhaust muffler will corrode it. Install the muffler so rainwater cannot enter the exhaust outlet or tail pipe. Special care should be taken when installing the muffler outdoors or the machine is driven outdoors.

Arrange the exhaust muffler to prevent contact with the body to prevent fire or burns.

Routing of Exhaust System Components

Safety is very important when designing the routing of exhaust system components. Route the exhaust system so parts and components of the fuel system, lubrication system and electrical system are not in direct contact with, or near the exhaust system. Make sure your design includes shield plates or heat insulating material to protect against personal injury from contact with hot areas. Also consider the expansion of components due to heat.

Provide a small hole (or drain plug) at the lowest position of the exhaust pipes to provide a place to drain rainwater and condensation.

Consider the position and direction of the exhaust gas discharge from the tail pipe to prevent the heated exhaust gases from mixing with the cool air flowing through radiator or combustion air intake. This will cause the engine to overheat and allow carbon particles to be deposited on the radiator core or air filter element, leading to rapid clogging. If the engine compartment temperature rises excessively, insulate the exhaust system with the appropriate heat absorbing material. See *Matching Test Procedure on page 12-1* to decide if this is necessary.

EXHAUST GAS VOLUME AND EXHAUST BACK PRESSURE

It is necessary to calculate the back pressure when you design the exhaust pipe system. Consider the length, diameter and bends of the exhaust pipe to maintain initial exhaust back pressure at the target level or less.

Exhaust Gas Volume

Combustion Gas Volume

First obtain the volume of combustion gas when diesel fuel reacts with the oxygen in the air to become a gaseous body of 1 atm at 273 K (0°C [32°F]).

Naturally aspirated engine

 $V_{d} = 21.53 \times b \times P_{e} \times 10^{-3}/3600$ m³/sec

• Normal turbocharged engine

 $V_d = 23.76 \text{ x b x P}_e \text{x 10-3/3600}$ m³/sec

• High turbocharged engine (with intercooler)

 $V_{d} = 26.00 \times b \times P_{e} \times 10^{-3}/3600$ m³/sec

Where,

V_{d}	: Combustion gas volume	m ³ /sec (273 K (0°C [32°F]), 1 atm)
b	: Specific fuel consumption	g/kWh
Pe	: Engine output	kW

Exhaust Gas Volume

Heat is generated with chemical change, so the gas expanded by the exhaust temperature is the exhaust gas volume.

$$V = V_{d} \bullet \frac{T_{ex}}{273} = V_{d} \bullet \frac{273 + t}{273} \text{ m}^{3} / (\text{sec})$$

Where,

V	: Exhaust gas volume	m ³ /sec
V_{d}	: Combustion gas volume	m ³ /sec (273 K (0°C [32°F]), 1 atm)
T _{ex}	: Exhaust gas temperature K = 273 + t	К
t	: Exhaust gas temperature	°C (°F)

- Note: Exhaust gas volume V, which is the biggest factor in the calculation of exhaust back pressure, is an expanded volume of the combustion gas volume V_d under the exhaust gas temperature t°C. Since V_d in the equation of item (1) above is calculated larger than the actual volume, the exhaust gas volume V becomes greater than the actual volume.
- Note: To obtain the exhaust gas volume V in the back pressure calculation of general-purpose machines, use Q_1 ($V_d = Q_1$) as described in *Calculation of the Air Capacity on page 7-3* for a more realistic result.

Exhaust Back Pressure

Specific Weight of Exhaust Gas

$$\gamma = \gamma_0 \times \frac{273}{K} \times \frac{P_1}{P_0}$$

Where,

γ	: Specific weight of exhaust gas	kg/m ²
ŶΟ	: Specific weight of exhaust gas (273 K (0°C [32°F]), 1 atm)	1.29 kg/m ²
K	: Exhaust gas temperature K = 273 + t	K
t	: Exhaust gas temperature	°C (°F)
P ₀	: Standard atmospheric pressure	
P ₁	: Atmospheric pressure at the service location	

 $P_1/P_0 1 \approx 1$

Exhaust Gas Speed

$$V = \frac{V}{a} = \frac{4 \times V}{\pi \times d^2}$$

Where,

v:	: Exhaust gas speed	m/sec
V:	: Exhaust gas volume	m ³ /sec
a:	: Section area of exhaust pipe (see <i>Materials</i> for Calculating Exhaust Back Pressure on page 8-18)	m ²
d:	: Inside diameter of exhaust pipe (see Materials for Calculating Exhaust Back	m

Pressure on page 8-18)

Pipe Line Resistance

Pipe line resistance is calculated by adding the straight pipe resistance, pipe joint resistance, muffler resistance and pipe-end discharge resistance.

See *Materials for Calculating Exhaust Back Pressure on page 8-18* for a summary of the coefficients and data to be used for calculation.

• Straight pipe resistance: ΔP_1

$$\Delta P_1 = 2\mu \bullet \frac{\gamma \bullet v^2}{g \bullet d} \bullet L \quad mmAq$$

• Pipe joint resistance: ΔP_2

$$P_2 = 2\mu \bullet \frac{\gamma \bullet v^2}{g \bullet d} \bullet (d \bullet A \bullet n) mmAq$$

Where,

m	:	Pipe friction coefficient (see <i>Materials for Calculating Exhaust Back Pressure on page 8-18</i>)	
g	:	Specific weight of exhaust gas	kg/m ³
v	:	Exhaust gas speed	m/sec
g	:	Acceleration of gravity	9.8 m/sec ²
d	:	Inside diameter of exhaust pipe (see <i>Materials for Calculating Exhaust Back Pressure on page 8-18</i>)	m
L	:	Total length of straight portion of exhaust pipe	m
A	:	Resistance-equivalent length of joint (see <i>Materials for Calculating Exhaust Back Pressure on page 8-18</i>)	m
n	:	Number of joints	

• Muffler resistance: ΔP_3

(Examples)

Expansion type silencer	:	60 mmAq
Non-resistance type silencer	:	20 mmAq

• Pipe-end discharge resistance: ΔP_4

40 mmAq

Total Back Pressure of Exhaust System: P

 $P = \Delta P_1 + \Delta P_2 + \Delta P_3 + \Delta P_4 \qquad mmAq$

If the total back pressure of the exhaust system exceeds the initial allowable exhaust back pressure described in *Allowable Air Intake Restriction and Exhaust Back Pressures on page 1-30,* re-examine the length of exhaust pipe, the number of joints, and the inside diameter of the exhaust pipe and calculate the total back pressure again.

Materials for Calculating Exhaust Back Pressure

Relationship between pipe friction coefficient μ of exhaust gas and inside diameter d of the exhaust pipe							
Nominal size	d (m)	a (m ²)	μ	Nominal size	d (m)	a (m²)	μ
SGP 25A	27.6×10 ⁻³	0.598×10 ⁻³	0.01242	SGP 80A	80.7×10 ⁻³	5.115×10 ⁻³	0.00594
SGP 40A	41.6×10 ⁻³	1.359×10 ⁻³	0.00999	SGP 100A	105.3×10 ⁻³	8.709×10 ⁻³	0.00513
SGP 50A	52.9×10 ⁻³	2.198×10 ⁻³	0.00756	SGP 125A	130.8×10 ⁻³	13.44×10 ⁻³	0.00464
SGP 65A	67.9×10 ⁻³	3.621×10 ⁻³	0.00675	SGP 150A	155.2×10 ⁻³	18.92×10 ⁻³	0.00432

SGP: Carbon Steel Pipe for ordinary piping

Resistance-equivalent length of joints A					
Joints	SGP nominal size	A (m)	Joints	SGP nominal size	A (m)
90° elbow	10A to 65A	30	90° bend	R/d=3 to 5	10 to 20
90° elbow	80A to 150A	40	Long elbow	25A to 80A	15 to 20
90° elbow	175A to 200A	50	45° elbow	25A to 80A	15 to 20

R: Radius of bending

BLACK SMOKE EXHAUST

After long periods of use, improper maintenance, or poor installation, engine performance may deteriorate and the engine may begin to discharge black smoke. Service the engine at specified maintenance intervals to reduce this emission and ensure continued compliance with EPA and EC emission control regulations and Japanese special vehicle emission control regulations.

Characteristic Factors of Black Smoke Generation

Characteristic factors of black smoke generation are shown in Figure 8-20.

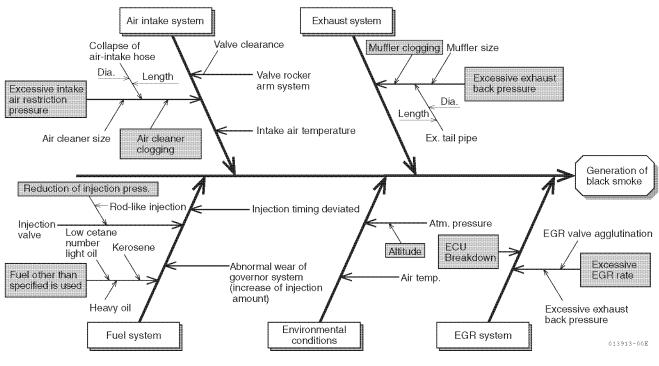


Figure 8-20

Generation of black smoke is typically caused by insufficient intake air in comparison with the amount of diesel fuel injection.

When the black smoke is generated, check the above causes (Figure 8-20), especially those enclosed by a rectangle.

The allowable limit of intake air restriction pressure and exhaust back pressure are as presented in *Allowable Air Intake Restriction and Exhaust Back Pressures on page 1-30*. Users must maintain the values within the range of the allowable limits.

Measurement of Smoke Density

The methods of measuring smoke density are described below. The method used depends upon the emission control regulations that are in effect in the service area.

Instrument type	Bosch's system	Reflection system	Celesco's system (Opacity meter)	
Measuring system	Filter reflection type	Filter reflection type	Light penetration type	
Measuring unit	BSU	Degree of pollution (%)	Degree of transmission (%)	
Measuring equipment	Smoke meter	EXHAUST GAS		
Conversion (approx.)				
Application	For evaluation of general performance	Ministry of Land, Infrastructure and Transport Special vehicle emission control regulations Ministry of Land, Infrastructure and Transport Construction machinery emission secondary designation system	EPA ECE-R24 ECE-77/537	

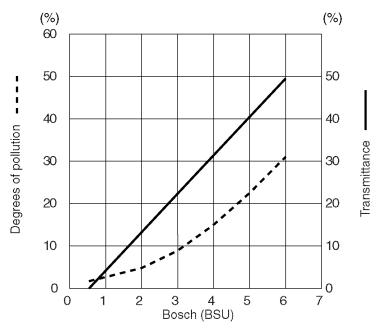


Figure 8-21

Section 9

COOLING SYSTEM

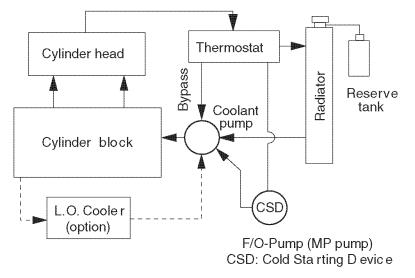
Page

Cooling System Diagram	9-4
Engine Coolant	9-4
Characteristics of Water	9-4
Water Quality Needed to Prepare Engine Coolant	9-5
Required Engine Coolant Characteristics	9-6
Typical Properties of LLC (Yanmar Standard)	9-7
Radiator	9-8
Example of the structure of a radiator made from aluminum Radiator Selection	
Radiator Position	
Radiator Standard Capacity	. 9-13
Precautions for Installation	. 9-14
Cooling System Hoses	. 9-16
Rubber Hose Conditions	
Precautions for Cooling System Hoses	
Hose Clamps	
Supplying Engine Coolant	
Thermostat	
Operation of Thermostat and Flow of Coolant	. 9-20
Engine Coolant Temperature Switch	. 9-21
Cooling System Recovery Tank	. 9-22
Radiator Cap Structure	
Function of Cooling System Recovery Tank	
Selection of Engine Coolant Recovery Tank Capacity	. 9-24
Installation of Engine Coolant Recovery Tank	. 9-24
Heat Rejection to Engine Coolant	. 9-25
Calculation of Heat Rejection to Engine Coolant	
Discharge Engine Coolant Flow from Engine Coolant Pump	. 9-25
Cooling Fan and Its Drive System	. 9-26
Cooling Fan	

This Page Intentionally Left Blank

Out of the heat generated by combustion of the diesel fuel, 30 to 40% can be taken out as power. Some 25 to 30% is carried away by the engine coolant and 30 to 35% is released as loss into the open air by exhaust or heat radiation. The comparison of the generated heat and the breakdown of the diesel fuel consumption is called the heat balance. It varies with the presence or absence of a turbocharger and the combustion system. The figure below shows an example of heat balance for a naturally aspirated engine.

Figure 9-1


As compared with the DI system engine, the special swirl chamber system engine involves an additional cooling loss of 8 to 10%. This is because the combustion chamber, including the special swirl chamber, has a greater surface area that needs to be cooled. In addition, there is a loss of work as the gas intake and exhaust goes to and from the special swirl chamber.

In a turbocharged engine, part of the heat that would be released exhaust gas, is recovered by the gas turbine that drives the compressor.

As seen from the figure above, cooling and exhaust account for a great portion of the loss. Reduction of these losses is important in improving the thermal efficiency.

COOLING SYSTEM DIAGRAM

Figure 9-2 shows the diagram of a DI engine equipped with an MP pump.

Figure 9-2

Figure 9-2 shows the cooling system diagram for the TNV series engines. The engine coolant goes through the radiator and is fed by the engine coolant pump into the engine coolant jacket to cool the inside of the engine, the cylinder outer walls and cylinder head. It then returns to the radiator via the thermostat. When the hot engine coolant goes through the radiator its heat is dissipated with the help of the cool air that the cooling fan draws or pushes through the radiator.

ENGINE COOLANT

The heat generated by combustion process radiates to neighboring engine components. If the cooling system is inadequate, the cylinder head, combustion chamber, pistons and exhaust valves overheat and their materials lose strength, leading to component failures and shorter engine service life.

Inadequate cooling also causes the engine oil to degrade prematurely which reduces its lubrication efficiency. This may result in abnormal component wear and seizure.

If the engine coolant temperature is too low, the engine's thermal efficiency is lowered, causing poor combustion. This may also cause cylinder bores to rust or corrode. Corrosion results from reaction between carbon monoxide and sulfur dioxide generated in the combustion process and the water which condenses out of the exhaust gases.

Characteristics of Water

- Note: The following discussion does not imply that plain water can be used as an engine coolant. It is for illustrative purposes only. Always use an engine coolant that is specified by Yanmar. Without any measures to increase its boiling point or reduce its freezing point, water boils at 100°C (212°F) and freezes at 0°C (32°F). To expand its temperature range, the following measures are taken:
 - To increase boiling point of water, the cooling system is pressurized. A radiator cap helps to maintain the cooling system pressure. For example, if the cooling system pressure is 0.9 kg/cm2, the boiling point can be raised to approximately 118°C (244°F).
 - To lower the freezing point, anti-freeze, also called Long Life Coolant ("LLC"), is used. The specific freezing point depends on the concentration of anti-freeze used.

• Note: Plain water is not suitable as an engine coolant. Pure water leaves deposits and rust that have very low thermal conductivity. This results in the lack of cooling performance and causes damage to internal engine components.

A Yanmar standard engine coolant switch is activated at $110\pm3^{\circ}C$ ($230\pm3^{\circ}F$) as an overheat alarm. Therefore the engine coolant needs to be within the specified limits under all working conditions. (Refer to *TNV Installation Evaluation Sheets.*)

Water Quality Needed to Prepare Engine Coolant

	Recor	nmended Water	Quality Standards and Major Troubles from Poor Water	Quality	
No.	ltem	Recommende	Description	Major trouble	
NO.	item	d value	Description	Corrosion	Scale
1	рН 25°С (77°F)	6.3 ~ 8.5	Expresses hydrogen ion concentration in an aqueous solution. Used as the measure of neutrality (pH=7), acidity (pH<7) or alkalinity (pH>7). Acidity increases corrosion and alkalinity increases scale generation. Generally, pH of natural water is between 6 and 8.	r	v
2	Electrical conductivity 25°C (77°F)	<0.04 S/m	Indicates micro-mho per cm. High electrical conductivity means a high content of elec- trolytic ions and solids in the water, which increase corrosion and scale generation.	v	~
3	Total hardness (CaCO3)*	<100 ppm	Indicates the quantity of Ca ions and Mg ions in the water by the corresponding calcium carbonate in ppm. High total hardness increases scale generation.	_	~
4	M alkalinity (MaCO3)	<150 ppm	Indicates whole alkaline content in the form of hydroxides, carbonates and bicarbonates by the corresponding cal- cium carbonate in ppm. High M alkalinity means dissolution of alkaline content, which increases scale generation.	_	V
5	Chlorine ion content (Cl⁻)	<100 ppm	Indicates chlorine ion content. High chlorine ion content increases corrosiveness. The water supply of Japan contains approximately 10 to 40 ppm of chlorine ions.	v	_
6	Sulfate ion content (SO ₄ ²⁻)	<100 ppm	Indicates the sulfate ion content in water. High sulfate ion content causes copper corrosion. If Ca ion content is also high, $CaSO_4$ is generated by the reaction with Ca^{2+} , which increases scale generation.	v	~
7	Total iron (Fe)	<1.0 ppm	Indicates the iron content. When 0.3 ppm is exceeded, coloring by precipitation occurs. High iron content causes scale generation.	v	~
8	Silica (SiO2)	<50 ppm	Indicates Silicon Dioxide content. Hard scale is generated by combination with Ca and M2. This is not a serious problem if the water hardness is low.	_	~
9	Evaporation residue	<400 ppm	Quantity of non-soluble substances obtained by evaporation. Large amounts of suspended solids increase electrical conductivity, which increases corrosion.	_	~
10	Nitrate ion	<5 ppm		~	
11	Ammonium ion	<0.05 ppm		~	
12	Sulfur ion (S ^{2–})	<1 ppm		~	

* Use soft water instead of hard water. Water softness or hardness is determined by the amount of Ca (calcium) ion and Mg (magnesium) ion in the water.

Required Engine Coolant Characteristics

A mixture of LLC and water is commonly used as an engine coolant. The most commonly used LLC is made of Ethylene Glycol.

Engine coolant concentrate must provide adequate corrosion protection, lower the freezing point, and raise the boiling temperature of the engine coolant.

Boili	Boiling point and Freezing point (example)			
vol%	vol% Freezing point			
Anti-freeze	°C (°F)	°C (°F)		
40	-24 (-11)	106 (223)		
50	-37 (-35)	108 (226)		
60	-52 (-62)	111 (232)		

Note: Boiling point can be raised if the cooling system is pressurized. A radiator pressure cap helps to maintain system pressure. Commercially available premixed LLC and water is recommended to ensure good water quality.

Typical Properties of LLC (Yanmar Standard)

1	Density 20°C (68°F), g/cm ³ (undilu	1.136	
2	Boiling point,°C (°F), (undiluted):	171 (340)	
3	Flash point, °C (°F), (undiluted):	—	
4	Foaming characteristics, ml, (30%	0	
5	Water, wt%, (undiluted):		_
6	Freezing point, °C (°F)	(50 vol%, solution):	-37.1 (-34.8)
		(30 vol%, solution):	
7	Reserve Alkalinity (undiluted):		8.2
8	pH (30 vol%, solution):		7.8
9	Corrosion, mg/cm ² (20 vol% soluti	ion, 88°C (190°F) × 336 hrs)	
	Aluminum:		-0.02
	Iron:		-0.10
	Steel:		0.00
	Brass:		-0.03
	Solder:	-0.05	
	Copper:		0.00

If Yanmar standard LLC is not available, Yanmar recommends using a LLC that conforms to the following specifications.

- JIS K-2234 (Japanese Industrial Standard)
- SAE J814 (Engine Coolants)
- SAE J1034 (Automotive and Light Truck Engine Coolant Concentrate)
- ASTM D3306 (Specification for Ethylene Glycol Base Engine Coolant)

IMPORTANT

• Always add LLC to soft water. It is important to use LLC in cold weather. Without LLC,

Cooling performance will decrease due to scale and rust in the engine coolant system. Engine coolant may freeze and expand approximately 9% in volume. This may cause serious damage in the cooling system or engine.

- Be sure to use the proper amount of coolant concentrate specified by the LLC manufacturer depending on the ambient temperature. LLC concentration should be 30% as a minimum and 60% as a maximum (by volume).
- NEVER mix different brands of LLC, otherwise harmful sludge may form.
- Replace the coolant once a year.

RADIATOR

A diesel engine needs to be cooled to appropriate temperature levels to avoid damage to the cylinders, cylinder head, pistons and engine oil. The radiator helps to dissipate heat created by the combustion process.

Example of the structure of a radiator made from aluminum

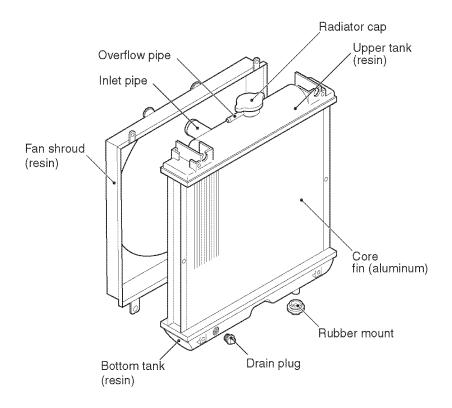


Figure 9-3

Radiator Selection

The following flow chart shows the procedure for radiator selection. This is a basic flow. For details, consult the radiator manufacturer.

Flow-chart for Radiator Selection

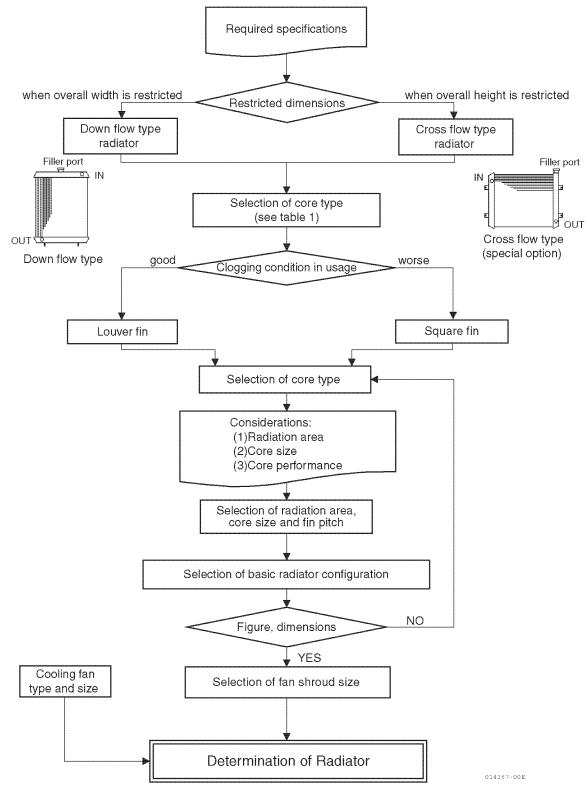


Figure 9-4

COOLING SYSTEM

	Louver fin	Square fin (special option)		
Corrugated fin figure	Tube Fin	Fin		
Core configuration	Fin			

Radiator Position

The relative position of the radiator and fan greatly influences its cooling efficiency. If the radiator is too close to the fan, the area near the fan shaft is not cooled sufficiently. If the radiator is too far from the fan, the air does not reach the radiator core. The air flow of the pusher fan and suction fan is different. If the radiator has a fan shroud, there must be at least 25 mm between the core surface and fan.

Refer to **(Figure 9-5)** for the relative position of the fan and shroud. The figure shown here is a general example. To obtain the best heat balance, determine the final position of the radiator and fan with the engine mounted on the driven machine.

Pusher Fan

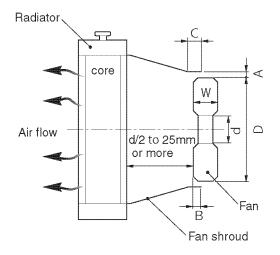
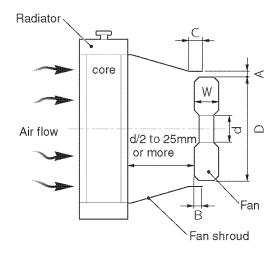



Figure 9-5

Symbol	Meaning	Description
*A	Clearance at end of fan blade	Aperture (between end of fan blade and shroud: 10 to 15 mm
В	Fan Iap width	Lap at 1/3 or more of projected fan blade width (W)
С	Shroud ring width	Approx. 1/2 of projected fan blade width (W)
W	Projected width of fan blade	
D	Fan diameter	
d	Fan boss dia.	

* Approximately 10 mm for stationary equipment and 15 mm for mobile equipment

Puller Fan

Figure 9-6

Symbol	Meaning	Description
*A	Clearance at end of fan blade	Aperture (between end of fan blade and shroud: 10 to 15 mm
В	Fan Iap width	Lap at 2/3 or more of projected fan blade width (W)
С	Shroud ring width	Approx. 1/2 of projected fan blade width (W)
W	Projected width of fan blade	
D	Fan diameter	
d	Fan boss dia.	

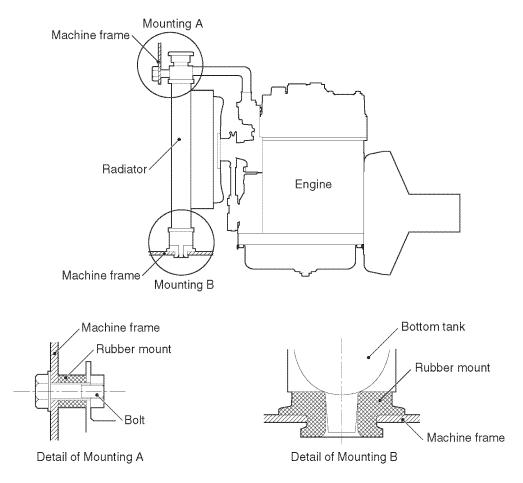
* Approximately 10 mm for stationary equipment and 15 mm for mobile equipment

Radiator Standard Capacity

The hourly heat release rate (kcal/h or kW) is used to measure the radiator capacity for Yanmar engines. However, this is not the absolute value but the rate under specified test conditions. When a particular radiator is mounted on an engine, fan shape, fan speed, coolant flow rate and/or ambient temperature may be different from test conditions so the heat release may deviate from that specified on the drawing. The radiator heat release shown here indicates the relative radiator capacity.

The table below shows the capacity of standard radiators Yanmar uses with TNV engine applications. The optimum radiator should be selected by referring to the instructions in *Matching Test Procedure on page 12-1* since the radiator selected using this table is not always appropriate.

Note: The specified test conditions for the values in the following table are 8 m/sec air flow, 40 l/min water flow, 50°C (122°F) temperature difference between water and air.


	Nominal heat rejection rate unit: kcal/h (kW)											
Madal	Specification	CL			VM					СН		
Model	min ⁻¹	1500	1800	2000	2200	2400	2500	2600	2800	3000	3000	3600
2TNV70)				I		20	,300 (2	3.6)			1
3TNV70)			1	20,	300 (23	3.6)				24,600 (28.6)	
3TNV76	6				20,	300 (23	3.6)				24,600	(28.6)
3TNV82	2A				20,	300 (23	3.6)					
3TNV84	1		300 3.6)			24,	600 (28	3.6)				
3TNV88	3	20,	300 300 3.6)	24,600 (28.6)								
3TNV84	4T	30,700 (35.7)		30,700 (35.7)								
4TNV84	1		700 5.7)			37,	500 (43	3.6)				
4TNV88	3	30,700 (35.7) 37,500 (43.6)										
4TNV84	4T	· ·	37,500 44,500 (51.7) (35.7) 44,500 (51.7)									
4TNV94	1L	51,800 (60.2)										
4TNV98	3			51,800 (60.2)								
4TNV98	зт			51,800	(60.2)							

Precautions for Installation

To avoid possible failure of the radiator core, it is important to protect the radiator from excessive vibration and / or shock loading. If the radiator is directly installed on an engine mount, the vibration of the engine is transmitted to the radiator. It is necessary to provide vibration dampening for the radiator mount. Vibration acceleration must be 59 m/s2 (6G) or less.

Installation example of an aluminum radiator with resin tank

To take advantage of the resin tank, the right and left brackets that secure it are eliminated. Instead, the tank is designed to be installed directly on the engine frame using a rubber mount. The lower rubber mount accommodates various assembling methods and absorbs the thermal expansion of the component.

Notes on installation:

- Upper rubber mount: Be sure that the upper rubber mount does not resonate with vibration in the up-down direction (bouncing) and vibration in the rolling direction (shown by the arrow in (Figure 9-7)).
- It is recommended that the radiator support member be made of a highly rigid material. The radiator is not a strong member and is easily affected by body deformity. The periphery of the radiator should be rigid to protect the component.

Prevent hot air from mixing with cool air in driven machine applications that have an engine compartment by providing a duct or baffle plate for the radiator. Examples are shown (Figure 9-8).

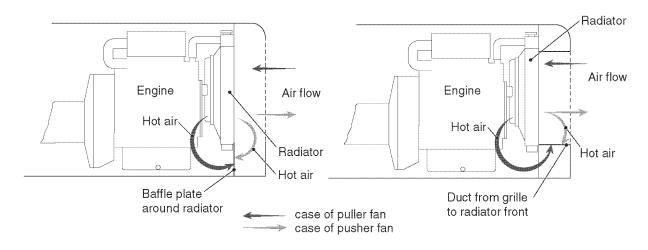
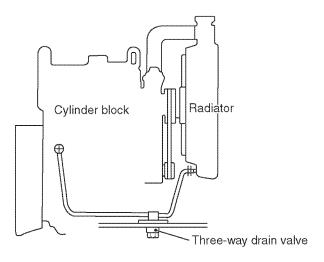


Figure 9-8

Other Precautions:

- Make sure the square area of the "cool air inlet" in the engine compartment that provides cool air flow for the radiator is at least 20% larger than the surface area of the front of the radiator.
- Install an engine coolant recovery tank for the radiator. As the engine coolant temperature rises, increased pressure in the radiator forces engine coolant through the overflow hose into the engine coolant recovery tank. When the engine coolant temperature drops, the radiator pressure decreases and the coolant moves from the recovery tank back into the radiator. This provides a reserve supply of engine coolant and makes the process of checking the engine coolant level simpler. For calculation of the engine coolant recovery tank capacity, see *Cooling System Recovery Tank on page 9-22*.
- Never paint the radiator core.
- Design the cooling system so the fan belt can be tensioned and replaced easily.
- Prevent wear of the engine coolant hoses by making sure they do not contact other engine components.

COOLING SYSTEM HOSES


Rubber Hose Conditions

The rubber hose used in the cooling system must comply with heat resistance and pressure resistance conditions specified by Yanmar. The hose should be double layered with an internal support or spring to avoid being deformed from vacuum pressure. An improper type of rubber hose may burst under the cooling system pressure or be deformed by the vacuum created when the engine coolant temperature changes from hot to cold. These situations can obstruct the flow of engine coolant.

Rubber hose material conditions recommended by Yanmar				
Туре	Double layer with internal support or spring			
Thickness	5 mm (The minimum allowable hose thickness is 3.5 mm.)			
Pressure resistance	196 kPa (2 kgf/cm ²) or more			
Heat resistance	393 K 120°C (248°F) or more			
Tensile strength	8820 kPa (90 kgf/cm ²) or more			
Elongation	30% or more			
Hardness	Hs70 ± 5			
Material	EPDM (ethylene propylene diene rubber)			

Precautions for Cooling System Hoses

The cooling system hoses (including drain hose) should not protrude from the driven machine. They should be protected to prevent damage from external obstacles. Prevent the coolant system hoses from coming in contact with other engine components.

Figure 9-9

Provide a means to drain engine coolant from the radiator and engine. The example shown (Figure 9-9) uses a three-way drain valve to drain both the radiator and engine at the same time. If the engine is mounted on a vehicle, provide a shield to protect the drain hose from being damaged by external objects.

When a cooling system hose is used to connect the engine coolant outlet to the radiator, arrange the hose so it doesn't have any convex bends. A convex bend will trap air in the hose and restrict the flow of engine coolant. This results in poor cooling system performance and causes the engine to overheat.

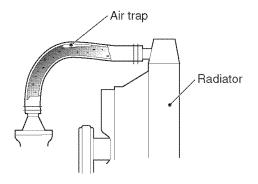
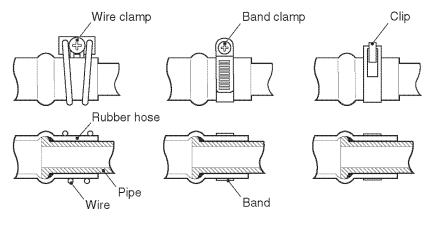


Figure 9-10


Always install an engine coolant temperature indicator. See *Engine Coolant Temperature Switch on* page 9-21.

Hose Clamps

Make sure the hose clamps have no sharp edges that will damage cooling system hoses and cause loss of engine coolant.

Fasten a clamp or clip at the flat portion of the connector to avoid leakage.

Bad examples :

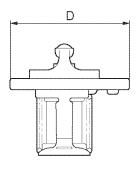
Don't fasten at the bulge portion.

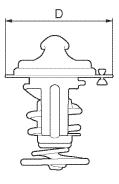
Figure 9-11

Supplying Engine Coolant

Engine coolant has to completely fill the engine block and all cooling system components or the engine will overheat.

Engine coolant supplying recommendations:

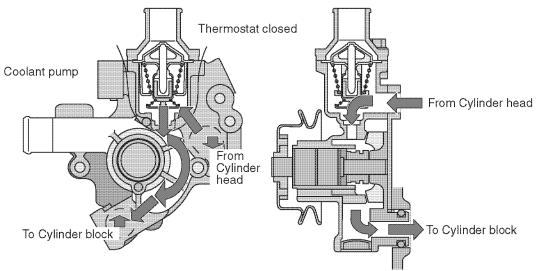

- After engine coolant is poured into the radiator, run the engine for a short period of time to remove air from the cooling system.
- The engine coolant level should be just below the engine coolant filler port on the radiator. If necessary, fill it again. Run engine long enough to open thermostat. Check that the radiator top is hot.
- Repeat these processes until the engine coolant level stays just below the engine coolant filler port.
- Note: The amount of engine coolant added to the cooling system during production of the driven machine should be based on data obtained during design and prototype testing.


THERMOSTAT

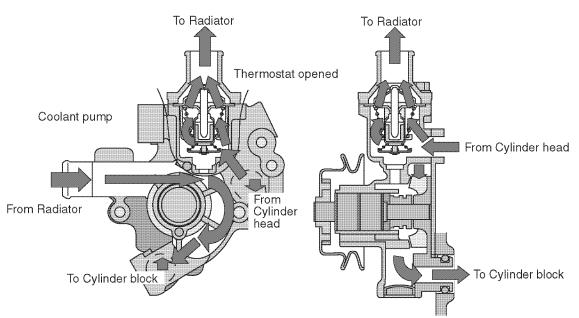
The thermostat provides automatic control of the engine coolant temperature and is generally installed in the cooling system line between the cylinder head and upper radiator tank. The purpose of the thermostat is to prevent engine coolant from circulating into the radiator until the engine coolant temperature reaches a preset temperature. This allows the engine to warm-up more quickly. When the engine reaches operating temperature, the thermostat valve starts to open to let the engine coolant to flow into the radiator. The TNV series engine uses a wax pellet type of thermostat. The performance of this thermostat is shown in the table below. When engine coolant is used to supply heat to warm the interior of the driven machine, use a thermostat that opens at a higher temperature. The shape is identical for each type.

	Standard			(Fo	or heater) opt	ion	
	2TNV70	3TNV82A	4TNV94L	2TNV70	3TNV82A	4TNV94L	
	3TNV70	3TNV84(T)	4TNV98(T)	3TNV70	3TNV84(T)	4TNV98	
	3TNV76	3TNV88		3TNV76	3TNV88		
		4TNV84(T)			4TNV84(T)		
		4TNV88			4TNV88		
Part code	119717-	129155-	121850-	119718-	129574-	121850-	
	49800	49800	49810	49800	49800	49800	
Thermostat type			Wax pe	llet type	·		
Valve opening temperature	71°C ±	1.5°C (160° ±	₌ 1.5°F)	82°C ±	1.5°C (180°F :	± 1.5°F)	
Full opening temperature		85°C (185°F)			95°C (203°F)		
Maximum lift			8 mm c	or more			
Flange diameter D	φ44	mm	φ54 mm	φ44	mm	φ54 mm	
ID color		Blue		Red	Brown	None	
Туре	А	E	3	A	B		

A type



B type


Operation of Thermostat and Flow of Coolant

Under cold conditions

Engine coolant does not go into the radiator when the thermostat is closed.

Under warm conditions

Engine coolant goes into the radiator when the thermostat is opened.

Figure 9-14

ENGINE COOLANT TEMPERATURE SWITCH

An abnormal increase in engine coolant temperature may cause serious engine damage. An engine coolant temperature switch is installed as standard equipment to sense abnormal coolant temperature and ensure safe operation of the engine. Alert the operator or shut down the engine when the coolant temperature rises over the specified temperature.

Coolant Temperature Switch Specified for Radiator Installed in TNV Series Engine				
		All models of TNV series		
Yanmar code No.		121250-44901		
Operating temperature of coolant ON		110 ± 3 (230 ± 3)		
temperature switch °C (°F) OFF		100 (212) or below		
Contact point capacity		12 VDC–3.4 W or below		
ID color		Gray		

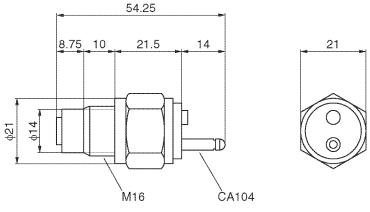


Figure 9-15

Example of wiring diagram

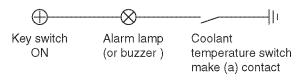
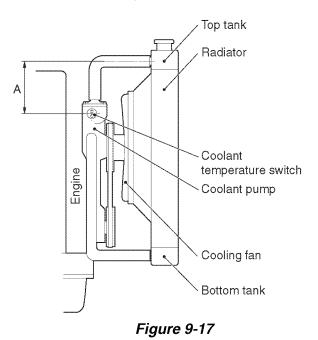



Figure 9-16

Note: The engine coolant temperature switch should be located below the upper tank of the radiator because the switch does not operate reliably unless immersed in coolant.

COOLING SYSTEM RECOVERY TANK

The cooling system is a closed circuit, but small amounts of engine coolant are lost through the radiator cap while the engine is operated.

It is necessary to check and replenish engine coolant periodically. The cooling system recovery tank is designed to extend the interval between engine coolant level checks.

Radiator Cap Structure

Besides serving as the lid for the engine coolant filler port, the radiator cap has a pressure valve to maintain high cooling system pressure and a vacuum relief valve to prevent the cooling system from becoming damaged from a negative pressure.

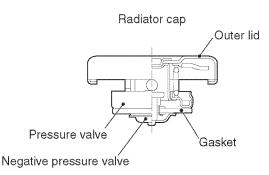
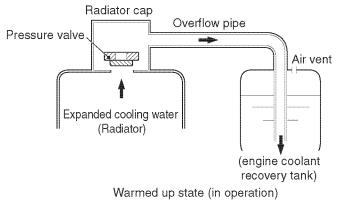
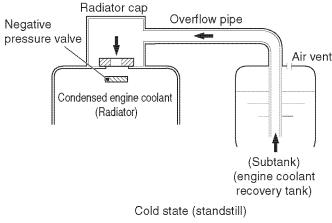


Figure 9-18


The pressure valve opens outward when the pressure in the radiator exceeds 88 kPa (0.9 kg/cm²). It keeps the coolant under high pressure to prevent it from boiling and protects the radiator from being damaged by too much pressure.

The negative pressure valve opens inward and protects the cooling system from being crushed when engine coolant cools down and the pressure inside the radiator becomes negative at 4.9 kPa (0.05 kg/cm²) or less.


Function of Cooling System Recovery Tank

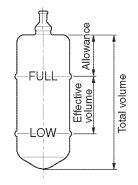
When engine coolant temperature increases it expands which causes the cooling system pressure to increase. When the cooling system pressure reaches 88 kPa (0.9 kg/cm^2) or more the pressure value in the radiator cap opens and engine coolant flows through the overflow hose and into the engine coolant recovery tank. If the engine is operated frequently, the engine coolant in the radiator gradually decreases and must be replenished. Engine coolant stored in the engine coolant recovery tank is used to replenish the engine coolant in the radiator.

When the engine is running, the expanding coolant gradually opens the pressure valve in the radiator cap and flows into the engine coolant recovery tank through the overflow hose.

The flow of engine coolant stops when the temperature of the engine coolant stops rising.

Figure 9-19

When the engine is shut off, the engine coolant temperature rises temporarily then gradually drops. As the engine coolant temperature drops it contracts inside of the radiator which causes the cooling system pressure to drop. The pressure inside of the radiator ultimately goes negative relative to the ambient pressure.


When this negative pressure exceeds 4.9 kPa (0.05 kg/ cm²), the negative pressure valve in the radiator cap opens to allow the engine coolant in the engine coolant recovery tank to be sucked back into the radiator.

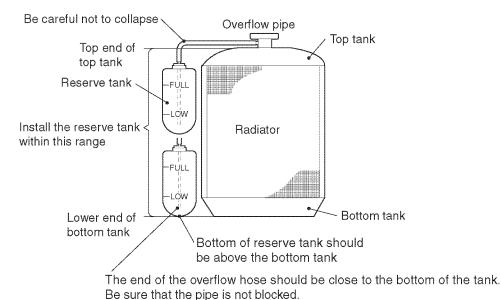
It is not possible to prevent engine coolant from evaporating through the air vent hole. Sooner or later the engine coolant decreases and needs to be replenished. Engines with engine coolant recovery tanks should be replenished from the engine coolant recovery tank. However, the initial fill of engine coolant should be supplied to both the radiator and the engine coolant recovery tank.

Selection of Engine Coolant Recovery Tank Capacity

4.5% of the total coolant quantity Vo flows into the engine coolant recovery tank and then is sucked back into the radiator.

To determine the engine coolant recovery tank capacity, select an engine coolant recovery tank that meets the following conditions: the effective quantity obtained by subtracting the LOW line on the engine coolant recovery tank scale from the FULL line is greater than the inflow quantity q_s to the engine coolant recovery tank, and that the excess quantity (allowance) obtained by subtracting the quantity of the FULL line from the total quantity in the engine coolant recovery tank is also greater than the inflow quantity q_s to the engine coolant recovery tank is also greater than the inflow quantity q_s to the engine coolant recovery tank is also greater than the inflow quantity q_s to the engine coolant recovery tank.

In practice, if the effective quantity is greater than the inflow quantity q_s to the engine coolant recovery tank, no problem should occur. If the excess quantity (allowance) is small, part of the coolant may overflow from the engine coolant recovery tank in the early stage of operation. This may require cleaning of contamination.


Figure 9-20

Installation of Engine Coolant Recovery Tank

The engine coolant recovery tank should be installed near the radiator. The bottom of the reserve tank should not be below the bottom of the radiator tank. The top of the reserve tank should be not be above the top of the radiator tank.

Adjust the overflow hose length or location of the engine coolant recovery tank so that the end of the overflow hose is at the bottom of the engine coolant recovery tank.

Install the engine coolant recovery tank where the engine coolant level can easily be checked and refilled.

at the pipe is not blocke

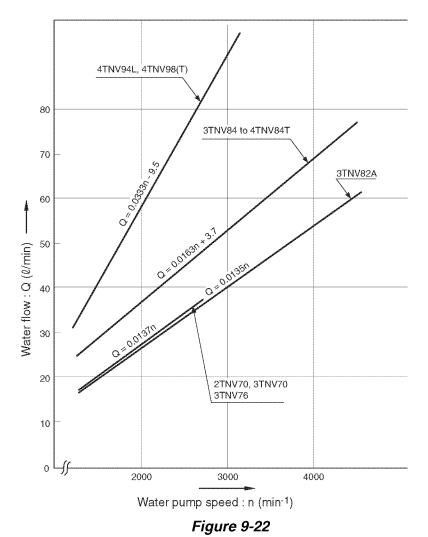
Figure 9-21

HEAT REJECTION TO ENGINE COOLANT

Calculation of Heat Rejection to Engine Coolant

Calculate the diesel fuel combustion heat carried away by the cooling system as follows:

 $q = f x b x P_o x H_u x 10^{-3}$


Where,

	∽,					
q	:	Heat rejection to engine coolant	kJ/h(kcal/h)			
f	:	: Heat rejection ratio to engine coolant				
b	:	Specific fuel consumption	g/kW ● h			
Po	:	Engine output	kW			
H _u	:	Lower heat value of diesel fuel 4.3116×10^4	kJ/kg (10300 kcal/kg)			

Discharge Engine Coolant Flow from Engine Coolant Pump

Select the radiator according to the engine coolant pump discharge flow table below and the heat release to the engine coolant above.

Coolant Pump Capacity

YANMAR. TNV Application Manual

COOLING FAN AND ITS DRIVE SYSTEM

The cooling fan and its drive system are mounted as shown (Figure 9-23).

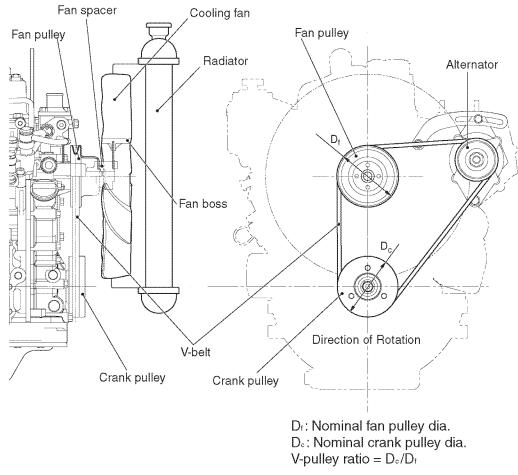


Figure 9-23

Cooling Fan

The cooling fan provides cool air flow around the engine in addition to cooling the radiator:

- Eliminates hot spots in the exhaust system
- · Protects electrical components from heat
- · Reduces voltage drop in the wiring harness
- Reduces fuel temperature rise
- · Cools radiation heat on the surface of the engine
- · Cools oil pan surface (engine oil cooling)
- Cools cylinder jacket surface
- · Cools hydraulic equipment of the driven machine and generator

Selection of Cooling Fan

Types of cooling fans are listed in the *Yanmar TNV Option Menu, D-e*. They are all plastic fans, which are characterized by a large volume of air flow and low noise emission.

Required flow volume, fan revolution speed, and fan shroud resistance should be considered when selecting a cooling fan.

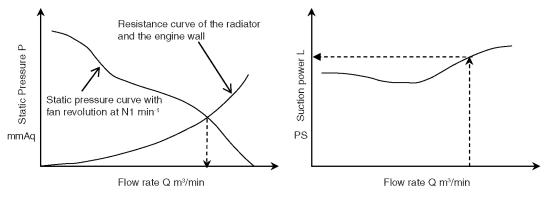


Figure 9-24

Fan performance curves as shown above can be supplied on request.

It is difficult to determine the air flow rate required beforehand since the heat exchange rate of the radiator and the scavenging volume of engine compartment should be considered. That is why it is often determined empirically.

You can use the standard Yanmar cooling fan specification for your application. You need to consider the evaluated heat balance, fan speed, and fan size. If you need a different fan speed, change the V-pulley ratio (Figure 9-23).

Note: If the V-pulley ratio or the fan type is changed, the net engine output will be affected (See *Specifications on page 3-5*).

The standard fan diameter for each engine is shown in the table below. Specifications must be determined for each application.

Fan Dia.	2TNV70	3TNV70	3TNV76 3TNV82A	3TNV84 3TNV88	4TNV84 4TNV88	4TNV94L 4TNV98
φ 290	 ✓ 					
φ 300		~				
φ 3 35			 ✓ 			
φ 360				~		
φ 380					~	
φ 4 30						 ✓

Pusher Fan / Puller Fan

Advantages and disadvantages of pusher fans and puller fans, respectively, are listed in the table below.

Yanmar recommends a pusher fan, considering various engine-related issues, such as the ambient temperature of the electrical components and harnesses, and diesel fuel temperature rise.

	Pusher type	Puller type
Advantages	 Lower temperature in the engine compartment Lower ambient temperature of electrical components and harnesses Greater cooling efficiency of hydraulic components 	 Greater cooling efficiency of hydraulic oil cooler and radiator
Disadvantages	 Radiator heat exchange deteriorates because cool air heats up around the engine and hydraulic oil cooler. (The engine coolant temperature is high) (Greater radiator size) Hydraulic oil cooler is located between the fan and the radiator making maintenance and repair difficult. Dust is sucked into the engine compartment. 	 Higher ambient temperature in the engine compartment. Higher ambient temperature of the electrical components and harnesses may result in reduced performance. Temperature of the engine oil is higher. Power output may be lower due to temperature rise of diesel fuel and intake air.

Material and Deformation of the Cooling Fan

Cooling fans are made of polypropylene and subject to becoming deformed due to heat or air pressure.

In dusty areas, the material should be changed to PP (polypropylene) + glass-fiber-reinforced plastics.

To prevent heat deformity or degraded strength, keep the ambient temperature of the fan at or under 80°C (176°F). Keep the periphery speed at or under 70m/s to prevent deformation from air pressure and reduce damage to the fan boss (it loses strength at higher temperatures).

Pusher fans may be deformed to the engine side and puller fans may be deformed to the radiator side. Provide a gap of 10 mm or more on the periphery of the fan.

Fan Spacer

The fan spacer reduces cooling air flow resistance caused by the engine block. Recommended spacer sizes are shown in the table below.

Engine model	Size of spacer (Pusher/Puller fan) (mm)
2TNV70, 3TNV70, 3TNV76	18
3TNV82A, 3TNV84/88, 4TNV84/88	25
4TNV94L, 4TNV98	40

This table is also used to adjust the location of the fan, as described in *Radiator Position on page 9-11*. Use the table as a reference when selecting a spacer from the *Yanmar TNV Option Menu Parts List, D-i*.

Contact Yanmar before using a spacer that is longer than recommended in the above table. The spacer and fan are installed on the extended line of the bearing axis that is fixed to the engine coolant pump axis. A longer spacer may decrease the natural vibration frequency of the axial system setting up resonant vibration within the normal speed range, causing damage to the bearing.

V-pulley

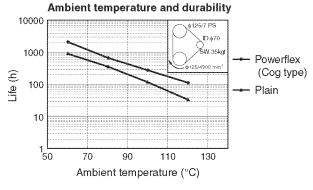
The cooling fan is driven by the crankshaft V-pulley, fan belt and a fan V-pulley. Cooling fan speed is controlled by the ratio between the crankshaft V-pulley and fan V-pulley. The ratio is D_c/D_f , with the crankshaft V-pulley outer diameter being D_c and the fan V-pulley outer diameter being D_f . (Both pulleys are shown in **Figure 9-23**).

High engine coolant temperature can be improved by raising the fan pulley ratio to increase fan speed. This will increase the fan noise.

See Yanmar TNV Option Menu D-f and D-g when selecting a V-pulley.

V-belt

V-belts may be a plain or cog type, each of which has the following characteristics.


V-belt Type	Form	Characteristics
Low edge plain	000000	Standard
Low edge cog		 Shows better resistance against ambient temperature due to bigger belt surface area. More flexible and can be used for smaller V-pulleys. Ice or snow may stick to the belt and break it. High cost

A low-edge plain belt is supplied as standard unless otherwise requested.

If the ambient temperature of the fan belt may be higher than 70°C (158°F), the cog type V-belt should be used.

V-belt Life

The life of the belt depends greatly on the ambient temperature as shown (Figure 9-25). Make sure the driven machine is operated in an environment that is within the ambient temperature range as specified in *Application Standard on page 1-1*.

Figure 9-25

Note: The data shown (Figure 9-25) is experimental data obtained from continuous operation under certain conditions and should not be treated as data obtained from actual driven machine operation.

Lower belt tension can cause the belt to slip which causes it to heat up and result in premature belt wear or breakage. It is important to check belt tension in accordance with the Periodic Maintenance Section of the TNV Operation Manual.

The V-belt should be replaced after 1,000 hours of operation.

This Page Intentionally Left Blank

Section 10

DIESEL FUEL SYSTEM

Page

Diesel Fuel System Diagram Fuel System (IDI Engine/Equipped with Mechanical Fuel	10-4
Feed Pump)	10-4
Fuel System (IDI Engine/Equipped with Electric Fuel Feed Pump)	10-5
Fuel System (DI Engine/Equipped with Electric Fuel Feed Pump)	10-6
• •	
Standard Diesel Fuel Line Layout Layout for IDI Engines with ML Type Diesel Fuel	10-7
Injection Pump	10-7
Layout for DI Engines with MP2 or MP4 Type Fuel Injection Pump	10-10
Diesel Fuel Recommended Diesel Fuel	
Fuels for Diesel Engines	
Selection of Diesel Fuel	
Engine Trouble Caused by Improper Diesel Fuel	
Diesel Fuel Properties and Engine Performance	
Summary of Diesel Fuel Properties and Engine	
Performance	
Alternative Fuels	10-20
Engine Oil Filter System	10-21
Fuel filter	····· · • - ·
Diesel Fuel Filter / Water Separator	
Diesel Fuel Tank	
Diesel Fuel Pump	
Layout of Diesel Fuel Line	
Fuel Line Maintenance	
Maintenance and Replacement Air-bleeding After Replacement of the Filter and / or	10-28
Fuel Hoses	10-28

This Page Intentionally Left Blank

The diesel fuel injection pump is the heart of the diesel fuel system. The diesel fuel injection system injects a mist of diesel fuel under high pressure into the hot pressurized air in the combustion chamber. The output of the engine is determined by the amount of diesel fuel that is burned. Accurate control of the diesel fuel injected into the combustion chamber is necessary to achieve the engine rated output as specified in *Application Standard on page 1-1*.

Careful installation of the fuel tank and lines, use of good quality diesel fuel, and maintenance of the diesel fuel filter are necessary for the proper operation of the diesel fuel system.

DIESEL FUEL SYSTEM DIAGRAM

The following diagrams show standard diesel fuel system configurations.

Fuel System (IDI Engine/Equipped with Mechanical Fuel Feed Pump)

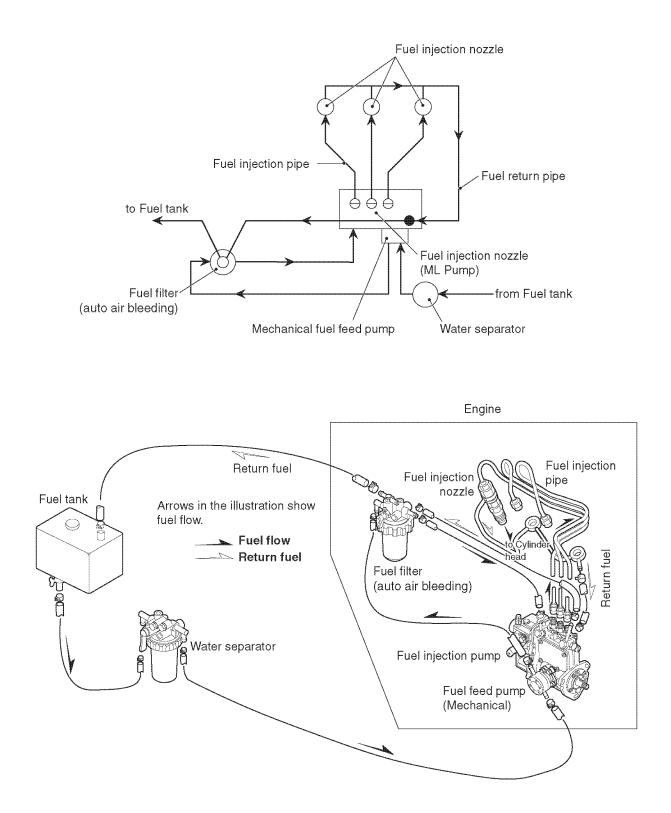


Figure 10-1

Fuel System (IDI Engine/Equipped with Electric Fuel Feed Pump)

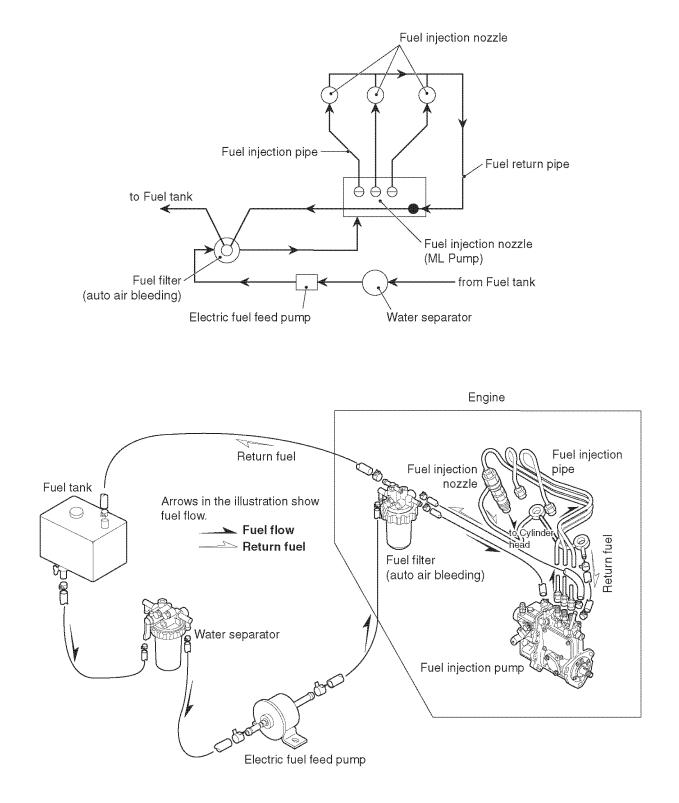


Figure 10-2

Fuel System (DI Engine/Equipped with Electric Fuel Feed Pump)

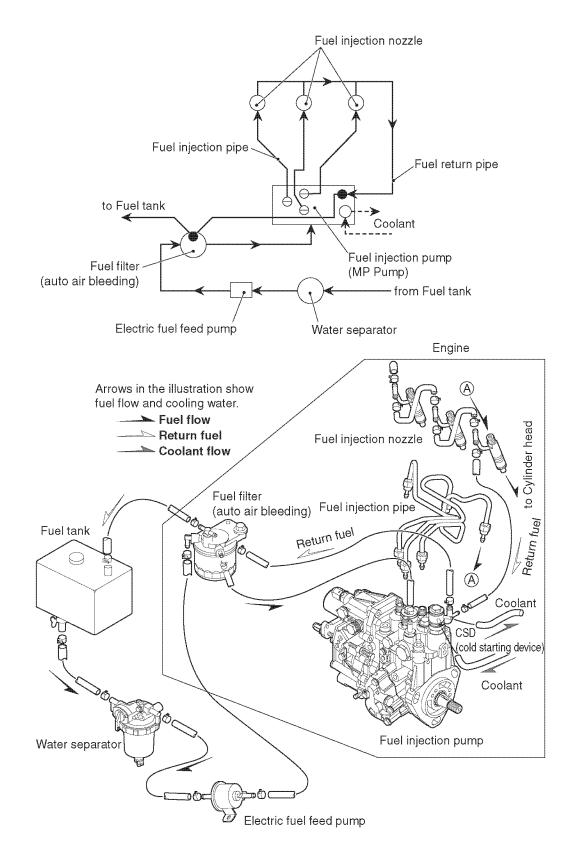


Figure 10-3

STANDARD DIESEL FUEL LINE LAYOUT

There are two typical diesel fuel line layouts for TNV engines. Fuel line layout shown in (Figure 10-4) is for IDI engines and (Figure 10-5) is for DI engines.

Layout for IDI Engines with ML Type Diesel Fuel Injection Pump

Diesel Fuel Line Layout for IDI Engines

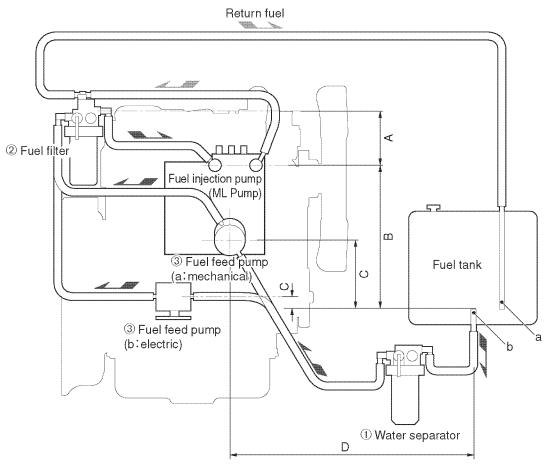


Figure 10-4

Note: Keep return line (a) away from diesel fuel outlet (b) to prevent the diesel fuel line from drawing in air and / or hot diesel fuel. NEVER connect return line (a) to the inlet line.

DIESEL FUEL SYSTEM

Diesel Fuel System Part Names and Functions for IDI Engines

No.	Part name	Function	
(1)	Diesel fuel prefilter / water separator	A diesel fuel filter / water separator is mandatory for TNV engines to separate water from diesel fuel with a 100 mesh element and to prevent water from getting into the fuel injection pump and causing damage. 100 mesh or 25 to 50 μ m is required for the element. When replacing or cleaning the diesel fuel filter / water separator element or diesel fuel filter, use the valve on the diesel fuel filter / water separator to shut off the fuel supply. (same as TNE engine)	
(2)	Diesel fuel final filter	Has 8 μ m mesh paper element inside. (same as TNE engine) There is a valve on the inlet of the diesel fuel filter for air bleeding	
	Diesel fuel pump	Sends diesel fuel to the diesel fuel injection pump from the fuel tank. Diesel fuel pumps are either mechanical or electrical.	
(3)	(a) Mechanical	Has a diaphragm and is installed on the diesel fuel injection pump. (same as TNE engine)	
	(b) Electric	Has a solenoid and is installed outside the engine. (same as TNE engine)	

Layout Dimension for IDI Engines

Position	Standard value	Content
A	50 ~ 150 mm	From diesel fuel filter outlet to diesel fuel injection pump inlet For air bleeding, diesel fuel filter outlet position should be higher than the diesel fuel injection pump inlet position.
В	≤1000 mm	Total head of diesel fuel pump (from fuel tank outlet to injection pump inlet)
С	(a) Mechanical feed pump: ≤500 mm (b) Electric feed pump: ≤400 mm	Suction head in dry condition (from fuel outlet of tank to feed pump inlet)
D	≤2000 mm	Suppression of the suction side resistance of the fuel feed pump (from diesel fuel tank outlet to diesel feed pump inlet)

Engine model2TNV70 ~ 3TNV76Diesel fuel pump(a) Mechanical type:129100-52100(b) Electric type:119225-52102 (standard)
129612-52100 (with water proof coupler)Diesel fuel / water
separator129335-55700 (diesel fuel inlet downward)
121257-55700 (diesel fuel inlet upward)
Filter mesh: 100 mesh (with valve)

Parts Specification for IDI Engines

Fuel Filter for IDI Engines

Filter body:119833-55620 (diesel fuel outlet downward)
119740-55600 (diesel fuel outlet sideways)Filter element :119810-55650Filter mesh :8 μmFiltration size:432 cm²For poor quality fuel :Filter mesh: 5 μmContact Yanmar with questions

Layout for DI Engines with MP2 or MP4 Type Fuel Injection Pump

Fuel Line Layout for DI Engines.

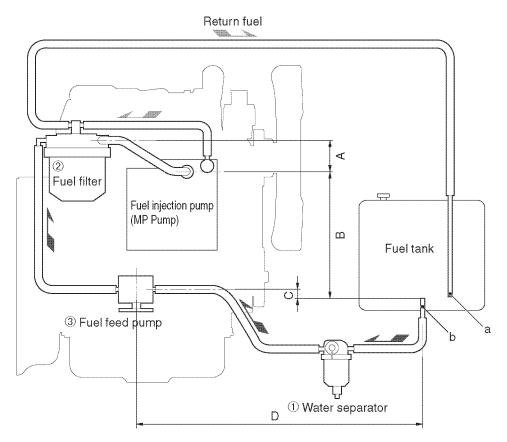


Figure 10-5

Note: Keep return line (a) away from diesel fuel outlet (b) to prevent the diesel fuel line from drawing in air and / or hot diesel fuel. NEVER connect return line (a) to the inlet line.

Diesel Fuel System Part Names and Functions for DI Engines

No.	Part name	Function	
(1)	Diesel Fuel Filter / Water separator	Same as IDI engine.	
(2)	Diesel fuel filter	Has 5 μ m mesh paper element inside. Capacity to resist pressure is 7 kg/ cm ² . There is a valve on the inlet of the fuel filter for air bleeding.	
(3)	Diesel fuel pump	Sends fuel to the fuel injection pump from fuel tank.	
	Electric	 Mounted off the engine. Consult Yanmar before using a non-Yanmar fuel pump. An additional check valve is not necessary on the Yanmar electric fuel pump since it has one built in. Note: On a bench test, diesel fuel injection pump performance was not influenced by a minimum voltage of 10 V. 	

Note: Mechanical feed pump is not available for DI engines.

Fuel Line Layout (DI engines)

Position	Standard value	Content	
A	50 ~ 150 mm	From fuel filter outlet to fuel injection pump inlet. For air bleeding, fuel filter outlet position should be higher than the fuel injection pump inlet position.	
В	<pre>≤ 1000 mm</pre> Total head of diesel fuel pump (from diesel fuel tank outlet to injection pump inlet)		
С	≤ 400 mm	Suction head in dry conditions (from diesel fuel tank outlet to diesel fuel pump inlet)	
D	≤ 2000 mm	Suppression of the suction side resistance at of the fuel feed pump (from diesel fuel tank outlet to diesel feed pump inlet)	

Parts Specification for Engine

Engine model	3TNV82A ~ 4TNV98		
Diesel fuel pump	Electric type:	119225-52102 (standard), 129612-52100 (with water proof coupler)	
Diesel fuel filter / water separator	Standard :129242-55700 (fuel inlet & outlet horizontal)Filter mesh:100 mesh (with valve)Water reservoir:150 cc		
Diesel fuel filter	Bracket:129004-55612 (with automatic air bleeding hole ϕ Filter:119802-55800Filter mesh:5 μ mFiltration size:2000 cm ²		
Engine model	4TNV98T		
Diesel fuel pump	Same as 3TNV82A ~ 4TNV98		
Diesel fuel filter / water separator	Same as 3TNV82A ~ 4TNV98		
Fuel filter	Bracket: 123907-55610 Filter: 123907-55800 Filter mesh: 5 μm Filtration size: 5000 cm ²		

For poor quality fuel

	Filter	129004-55800	129907-55800
3TNV82A to 4TNV98	Filter mesh	1 μm	1 μm
	Filtration size	1650 cm ²	4000 cm ²
	Filter	129907-55800	
4TNV98T	Filter mesh	1 μm	
	Filtration size	4000 cm ²	

DIESEL FUEL

Quality and composition of diesel fuel is very important. Poor fuel reduces engine performance and durability. Use the recommended diesel fuel or equivalent as listed below.

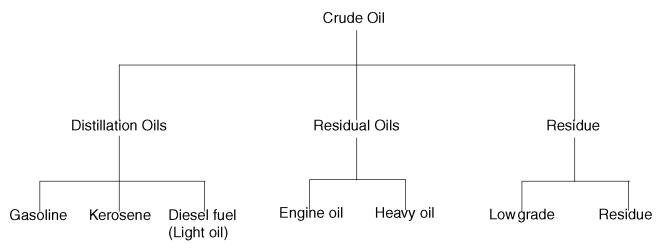
Recommended Diesel Fuel

Diesel fuel should comply with the following specifications.

- 1. Compliance with each national standard or international standards. For more specific details about the fuel standards, refer to the specification table of each country.
- 2. The following requirements also need to be fulfilled.
 - Cetane number should equal 45 or higher.
 - Sulfur content of the diesel fuel should not exceed 0.5% by volume and preferably be below 0.05%.
 - Water and sediment in the diesel fuel should not exceed 0.05% by volume.
 - Ash should not exceed 0.01% by mass. Al, Na and Mg should be below 10 mass ppm.
 - 10% carbon residue content of the fuel; it should not exceed 0.35% by volume and preferably be below 0.1%.
 - Aromatics (total) content of the fuel should not exceed 35% by volume and preferably be below 30%.
 Aromatics (PAH^(*)) content of the fuel should preferably be below 10% (PAH^(*): Polycyclic aromatic hydrocarbons).

Prohibition:

NEVER use kerosene, residual fuels.


NEVER mix kerosene with diesel fuel.

NEVER use residual fuels that cause diesel fuel filter clogging and carbon deposits on the nozzles.

Fuels for Diesel Engines

Classifications of Mineral Oil

Diesel fuel is part of the mineral oil family. In general the family is classified as follows:

Fundamental Requirements for Diesel Fuel

Requirements for diesel fuel are appropriate combustibility, viscosity, purity, and a large calorific value. Combustibility should be sufficient to maintain the diesel cycle, with controlled combustion and keeping maximum pressure under a normal level. Viscosity is important when mixing diesel fuel with air in the combustion chamber to obtain complete combustion, in the process of fuel atomization, dispersion and distribution. In general, the lower the viscosity of the diesel fuel, the higher the quality (with better combustibility and purity).

Properties of Diesel Fuel

Diesel fuel has many standardized properties around the world. The major properties among them are as follows (For details, refer to the specification table of each country)

Specific Gravity

Specific gravity has no direct connection with combustion. High speed engines commonly use a specific gravity lower than 0.88. A specific gravity of 0.83 to 0.85 is recommended for industrial and construction engines. Specific gravity is indicated at the standard temperature 15°C (59°F). Specific gravity falls by about 0.0007 for every 1°C (1.8°F) rise. High diesel fuel temperature lowers the specific gravity, decreasing engine output. Winter fuel has a lower specific gravity than summer fuel.

Flash Point

In general, the higher the specific gravity, the higher is the flash point. The flash point has no direct effect on combustion performance. Special fire precautions should be used with diesel fuel with a low flash point. Diesel fuels normally have a flash point of 50 to 60°C (122 to 140°F) or more.

Viscosity

Viscosity in general increases with specific gravity. This has a large influence on the accuracy of injection atomization, which is necessary for ignition and combustion. Diesel fuels with high viscosity are capable of penetrating the compressed air wall, but ignition is slow due to insufficient fuel atomization and combustion performance is inferior. Diesel fuels with low viscosity have poor fuel distribution, which results in delayed combustion. In the terms of combustion, it would be ideal to use diesel fuel with a relatively low viscosity injected at high pressure to raise both the penetration and atomization.

Lower grades of diesel fuel have higher viscosity and more impurities. It is necessary to remove the impurities completely with filters and purifiers before using such diesel fuels. If this is not done, both diesel fuel system life and the engine life will be shortened.

Diesel fuel viscosity has a large influence on the injection system and combustibility. Low viscosity diesel fuel accelerates the wear of parts due to insufficient lubrication. This can result in diesel fuel leakage. The high pressure of high viscosity diesel fuel places an excessive load on the injection mechanism and can cause problems.

Note: Viscosity is represented by Saybolt or Redwood specifications. The JIS has a kinematic viscosity of 50°C (122°F) for heavy oil and 30°C (86°F) for light oil. Internationally, it is common to show the specification by Redwood (RW) at 40°C (104°F). The unit is the Stokes. Usually, 1/100 of a Stokes, i.e., centistokes (cSt) is used. JIS specifies 20 cSt or below for Heavy Oil A and more than 2.5 cSt for light oil. Viscosity of 2.5 to 5.0 cSt at 30°C (86°F) is recommended.

Residual Carbon

Residual carbon is deposited on the combustion chamber wall and accelerates wear of the cylinder, piston and piston rings. Less carbon is better for the engine.

Residual carbon increases when diesel fuel quality degrades or is contaminated. Residual carbon of below 0.1% is recommended.

DIESEL FUEL SYSTEM

Asphalt

Asphalt is a byproduct of petroleum distillation. Most asphalt content turns into sticky residual carbon during the combustion process. This causes the piston rings to stick. The lower the asphalt content, the better.

Ash Content

Ash content is directly related to cylinder wear. Ash content is peculiar to specific diesel oils but impurities can enter the diesel fuel during transportation and storage and turn to ash content. Higher sulfur content results in higher particulate emission. It is important to remove as much of the ash content as possible with filters and purifiers. Content of below 0.01% (by mass) is required.

Sulfur Content

Sulfur content turns to sulfur dioxide and sulfur trioxide after combustion. Sulfur trioxide combines with water produced by combustion and turns into sulfuric acid, which corrodes the cylinder wall, piston, exhaust valve, and exhaust pipe. Higher sulfur content results in higher particulate emission. The lower the sulfur content, the better. Sulfur content of below 0.5% (by mass) is required.

Cetane Number

The cetane number is important for exhaust emission compliance regulations and engine performance. Diesel fuel with good ignitability allows easy starting and smooth running with minimal smoke and noise. Ignitability is indicated by the cetane number and it should be more than 45. A higher cetane number ensures a smaller firing lag and better starting performance.

Polycyclic Aromatic Hydrocarbon Content

Reduce polycyclic aromatic hydrocarbons for reduction of particulate matter emission that consists of more than two benzene rings of hydrocarbon composition for environmental improvement.

Water and Microorganisms

When purchased, there is a small amount of water in diesel fuel from the manufacturing process. This amount of water increases with long term storage. Microorganisms in the water will start to grow if the diesel fuel is allowed to be stored for a long period of time. Microorganisms are harmful to the diesel fuel injection pump and the nozzles. Periodically drain and check the diesel fuel tank.

Lubricity / Lubricity Assessment

Wear mark of WS 1.4 (Calculated Wear Scar Diameter at 1.4 kPa) diameter should be Maximum 460 μ m at HFRR (High Frequency Reciprocating Rig) test.

U.S.A, ASIA and Pacific Rim Countries - National Specifications For Diesel Fuel

(Source: (1) PETROTECH, Vol.20, No.6&7 (2) PARAMINS, WORLD WIDE WINTER DIESEL FUEL QUALITY SURVEY) Oct. 2003

Country	Standard	Grade	Aromatics contents vol%	Cetane number	Cetane index	Cloud point °C	Pour point °C	CFPP (*1) °C		sity at PC /m ³	Flash point °C			matic osity ²/sec)		Ash content mass%	Water content vol%	Particulate s mg/l	Copper corrosion 3h at 50°C	Carbon residue (10%btms)	Sulfur mass%	Sedi- ment mass%			Distill	ation temp	o. (°C)		
									-		(PM) ^(*5)	atź	0°C	at 4	0°C			-		mass%			IBP	10%	50%	65%	85%	90%	95%
			max.	min.	min.	max.	max.	max.	min.	max.	min.	min.	max.	min.	max.	max.	max.	max.	max.	max.	max.	max.	min.	min.	max.	min.	max.	max.	max.
KOREA	KS-M-2610	No.1 Summer			50		-10				40			1.4	2.5	0.01				0.15	0.2							330	
		No.1 Winter			50		-25				40			1.4	2.5	0.01				0.15	0.2							330	
		No.2 Summer			45		-5				40			2	5.8	0.01				0.2	0.2							360	
		No.2 Winter			45		-18				40			2	5.8	0.01				0.2	0.2							360	
THAILAND	TSI	Type1		47	47		10		810	870	52			1.8	4.1	0.01	0.05		1	0.05	1.0							357	
		Type2		47	47		10		810	870	52			1.8	4.1	0.01	0.05		1	0.05	0.5							357	
CHINA	GB 252	No. 0		50	50		0				60	3	8			0.003	0.03		1	0.3 (CCR ^(*3))	0.5				300			355	365
		No.10		50	50		-10				60	3	8			0.003	0.03		1	0.2 (CCR)	0.5				300			350	360
INDIA	IS-1460	HSO		42							32 (Abel)			2	7.5	0.01	0.05		1(100℃)	0.2 (RCR (*4))	1.0	0.05							
		LDO		42										2.5	16	0.02	0.25		2(100°C)	1.5 (RCR)	1.8	0.1							
INDONESIA	MIGAS			45	48		18.3				65.5			1.6	5.8	0.01	0.05		1(100°C)	0.1 (CCR)	0.5	0.01							
MALAYSIA	MS123			45	47	47	15				60			2	5.8	0.01	0.05		1(100°C)	0.2 (CCR)	0.5	0.01							
PAKISTAN		Summer		45	45	5	0		820	870	66			1.6	7.5	0.01	0.1		1(100°C)	0.1 (CCR)	1.0	0.01							
		Winter		45	45	-1	-6		820	870	66			1.6	5.5	0.01	0.1		1(100°C)	0.1 (CCR)	1.0	0.01							
PHILIPPINES	PNS20			40	45	20		17			62			1.7	6		0.1			1.0 (CCR)	0.8								
TAIWAN	CNSK5024				46		-4				50			1.7	4.1	0.01	0.05		1(100°C)	0.1	0.3								
AUSTRALIA	AS1987			45					820	870	61.5			1.9	5.5	0.01	0.05		2(100°C)	0.2 or 0.16	0.5	0.01							
NEW ZEALAND					47						63			1.9	4.5		0.05			0.2	0.3								
BAHRAIN					50	2	-3		830	870	60						0.05			0.2	1.0							357	
U.A.R.(the United Arab Republic)					50	15		12	820	870	65					0.01	0.05		1(100℃)	0.2	1.0						357		
BRAZIL Federative Republic of Brazil)	DNC (09/96)				45			5	820	880				1.6	6	0.02	0.05 (water	& sediment)	2										
JAPAN Note: Cetane No.	JIS K2204	Special No.1			50		+5				50		2.7min.	(at 30°C)						0.1	0.005 (after 2004)								
is available for		No.1			50		-2.5	-1			50		2.7min.	(at 30°C)						0.1									
cetane index.		No.2			45		-7.5	-5			50		2.5min.	(at 30°C)						0.1								350	
		No.3			45		-20	-12			45		2.0min.	(at 30°C)						0.1								330	
		Special No.3			45		-30	-19			45		1.7min.	(at 30°C)						0.1								330	
U S A Note: For LS No.1 & 2, Cetane index	ASTM D 975-94	LS No. 1-D	35	40	40	6°C below ambient	-	-	-	-	38			1.3	2.4	0.01	0.05		NO.3	0.15 (RCR)	(1) 0.05 (after Oct.1995)							288	
is available for cetane No.		LS No. 2-D	35	40	40	temp. (*2)	-	-	-	-	52			1.9	4.1	0.01	0.05		NO.3	0.35 (RCR)	(2) 0.0015 (after 2006)							338	
		No. 1-D	-	40	-		-	-	-	-	38			1.3	2.4	0.01	0.05		NO.3	0.15 (RCR)	(1) 0.50 (after Oct. 1995)							288	
		No. 2-D	-	40	-	-	-20	-12	-	-	52			1.9	4.1	0.01	0.05		NO.3	0.35 (RCR)	(2) 0.05 (after 2007)							338	
		No. 4-D	-	30	-	-	-30	-19	-	-	55	Å@	Å@	5.5	24.0	0.1	0.50		-	-	(3) 0.0015 (after 2010)							-	

Not

Note: *) FPP: The Filter Flugging Point temperature should be equal to or below the lowest expected fuel temperature. *2) The cloud point should be 6°C below the lowest expected fuel temperature to prevent clogging of Suel filter by wax crystals. *3) CCR (Correctored fuel for the correction of the filter by the correction of the correction of

(Source: (1) PETROTECH, Vol.20, No.6&7 (2) PARAMINS, WORLD WIDE WINTER DIESEL FUEL QUALITY SURVEY) Oct. 2003

Country	Standard	Grade	Cetane number	Cetane index	Cloud point	Pour	CFPP (*1) °C	Density at 15°C	Flash point °C (PM) ^(*2)	vis	ematic cosity n²/sec)	Ash content	Water	Particulates mg/l	Copper corrosion	Carbon residue (10%btms)	Sulfur mass%			Dist	illation ter	np. °C			Remarks
obunity	(Institution d/m/y)	Giude	min		°C	°C		kg/m ³		at 20°C	at 40°C	mass%	mg/kg		3h at 50°C	mass%		IBP	10%	50%	65%	85%	90%	95%	Tienarka
	O-Norm	Winter	min. 49	min. 46	max.	max.	-20	820-860	min. 55		2.0-4.5	max.	max.	max.	max.	max.	0.05	min.	min.	max.	min.	max.	max.	max.	
AUSTRIA	EN 590	Intermediate	49	40	-		-20	020-000	00		2.0-4.5						0.05				250	350	<u> </u>	370	
AUSTHIA	(01/02/94)	Summer					-15	+			+						-				250	350	<u> </u>	370	-
	NBN	Winter	49	46		-	0	820-870	55		2.0-4.5						0.05				250	350	<u> </u>	370	
BELGIUM &	NDN		49	40	-	-		020-070	00		2.0-4.5						0.05				250	350	<u> </u>	1 3/0	
LUXEMBURG		Intermediate					-5	+			-		-				-				-		<u> </u>	4 '	
		Summer	10	10			-15				00.15						0.05				050	050	──	070	
DENMARK		CEN Diesel Bus Diesel	49 50	46	-	-		820-860 820-855	55	-	2.0-4.5						0.05				250	350	-	370	ł
	05 51/500						-				00.45										-		──		
	SF-EN590 Reformulated Diesel	c	49 47	46 46	-		-5	820-860 800-845	55		2.0-4.5						-		100		-		<u> </u>	370	-
	noronnalated broool	3			-16		-26												180		-		<u> </u>	340	
FINLAND			45	43	-28		-38	800-840	55		1.4-4.0								180		4		<u> </u>	340	-
		4	45	43	-34		-44	800-840	55		1.2-4.0						-		180		4		<u> </u>	340	-
		Summer	49	49	-5		-15	820-850	56		2.0-3.5						-				-		<u> </u>	350	-
	EN 500 4000	Winter	47	47	-29	-	-34	800-830	56		1.4-2.8						0.05				050	050	<u> </u>	310	LENOD TOOLOG
5041105	EN 590:1993	Summer	49	46	<u> </u>	+	0	820-860	55		2.0-4.5						0.05				250	350	<u> </u>	370	AFNOR T60103 (equivalent to >
FRANCE		Winter			<u> </u>		-15	+			ł								<u> </u>		4		<u> </u>	4 '	52 °C PM)
		Grand Froid					-20																<u> </u>	<u> </u>	
050000	DIN EN 590: 1993	Summer	49	46	-	-	0	820-860	55 (see notes)		2.0-4.5						0.05						+	370	EN 590 3/93
GERMANY	211 000. 1000	Intermediate					-10	-	(000 11010 0)		ł						4						<u> </u>		
	EN 500 1000	Winter	10	10			-20				00.15		-				0.05				-		──		0.10
GREECE	EN 590: 1993	Summer Winter	49	46	-	-	5	820-860	55	-	2.0-4.5						0.05						──	370	Greek Government Gazette 3336/94
	IS		50	50	-		-5	000.000			00.45						0.05				-		──	070	
IRELAND	EN 590: 1993	Summer	50	50				820-860	55	-	2.0-4.5						0.05						<u> </u>	370	
	UNI-CUNA	T I I I I I	49	40	0		-12	820-860	55		2.0-4.5						0.05						──	370	
ITALY	EN 590: 1993	Summer	49	46	-		-10	020-060	00		2.0=4.5		-				0.05				-		──	1 3/0	
		Winter															0.05						<u> </u>	070	
NETHERLANDS		Summer					-15										0.05						<u> </u>	370	
NETHERLANDS		Winter					-5										-						<u> </u>		
	NS	Summer	49	46	0	-	-10	820-860	55	-	2.0-4.5												<u> </u>	370	
NORWAY	EN 590	Winter	49	40	-15	-	-24	820-860	55	-	2.0=4.5						-							- 370	
	EN 590: 1993	Summer	49	46	=15	-	0	820-860	55	-	2.0-4.5						0.05				-		<u> </u>	+	
PORTUGAL	EN 000. 1000	Winter	~	40			-6	020 000	000		2.0 4.0						0.00						<u> </u>	1 '	
		Summer	50	45	4	-	-0	825-860	55	-	5.2 max						0.05						<u> </u>	370	
SPAIN		Winter		-10	-1	1	-8	020 000			4.3 max						0.00						<u> </u>	1	
	SIS 15 54 35	Urban Diesel 1					- V				4.0 1104												<u> </u>	+	Further details of
	(13/03/91)	Summer	50	50	*0	-	-10	800-820	56	-	1.2-4.0						0.001	180					<u> </u>	285	urban diesel grades.
		(TD1Grade)-Winter			-16	1	-26	1											<u> </u>				<u> </u>	1	TD1 and TD2 will be
		Urban Diesel 2			10																			<u> </u>	found in Section n7.7.1.
		Summer	47	47	*0	-	-10	800-820	56	-	1.2-4.0						0.005	180						295	10.0.1
SWEDEN		(TD2 Grade)-Winter			-16		-26				1.2 1.0												+	1	
		Normal Summer Diesel D 10	49	46	*0	-	-10	820-860	56	-	2.0-4.5						0.005				250	250	-	370	t
		Winter Diesel 1 D 26	47	46	-16	-	-26	800-845	56	-	1.5-4.0								180					340	t
		Winter Diesel 2 D 32	48	46	-22	-	-32	800-840	56	-	1.5-4.0								180					340	
		Winter Diesel 3 D 36	45	43	-38	-	-28	800-840	56	-	1.4-4.0								180	1				340	t
	SN	Summer (01.05-30.09)	49	46	-	-	-10	820-860	55	-	2.0-4.5						0.05		180		250	350	<u> </u>	370	
SWITZERLAND	EN 590	All year	47	46	-	-	-20	820-845	55	-	2.0-4.0					1	1		180	max.	1			1	
	EN 590: 1993 BS		49	46	-	-	-15	820-860	55	-	2.0-4.5					1	0.05				250	350	1	370	Alternative Standards
UK	869-A1or A2																							1 '	Class A2: Off-
																							<u> </u>	<u> </u>	Highway
	European Committee	(1) for warm district: (CEPP; A~F)	49	46	-	-	-20 to +5	820-860	55	-	2.0-4.5	0.01	200	24	1	0.30	0.2 (after 1993) 0.1 (offroad, after 2007)				250	350		370	
CEN Standard	Standardization		47	40	10	-	-20									-	0.1 (offroad, after 2007) 0.005 (offroad, after 2009)		-				<u> </u>	<u> </u>	ł
(European	EN 590: 1996	(2) for extremely cold district: (CFPP: 0 to 4) Grade 0	4/	46	-10		-20										0.05 (onroad, after 1996)				1			1	
Committee for Standardization/		Grade 1	47	46	-16		-26									1	0.035 (onroad, after 2000)			1	1	1	1		t
Comite European		Grade 2	46	46	-22	1	-32									1	0.005 (onroad, after 2005) . 0.001 (onroad, after 2009)			1	1	1	1	1	t
												i		i		-				1				4	•
de Normalisation)		Grade 3	45	43	-28		-38										1								

*1) CEPP: The Filter Plugging Point temperature should be equal to or below the lowest expected fuel temperature. *2) PM: Pensky-Martens closed cup method DIESEL FUEL SYSTEM

Selection of Diesel Fuel

Select diesel fuel according to the application and the diesel fuel property list. Use the following to help identify poor quality diesel fuel.

Volatile Matter

Diesel fuel with a strong or unpleasant smell contains volatile matter and impurities.

Soot

Use the diesel fuel as a lamp oil. Good quality diesel fuel yields little soot.

Water

Soak paper in the diesel fuel and burn it. If there are cracking sounds, the diesel fuel contains water.

Impurities

Pour the diesel fuel into a glass tube, add the same amount of sulfuric acid and stir the tube. The presence of a black substance indicates impurities with a high content of brown coal and resins.

Acids

If litmus paper turns red, the diesel fuel contains acids.

Use Diesel Fuels Classified According to Ambient Temperature

Ambient temperature °C (°F)	Class of diesel fuel in JIS	Other diesel fuel
≤−5 (23)	No. 2	Equivalent to JIS
-5 to -20 (23 to -4)	No. 3	Equivalent to JIS
-20 to -30 (-4 to -22)	Special No. 3	Equivalent to JIS

Engine Trouble Caused by Improper Diesel Fuel

Deposits on the Exhaust Valve

Causes compression failure, incomplete combustion and excessive diesel fuel consumption. Uncombusted fuel can also blow out in the exhaust gas and corrode the exhaust valve.

Deposits on the Piston Ring Grooves

Causes piston rings to stick, blow-by gas to form, faulty lubrication, incomplete combustion, excessive fuel consumption, engine oil contamination and accelerated wear of the cylinder liners and pistons due to formation of blow-by gas.

Clogging or Corrosion of the Injection Hole of the Fuel Injection Valve

Causes incomplete combustion and wear of the pistons and liners and accelerates wear and corrosion of the fuel injection system. It also accelerates wear and corrosion of the injection hole.

Sediments Inside the Crankcase

Sometimes incorrectly attributed to the engine oil quality, but use of inferior diesel fuel can also cause sediments to accumulate inside the crankcase.

DIESEL FUEL SYSTEM

Diesel Fuel Properties and Engine Performance

Diesel fuel properties related to engine performance are as follows:

Deposits in Combustion Chamber

Carbon deposits accumulate on the injection valve, exhaust valve, exhaust port, cylinder wall, piston and cylinder head vary as follows:

- Deposits decrease as the cetane number increases.
- Deposits increase as the volatile distillation temperature rises.
- Deposits increase as the viscosity rises.
- Deposits increase as the specific gravity increases.
- Deposits increase when the content of residual carbon is high.

Startability

- The higher the cetane number, the better the startability.
- Other properties have no direct relation to startability. The pour point should be considered according to the season.

Production of Smoke

- Smoke increases as diesel fuel volatility falls.
- · Smoke increases with lower cetane numbers.
- Viscosity has no direct causal relation to the smoke but the production of smoke does rise as viscosity increases.
- Smoke production increases as residual carbon rises. When residual carbon content falls below 0.4%, smoke decreases remarkably.
- There is a correlation between smoke production and the amount of deposit. The amount of deposit increases as the smoke increases.

Exhaust Smell

Exhaust smell is produced by a mixture of partially combusted hydrocarbon and exhaust gas. The intermediate combustion product produced by the incomplete combustion of fuels forms various aldehydes that emit a powerful smell. The extent of exhaust smell varies with the extent of incomplete combustion. The cetane number, i.e., the combustibility, is the foremost factor in controlling the exhaust smell.

Summary of Diesel Fuel Properties and Engine Performance

Diesel Fuel Properties and Engine Performance

FO properties	Starting performance	Operational smoothness	Smoke Production	Exhaust smell	Output	Diesel Fuel consumption	Combustion chamber deposits
Combustibility; cetane number	Direct relation; the larger the cetane number, the better the starting performance	Direct relation; the larger the cetane number, the better the operation smoothness	Close relation; the lower the cetane number, the more the smoke	Direct relation; decreases as cetane number increases	No relation	Related.	Related; decreases as cetane number increases
Volatility	No definite relation known	Related; worse with lower volatility	Direct relation; the lower the volatility, the more smoke	No direct relation	No relation	No relation	Related; the lower the volatility, the more deposits
Viscosity	No definite relation	Some relation; as viscosity increases combustion performance degrades	Related; the higher the viscosity, the more the smoke	No independent relation	No relation	No relation	Related; increases as viscosity increases.
Specific gravity	No relation	No relation	Related.Visco sity becomes higher as specific gravity increases, causing more smoke	No independent relation	Direct relation in terms of calorific value	Direct relation in terms of calorific value	Related depending on engine characteristics
10% residual carbon	No relation	No relation	Related.Smo ke decreases as residual carbon content reduces.	No independent relation	No relation	No relation	Related; deposits decrease with carbon reduction
Sulfur				No independent relation			
Flash point				No independent relation			

Alternative Fuels

Contact Yanmar before using any alternative fuels.

Bio Fuel

Yanmar approves the use of biodiesel fuels (fuels below B5) whose bio fuel mixing rate does not exceed 5% by volume. The fuels below B5 should comply with the following conditions:

- Use diesel fuel with FAME (Fatty Acid Methyl Ester) which complies with the specified standards (EN-14214 in Europe, ASTM D-6751 etc. in the United States) of each country. FAME includes RME (rapeseed oil), SOME (soybean oil), and FAO (waste food oil).
- 2. Use bio diesel fuel which you purchased from the authorized fuel manufacturers.

JP-8/JP-5 Fuel, Military Applications

Refining crude petroleum makes JP-8 (NATO F34). The primary ingredient in JP-8 is kerosene that is about 99.8% by weight. JP-8 contains very small amounts of other substances, such as benzene, and additives to inhibit icing, prevent static charge buildup, avoid oxidation, and decrease corrosion.

Any problem of components in the fuel injection system due to the use of JP-8 is not covered by warranty.

JP-4 fuel is not allowed for TNV or TNE engines.

ENGINE OIL FILTER SYSTEM

Sliding parts such as diesel fuel injection pump plungers, delivery valves and diesel fuel injection valve needles can wear when impurities are mixed in with the diesel fuel. Water in the diesel fuel adversely affects the diesel fuel injection system. A diesel fuel filter / water separator is installed on the inlet side of the fuel injection pump as a pre-filter between the diesel fuel tank and the diesel fuel pump.

Fuel filter

The diesel fuel filter, a standard part of the diesel fuel system, is the main filter in all TNV series engines. A standard diesel fuel filter consists of a paper element type with a transparent plastic body or a cartridge type with a metal body. The type of filter used depends upon the type of engine.

Cautions for Installation

- Yanmar genuine parts should be used. Customer-installed fuel filters should have specifications equal to or better than Yanmar genuine parts.
- Install diesel fuel filters where the ambient temperature is 80°C (176°F) or below.
- Install diesel fuel filters where the maximum vibration level is below 8 G.
- Install the diesel fuel filter in a direction and position that does not allow air to remain in the filter and diesel fuel line.
- Position the diesel fuel filter so it is not exposed to dust, mud, or water.
- Make sure to clean the base of the filter when you replace the diesel fuel filter. Contamination of the diesel fuel line causes most of the problems with sticky diesel fuel injector nozzles.

How to Check or Replace Diesel Fuel Filter

Maintenance on the diesel fuel filter should be done after the diesel fuel filter / water separator valve is CLOSED. Make sure the valve is OPEN before you start the engine.

Maintenance

This replacement interval will be 250 hours if you use a filter with mesh size of 1µm for poor quality fuel.

Replacement interval: 500 hours

Diesel Fuel Filter / Water Separator

A diesel fuel filter / water separator is mandatory for TNV (IDI & DI) engine series. Finely dispersed water in the diesel fuel tends to coagulate when the flow speed sharply drops. Coagulated water separates by gravity because of the difference in the specific gravity of the water and diesel fuel. A diesel fuel filter / water separator efficiently removes water from the diesel fuel system.

The diesel fuel filter / water separator is generally installed between the diesel fuel tank and the diesel fuel pump. When engines are used in an industrial application, water, dust and mud are very likely to enter the diesel fuel tank. These impurities may be collected by the diesel fuel filter / water separator installed as a pre-filter. Installation of a diesel fuel filter / water separator protects the diesel fuel pump, extends the service life of the diesel fuel injection system by preventing rust, and prevents engine starting failures caused by cold weather / freezing conditions.

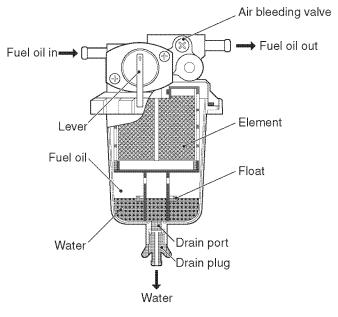


Figure 10-7

Cautions for Installation

- The diesel fuel filter / water separator should be installed as standard equipment.
- Select an element of 100 mesh or finer.
- Install the diesel fuel filter / water separator in a location where the ambient temperature is 80°C (176°F) or below.
- Make sure the maximum vibration level is below 8 G.
- Install the diesel fuel filter / water separator between the diesel fuel tank and diesel fuel pump. If it is installed near the diesel fuel pump, separating diesel fuel and water becomes difficult.
- Install it near the bottom of the diesel fuel tank for easy maintenance.
- Place the diesel fuel filter / water separator at the lowest position in the diesel fuel line.

Maintenance

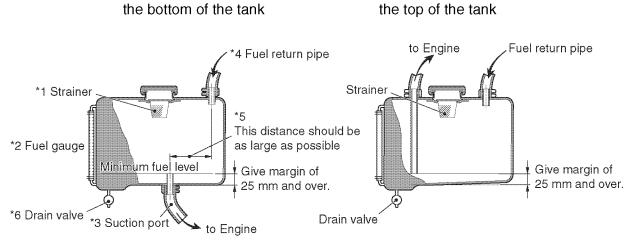
- Check and drain water: 50 hours
- Cleaning: 500 hours

Diesel Fuel Tank

The diesel fuel tank is generally made of steel plate or synthetic resin. Install a diesel fuel level gauge, outlet line, return line, filler port strainer and drain valve on the diesel fuel tank, and provide an air bleeder on the diesel fuel tank lid. A large air vent hole should be at the diesel fuel filler port to prevent the diesel fuel from overflowing from the strainer during filling.

Material of Diesel Fuel Tank

Blow-formed plastic is not recommended for diesel fuel tanks because glass fiber dust and / or plastics are harmful to diesel fuel injection equipment. Glass fibers damage the diaphragm of the diesel fuel pump and approximately $60 \mu m$ diameter particles will be stuck in the plunger barrel.


Structure of Diesel Fuel Tank

Case1:

Avoiding air bubbles in the fuel line that leads into the injection pump and the return line back to the fuel tank are two of the primary fuel system design considerations.

• When the fuel tank is mounted at the same level or higher than the injection pump, the return line should be routed to the top of the fuel tank and as far away as possible from the supply line to the engine to avoid air bubble formation.

When the suction port is at

When the suction port is at Case2:

Figure 10-8

• When the fuel tank is mounted lower than the fuel injection pump, the fuel return line should be routed deep into fuel tank as far from the supply line as possible for a closed loop fuel line, to avoid getting air into the diesel fuel line.

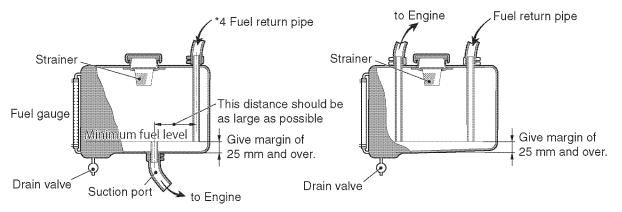
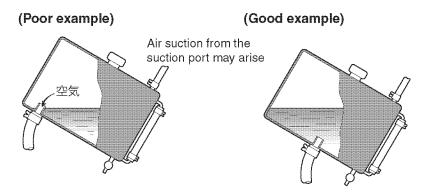
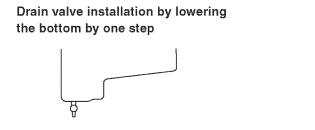
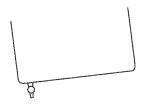
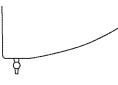


Figure 10-9

DIESEL FUEL SYSTEM

- Strainer: Use an approximately 40 mesh element which can be removed and replaced.
- Diesel fuel level gauge: The minimum diesel fuel level line on the gauge must be higher than the position of the diesel fuel suction port (to prevent air suction).
- Suction port: Should be installed at the center of the tank to prevent air suction during inclined operation. Avoid installing it just under the diesel fuel filler port. The **Figure 10-10** illustrates why the suction port should be located at the center of the tank:


Figure 10-10

- The end of the diesel fuel return line should be as close to the minimum fuel level as possible.
- The end of diesel fuel return line should be as far from fuel outlet of the fuel tank as possible.
- Drain valve and diesel fuel tank bottom shape

Inclined bottom

Drain valve installation by doubling the bottom of the fuel tank

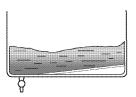
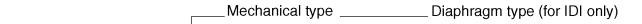


Figure 10-11

Fuel Tank Capacity

Refer to Fuel Tank on page 19-4.


Diesel Fuel Pump

The diesel fuel pump force-feeds diesel fuel from the diesel fuel tank to the diesel fuel injection pump. The IDI series of TNV engines may use a mechanical or electric diesel fuel pump. The mechanical pump is installed on the side wall of the diesel fuel injection pump and is driven by the camshaft of the pump. An electric diesel fuel pump is used depending on the position of fuel tank.

If the fuel feeding performance of a mechanical pump is insufficient, or you need an easier way to bleed air from the diesel fuel system, or you need better startability, use an electric diesel fuel pump.

DI engines do not use a mechanical diesel fuel pump.

Types of diesel fuel pumps

Electric type _____ Solenoid type (for IDI & DI

Figure 10-12

Precautions for Installation

Fuel feed pump

To install an electric diesel fuel pump (solenoid type)

- Remove the mechanical diesel fuel pump installed on the diesel fuel injection pump and close the opening port with a cover. (for IDI engine only)
- Install the electric diesel fuel pump in a dry place. The electric diesel fuel pump is not waterproof. Use a Yanmar genuine pump.
- Install the electric diesel fuel pump horizontally or vertically (outlet is on the top side) in a place with a low level of vibration, not on the engine.

Other Cautions

- On a stationary machine, if the minimum diesel fuel level of the fuel tank is 50 mm or higher than the fuel inlet of the injection pump, a diesel fuel pump is not necessary.
- When installing an electric diesel fuel pump, install a diesel fuel filter / water separator (100 mesh or finer). This may be substituted with a Yanmar genuine diesel fuel filter / water separator.
- The water separator must be installed near the lower level of the fuel tank where maintenance (especially air-bleeding) can be performed easily.

Layout of Diesel Fuel Line

Precaution

To avoid fire, the distance between a diesel fuel line and exhaust pipe should be as follows.

Recommended distance:

- Diesel fuel line Exhaust pipe minimum 100 mm
- Diesel fuel filter Exhaust pipe minimum 50 mm

Diesel Fuel Injection Lines

Diesel fuel injection lines should not be in contact with other parts. Contact could result in a serious accident. Electric wires especially should not be attached to the diesel fuel injection lines and / or fuel hoses.

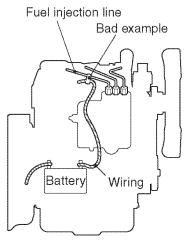
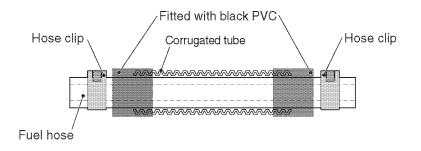
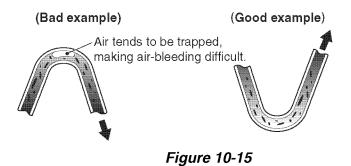



Figure 10-13

Hose clamping is needed in some cases

When the diesel fuel hoses are bundled with a clamp, they should be protected by corrugated tube. Fuel hoses in contact with engine and / or chassis should also be protected.

Figure 10-14


Fuel Hose Material (SAE J30R7)

	Inside	Outside		
Material Recommendations	Nitrile butadiene rubber compound (NBR)	Chloroprene rubber compound (CR)		
Thickness (mm)	1.4	0.9		
Pressure-resistance	294 kPa (3 kgf/	cm ²) or greater		
Temperature-resistance	80°C to -20°C	(176°F to -4°F)		
Climate-resistance Necessary (Ozone, moisture, engine oil, ultraviolet rays)				

* Vinyl hose is not used as a fuel hose because heat causes significant deformity.

Shape of Fuel Line

Try to avoid high points in the fuel line where air will collect.

Fuel Line Layout Refer to *Standard Diesel Fuel Line Layout on page 10-7.*

FUEL LINE MAINTENANCE

Maintenance and Replacement

	Maintenance (hr) check and drain	Replacement (hr)
Fuel filter	—	500
Diesel Fuel Filter / Water separator	50	500

Air-bleeding After Replacement of the Filter and / or Fuel Hoses

The engine may not start or the engine speed may fluctuate if air is trapped in the diesel fuel system. The procedure to bleed air from the diesel fuel system varies depending on whether or not the engine has an electric diesel fuel pump.

Engine with electric diesel fuel pump (solenoid type) for IDI & DI engine.

- 1. Open the fuel cock of the diesel fuel filter / water separator.
- 2. Turn the key switch to the ON position. The electric diesel fuel pump runs to automatically bleed air from the diesel fuel line.
- 3. It takes 10 to 60 seconds to bleed air from the diesel fuel line. The time varies depending on the air volume inside the diesel fuel line.

Note: NEVER bleed air by using the starter motor.

Engine without electric diesel fuel pump (for IDI engine only).

- 1. Open the diesel fuel filter / water separator fuel cock.
- 2. Loosen the air vent valve on the top of the fuel filter 2 to 3 turns. Pump the priming pump knob up and down to feed diesel fuel. When diesel fuel runs clear with no air bubbles, tighten the air vent valve. The number of times you need to press the pump varies with the amount of air trapped in the diesel fuel line.
- 3. Pump the priming pump knob again. If the air is purged from the diesel fuel line, you will feel greater resistance.
- Note: NEVER bleed air by using the starter motor.

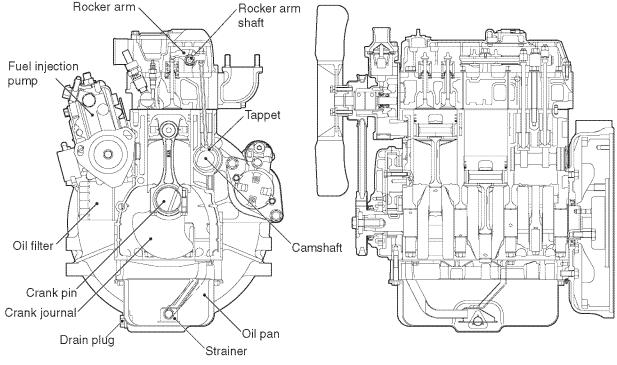
Section 11

LUBRICATING SYSTEM

Page

Lubricating System Diagram IDI (Indirect Injection) Engine	11-4
DI (Direct Injection) Engine Engine oil Selection of Engine Oil Heavy Duty Oil Multi-grade Oil	11-5 11-5 11-9 11-9
Preventing Wear Replacing Engine Oil	
Engine Oil Filter System Engine Oil Suction Pipe Oil Filter	11-14
Oil Pan Oil Pump Structure	
Inclined Performance	11-17
Crankcase Breather System Structure of Breather System (the Intake Circulation System)	
Engine Oil Pressure Switch	11-21
Engine Oil Cooler Specifications of Engine Oil Cooler Installation of Engine Oil Cooler Notes on Installation of Engine Oil Cooler	11-22 11-23

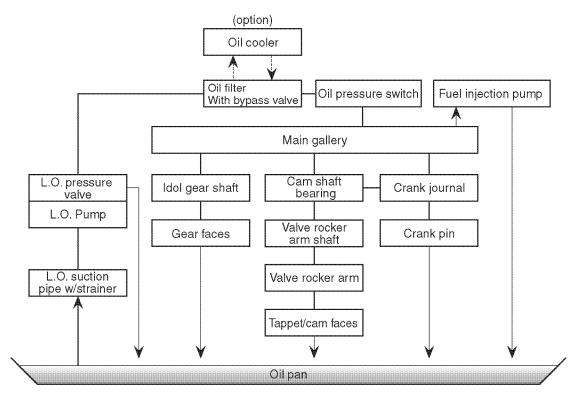
This Page Intentionally Left Blank



The lubricating system force-feeds engine oil to the crankshaft main bearings, connecting rod large end bearings, camshaft bearings, valve train, fuel pump drive mechanism, fuel injection pump, and moving portions of other components, such as the turbocharger. The engine oil lubricates and cools these components.

Engine oil is supplied to pistons, cylinders and gears by splash lubrication or through piston cooling nozzles. If any of these functions are lost, the engine oil will be consumed and degraded during engine operation and engine damage will result. To maintain lubricating system performance, use the recommended engine oil, check the level and change according to recommended schedule.

LUBRICATING SYSTEM DIAGRAM


The TNV series engines uses a wet sump lubrication system. In this system, the engine oil pump pumps engine oil from the oil pan through a suction pipe and to the crankcase and the other lubricating circuit components.

The TNV series engine lubricating system is shown in Figure 11-1:

Figure 11-1

IDI (Indirect Injection) Engine

DI (Direct Injection) Engine

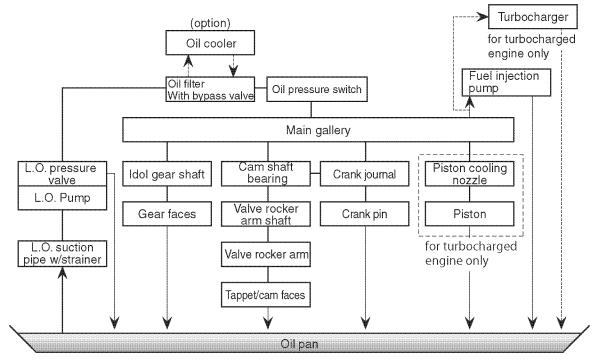


Figure 11-3

ENGINE OIL

Engine oil used for industrial engines varies with engine application and environmental temperature. Engine oil properties are classified according to the required functions. Engine manufacturers typically recommend the appropriate engine oil according to the API (American Petroleum Institute) service classification and SAE (Society of Automotive Engineers) service grades. The engine oil class varies with the operating conditions, environment and the type of fuel to be used. If the fuel has a high sulfur content, it is important to use high-grade engine oil, as the corrosive products generated by combustion must be neutralized by the engine oil.

Selection of Engine Oil

Engine oil should comply with the following specifications.

Classification

API classification		CD, CF, CF-4, CI-4
	TBN value:	≥9 (CD), ≥9 (CF), ≥7 (CF-4), ≥7 (CI-4)
ACEA classification		E-3, E-4, E-5
	TBN value:	≥10 (E-3), ≥10 (E-4), ≥10 (E-5)
JASO classification		DH-1
	TBN value:	≥10 (DH-1)

Definitions

API Classification [American Petroleum Institute]. ACEA Classification [Association des Constructeurs Européens d'Automobiles]. JASO [Japanese Automobile Standards Organization].

Additional Guidelines

- The engine oil must be changed when the Total Base Number (TBN) has been reduced to 1.0. TBN (mgKOH/g) test method; JIS K-2501-5.2-2 (HCI), ASTM D4739 (HCI).
- Standard engine oil service interval is 250 hours or every 12 months.
- NEVER add any additives to the engine oil.
- NEVER mix the different types (brands) of engine oil.
- NEVER use synthetic oil.

NEVER Use the Following Engine Oils

ACEA: E-1, E-2, B grade

Engine oil grade E-1 was developed for naturally aspirated diesel engines and for light duty applications. Engine oil grade E-2 was developed for naturally aspirated diesel engines. Engine oil grade B was only developed for light duty application (e.g., passenger car).

JASO: DH-2, DL-1

Engine oil grade DH-2 was developed for diesel engines fitted with a Diesel Particulate Filter (DPF) device. Engine oil grade DL-1 was developed for diesel engines fitted with a DPF device and it was only designed for light duty applications.

	Current / Ac	tive U.S. Diesel	Engine Oil Specifi	cations		
Parameter [limit]	API CF	API CF-2	API CF-4	API CG-4	API CH-4	MIL-PRF-2104G
CRC L-38	43.7 /48.1 /50	43.7 /48.1 /50	50	43.1	NR	43.7 /48.1 /50
Bearing Weight Loss (mg) [max] 1st Test/2 Test Avg./3 Test Avg.						
Viscosity (cSt) at 100 degree	NR	NR	NR	NR	NR	13.0
Oil viscosity (cSt) Above SAE J300 [min]	NR	NR	NR	0.5	NR	NR
Caterpillar 1K Weighted Demerits (WDK) [max] 1st Test/2 Test Avg./3 Test Avg.	NR	NR	332 /347 /353	NR	332 /347 /353	NR
Top Groove Fill (%) [max] 1st Test/2 Test Avg./3 Test Avg.	NR	NR	24 / 27 / 29	NR	24 / 27 / 29	NR
Top Land Heavy Carbon (%) [max] 1st Test/2 Test Avg./3 Test Avg.	NR	NR	4/5/5	NR	4/5/5	NR
Oil consumption (g/kW-h) [max] 1st Test/2 Test Avg./3 Test Avg.	NR	NR	0.27 / 0.27 / 0.27	NR	0.5 / 0.5 / 0.5	NR
Piston, Ring, Liner Distress, Stuck Rings	NR	NR	NONE	NR	NONE	NR
Caterpillar 1M-PC Weighted Demerits (WTD) [max]	240	100	NR	NR	NR	240
Top Groove Fill (%) [max]	70	NR	NR	NR	NR	70
Ring Side Clearance Loss (mm) [max]	0.013	NR	NR	NR	NR	0.013
Piston, Ring, Liner Distress. Stuck Rings	NR	NR	NR	NR	NR	NONE

	Die	fication System for Com sel Engine Service s (Fleets, Contractors, Far	
API Commercial Engine Service Categories	Previous API Engine Service Categories	Related Military or Industry Designations	Engine Test Requirements
СА	DG	MIL-L-2104A	CRC L-38; Caterpillar L-1:* (0.4% sulfur)
СВ	DM	MIL-L-2104A, Supplement 1	CRC, L-38; Caterpillar L-1:* (0.4% sulfur)
СС	DM	MIL-L-2104B MIL-L-46152B	CRC L-38; Sequence IID; Caterpillar 1H2
CD	DS	MIL-L-45199B, Series 3 MIL-L-2104C/D/E	CRC L-38; Caterpillar 1G2*
CD-II	NONE	MIL-L-2104/D/E	CRC L-38; Caterpillar 1G2* Detroit Diesel 6V53T
CE	NONE	NONE	CRC L-38; Caterpillar 1G2* Cummins NTC-400*; MACK T-6; MACK T-7
CF-4	NONE	NONE	CRC L-38; Cummins NTC-400*; Mack T-6; MackT-7; Caterpillar 1K
CF-2	NONE	NONE	CRCL-38; Caterpillar 1M-PC Detroit Diesel 6V92TA
CF	NONE	NONE	CRCL-38; Caterpillar 1M-PC
CG-4	NONE	NONE	CRCL-38; Sequence IIIE; Roller Follower Wear; Mack T-8; Caterpillar 1N
CH-4	NONE	NONE	Sequence IIIE; Roller Follower Wear; Mack T-8E; Mack T-9; Cummins M11; Caterpillar 1P; Caterpillar 1K
CI-4	NONE	NONE	Caterpillar 1R; Cummins M11; Mack T-8E; Mack T-10; Roller Follower Wear; Caterpillar 1K or 1N; HEUI; Sequence IIIF

* The test is obsolete; engine parts, test fuel, or reference oils are no longer generally available, or the test is no longer monitored by the test developer or ASTM

LUBRICATING SYSTEM

Classification by Engine Oil Viscosity (SAE Viscosity Classification)

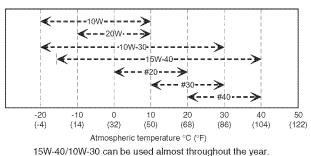
There are eleven viscosity levels of SAE (Society of Automotive Engineering) classification, i.e., 0W, 5W, 10W, 15W, 20W, 25W, 20, 30, 40, 50 and 60. This classification system is very popular and has been used all over the world for many years.

		SAE Viscosity Cl	assification						
	SAE Viscosity Grades for Engine oils ^a – SAE J300 Dec 99 (document 2)								
L	_ow-Temperature Vi	scosities	High-Temperature Viscosities						
SAE Viscosity	Cranking ^b (cP) max at	Pumping ^c (cP) max with no yield stress		te Kinematic ^d t 100°C	High Shear ^e Rate (cP) at 150°C min				
Grade	temperature °C	at temperature °C	min	max					
ОW	6200 at -35	60,000 at -40	3.8	—	_				
5W	6600 at -30	60,000 at -35	3.8	_	_				
10W	7000 at25	60,000 at -30	4.1	_	_				
15W	7000 at20	60,000 at -25	5.6	_	_				
20W	9500 at -15	60,000 at -20	5.6	_	_				
25W	13,000 at -10	60,000 at -15	9.3	_	_				
20	_	_	5.6	< 9.3	2.6				
30	_	_	9.3	<12.5	2.9				
40	-	_	12.5	<16.3	2.9 (0w-40, 5w-40, 10w-40 grades)				
40	-	_	12.5	<16.3	3.7 (15w-40, 200w-40, 25w-40, 40 grades)				
50	-	-	16.3	<21.9	3.7				
60	-	-	21.9	<26.3	3.7				

^a All values are critical specifications as defined by ASTM D 3244 (see text, *Section 3*).

b ASTM D 5293

^c ASTM D 4684 (see also *Appendix B* and text *Section 4.1*): The presence of any yield stress detected by this method constitutes a failure regardless of viscosity.


d ASTM D 445

e ASTM D 4683, ASTM D 4741, CEC-L-36-A90

Selection of SAE Service Grade Oil According To Temperature

Use multi grade oil in TNV engines.

Selection of viscosity (SAE Service grade)

Figure 11-4

Heavy Duty Oil

Heavy-duty oils (HD oils) are oils with added antioxidant and detergent-dispersant agent. HD oil is appropriate for use as diesel engine oil. The HD oil is long lasting due to the antioxidant effect. The detergent- dispersant keeps the pistons clean and prevents piston ring sticking and contamination of the oil passages. A detergent-dispersant with a total base number also neutralizes the sulfuric acid produced by the combustion of the sulfur content in diesel oils, preventing liner and ring wear. The detergent-dispersant neutralizes strong acid entering the crankcase and prevents corrosion of engine parts.

Multi-grade Oil

Multi-grade oil is an engine oil designed to meet both low temperature and high temperature viscosity characteristics represented with "W", as "10W", represented as "10W-30". This type of oil provides good starting at low temperature, good fuel economy, and proper viscosity at high temperature.

As an example, the following chart shows the viscosity-temperature characteristics of Yanmar genuine engine oil. This chart uses kinematic viscosity at 40°C (104°F) and 100°C (212°F) shown in the property table. Although the lower temperature characteristics of oil are generally shown with cranking viscosity, it is shown here using kinematic viscosity as a standard. On this graph with semi-logarithmic scale, the temperature and viscosity are related linearly. However, for single grade oil, the rate of increase of the viscosity increases a little at the lower temperature range. For the multi-grade oil, the viscosity changes with temperature mostly as shown in the graph.

LUBRICATING SYSTEM

Viscosity-Temperature Characteristics of Engine Oil

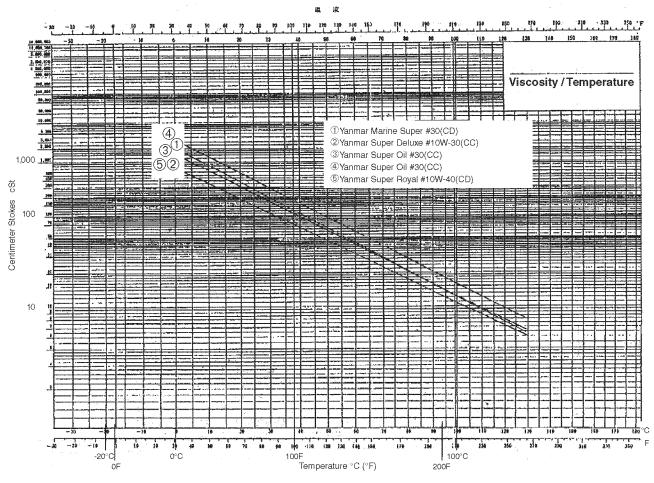


Figure 11-5

Preventing Wear

Prevention engine wear is of utmost concern to all engine operators. The following can be said about this problem:

Oil Film Breakdown at High Temperatures

Oil viscosity decreases as the engine temperature rises. This can cause the oil film to rupture and metals to rub against each other.

To prevent this, use an engine oil with a high viscosity index raising agent or change the SAE viscosity number according to the season. It is best to use SAE20 oil in winter, SAE30 or SAE40 oil in summer and SAE30 in spring or fall.

Poor Circulation of Oil when the Engine is Started

The shaft and bearing come in direct contact when the engine stops. When the engine oil viscosity is too high, engine oil circulation while the engine is starting can be poor, causing metals to rub directly against each other. Special care must be taken in this situation since starting wear can be extreme.

To prevent this, use an engine oil with a high viscosity index raising agent or change the SAE number according to the season, (No.20 oil in winter and No.40 oil in summer). Fully priming the engine oil system before starting the engine is also recommended.

Poor Oil Circulation Due to Deposits

When oil degenerates due to oxidation, varnish-like accumulations and other deposits are produced. These deposits stick to engine parts which hinders engine oil circulation and causes the oil film to break, resulting in metal wear.

The solution to this is to use engine oil which does not oxidize and degenerate easily and is good at dispersing sludge and varnish in the oil, (engine oil which has superior anti-rust, anti-oxidation and detergent characteristics). Using engine oil mixed with anti-oxidation, detergent and carbon dispersion additives or checking and replacing the engine oil on a periodic basis is recommended. The viscosity of oxidized oil becomes very high at low temperatures, making the engine difficult to start.

Materials Scratched by Deposits

Deposits can scratch materials when they stick to the moving parts of the engine.

Use an engine oil supplemented with an anti-oxidation agent that has superior anti-oxidation and detergent characteristics. Checking and replacing the engine oil periodically is recommended. It is also necessary to keep the engine compartment clean.

Corrosion of Materials

Use an engine oil with superior anti-oxidation characteristics or replace the oil at shorter intervals.

Corrosion derives from not only the engine oil but also from sulfur in fuel. Sulfur produces sulfur dioxide gas during combustion and some of that gas turns to sulfur trioxide. This mixes with condensed water in the cylinder and becomes sulfuric acid, which corrodes engine parts.

It is necessary to neutralize these strong acids with alkali to remove the corrosiveness and prevent harmful sulfuric corrosion. Use engine oil with acid neutralizing performance, (Total base number, 4-15 mg KOH/g).

Replacing Engine Oil

Necessity of Replacement

Engine oil is exposed to high temperatures and air during engine operation and so gradually oxidizes and degenerates. As engine oil is contaminated and diluted with water, impurities and diesel fuel, it gradually loses its characteristics. When water and impurities mix with the engine oil, emulsified substances and sludge are produced, increasing the engine oil's viscosity. Continuous use of degenerated oil causes wear and corrosion of moving and rotational parts and eventually abnormal wear and seizure of bearings and liners.

IMPORTANT

Replace engine oil according to the specified interval. Expected engine oil problems due to degeneration and the entry of impurities are as follows:

· Contamination of engine oil by diesel fuel

When diesel fuel mixes with engine oil, viscosity is diluted. It is dangerous to continually use engine oil that is diluted by more than 25%.

Oil circulation is hindered and lubrication and cooling effects are lowered when emulsified substances and sludge are produced by water and impurities entering the engine oil. The engine oil must be replaced.

· Excessive increase of acidity

Engine oil acidity increases when exposed to water, air and heat. Acidity increases rapidly in regular class oils without anti-oxidation agents and oils with inferior anti-oxidation stability. This acidity produces organic acids that rust and corrode the bearing face, cylinder liner and piston. The process also produces sludge and eventually causes the oil to decompose and degenerate. Lubrication performance will be lost. Engine oil with an acid value of over 1.0 must be replaced.

LUBRICATING SYSTEM

Increase of insoluble matter in the oil

Metal powder, dust and products of incomplete diesel fuel combustion cause an increase of insoluble matter (sludge and solid impurities) in the oil. This worsens lubrication performance, oil circulation and cooling effect. Solid impurities can damage the bearings and the inside of the cylinder liners. The engine oil must be replaced when these impurities are present.

Water in the oil that can't be removed

Water that leaks into the crankcase turns to carbonic acid gas and steam by the fuel combustion. The steam turns back to water when it cools and can also enter the crankcase. The entry of water into engine oil produces an emulsified substance that hinders lubrication and causes bearing and piston wear. The sulfuric compound in the fuel turns into sulfur trioxide after combustion. This combines with water and produces sulfuric acid that corrodes the bearings, piston, intake and exhaust valves and exhaust pipe. If water in the oil cannot be removed by the oil filter, replace the oil as soon as possible.

Excessive drop of flash point

A drop in flash point indicates that the engine oil is contaminated with diesel fuel. When the flash point drops to 35°C (95°F) in gasoline engines and to 25°C (77°F) in diesel engines, oil film and oiliness are lost and thermal-resistance and lubrication performance are degraded. This has an adverse effect on the engine and can even lead to explosion. Replace the engine oil as soon as possible.

Degeneration of oil as a result of a spot test

The usual way to test engine oil is to send a sample to the laboratory for analysis. This takes a considerable amount of time and the engine may be damaged in the meantime by the use of unsuitable engine oil.

A spot test is a quick way to gauge engine oil degeneration. The spot test provides a rough idea of detergent-dispersant performance, degree of contamination and alkali or acid status of the engine oil by spreading it on a test paper and analyzing its color.

The extent of dilution by diesel fuel, entry of water or oil filter negligence can be determined by this method. This is a convenient and effective way to maintain the engine.

Replacement Interval (Engine Oil Service Interval)

Service interval varies depending on engine type, engine oil, diesel fuel quality and operation conditions. Determine service intervals by analyzing the engine oil properties under working conditions. After analyzing the results of the test, determine the service interval.

Engine oil degeneration speed varies depending on the engine oil quality, engine and operation conditions and maintenance of oil filters and air cleaner filters.

Yanmar has researched various applications and determined standard service intervals, which are specified in the *TNV Operation Manual*.

Check the engine oil condition frequently and replace it early irrespective of the fixed interval if the engine oil has degenerated.

	Criteria to replace the engine oil							
	Properties	Criteria						
1. In	crease/decrease of viscosity at 40°C (104°F)	25% increase/decrease of new engine oil						
2. To	otal base value mg KOH/g	Over 2.0 (HCI method); Over 4.0 (HCIO ₄ method)						
3.	Increase of insoluble substance	_						
	Pentane insoluble content (mass)%	Below 2.0						
	Insoluble resin (mass)%	Below 2.0						
4. Water content (volume)%		Below 0.5						
5. Fl	ash point	Minimum 200°C (392°F)						

Cautions for Replacing Engine Oil

In used engines, check the type of engine oil that was previously used before adding a new type of engine oil. The recent high-grade engine oils contain various additives.

If different types of engine oil are used together, the engine oil may emulsify and produce sediments. It is important not to mix different types of engine oil.

When refilling or changing the engine oil, make sure that no other oil, dust or dirt is deposited on the container, hose, pump and funnel. Take care that no water, impurities or waste enters when refilling or replacing engine oil.

Engine Oil Consumption

The major cause of excessive engine oil consumption is oil blowing by the cylinder wall because of the pumping effect of the piston rings. The amount of engine oil directly leaked from the crankcase and the valve train system is insignificant and presents no problem in normal operation. The best way to control the engine oil consumption is to reduce the engine oil blow-by by supplying the minimum necessary amount of engine oil for cylinder lubrication.

Oil viscosity and engine revolution speed are factors for engine oil consumption. Studies show that the engine oil consumption increases as oil viscosity decreases and revolution speed increases. To reduce engine oil consumption, use the proper engine oil, maintain a sufficient amount of engine oil, replace it at the specified intervals, and operate the engine under the specified conditions.

Oil Temperature

As the oil temperature rises, the oil film becomes thinner and hydrodynamic lubrication changes into boundary lubrication, increasing the friction loss and leading to seizure. As engine oil temperature influences engine service life, always test the temperature of the engine oil after the engine is installed in the driven machine. If the temperature of engine oil exceeds the specified limit, check the installation configuration or oil cooler equipment.

Oil temperature and engine oil replacement interval			
Service classification	Allowable lubricating oil temperature	Engine oil replacement interval	Fuel used
CD, CF, CF-4, CI-4 E-3, E-4, E-5, DH-1	≥120°C (248°F)	Every 250 hours	Diesel fuel

In a closed engine compartment, provide air circulation near the oil pan (2m/sec) to limit the engine oil temperature rise. The maximum engine oil temperature limit is the maximum ambient temperature. Do not operate the engine beyond the specified maximum ambient temperature.

Oil Refilling

Engine operation manuals for working machines recommend checking the engine oil level by using the dipstick. Engine oil should be refilled to the upper limit mark of the dipstick. The oil should be checked every day and refilled as needed. Do not overfill.

ENGINE OIL FILTER SYSTEM

The purpose of the engine oil filtering system is to supply clean engine oil to the moving portions of the engine while trapping impurities.

Engine Oil Suction Pipe

An engine oil suction pipe with strainer is installed between the oil pan and engine oil pump. A metallic strainer is attached to the end of the suction pipe to trap large foreign matter.

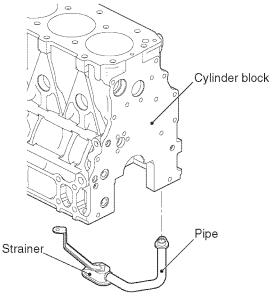


Figure 11-6

Oil Filter

The purpose of an oil filter is to prevent wear or seizure of moving engine components and to extend the engine oil replacement interval by cleaning it and preventing deterioration. Engine oil contains soot generated by combustion of fuel and engine oil, oxides, and worn metal particles. If these impurities are not removed, moving engine components will prematurely wear, moving components can become sticky, and the cooling effect of the oil is degraded. All of these accelerate bearing corrosion, rusting of metal surfaces and degradation of the engine oil. The oil filter is intended to remove these impurities. The oil filter installed on the TNV series engine uses a cartridge type paper element. If the oil pressure difference between the inlet and outlet of this filter reaches 78.5 to 118 kPa {0.8 to 1.2 kg/cm²} due to element clogging, the relief valve is activated to bypass the engine oil directly to the oil gallery to prevent engine seizure. Continuous flow of unfiltered engine oil in the engine is not good for engine life. Be sure to replace the oil and oil filter at regular intervals, based on the maintenance schedule.

Oil filter installed on TNV series engines				
Engine model	IDI		DI	
Туре	STD	Large Capacity	STD	Large Capacity
Filtration area (cm ²)	690	810	1160	1630
Yanmar code	119305-35151	119660-35150	129150-35152	119005-35150

"STD (standard)" and "large capacity" types are available for TNV series engines.Large capacity type is applied when the engine is used in dusty/sandy areas (including China and Middle/Near East), or when long term maintenance is required by the specification (such as for refrigerator specific engines).

OIL PAN

Shallow and deep oil pans are available. The deep oil pan is recommended because it can deliver good performance in an inclined position. The shallow pan is recommended when lower overall height is preferred.

Two types of drain plug mounting positions are available; a downward draining plug and sideways draining plug. The downward draining plug is recommended. The sideways plug should be used when the oil cannot be drained downward because of engine position.

Since engines are installed in various positions on the driven machine, choose an oil pan that best fits the purpose, function and structure of the machine.

For the standard specifications of the oil pan of TNV engines, refer to the Yanmar TNV Option Menu.

Oil Pump Structure

The TNV series engines use a trochoid engine oil pump. The pump is available in three configuration; type A, B, and C. Their exploded views are shown in **Figure 11-7**, **Figure 11-8** and **Figure 11-9**.

3TNV82A-B	3TNV82A-Z
3TNV84T-Z	3TNV84T-B
3TNV88-B	3TNV88-Z
3TNV88-U	3TNV88-E
4TNV84T-Z	4TNV84T-B
4TNV88-B	4TNV88-Z
4TNV88-U	4TNV88-E

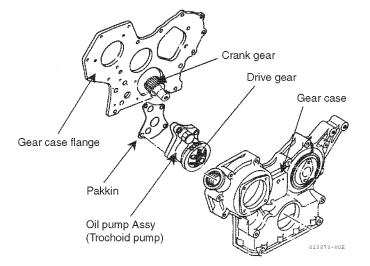


Figure 11-7

• Type A: Separated single typeDriven by the crank gear

Figure 11-8

• Type B: Driven directly with an inner rotor attached to the crankshaft. This type produces lower mechanical noise because the pump drive gear is eliminated. Application: IDI and DI engines

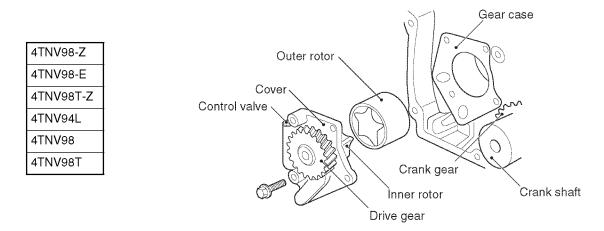


Figure 11-9

• Type C : Separate typeDriven by the crank gear Application: DI engines (94 and 98 series)

INCLINED PERFORMANCE

The TNV series engine uses a wet sump lubrication system oil pan. If the engine is operated at an inclination angle that exceeds the maximum inclination angle, air gets into the engine oil suction pipe preventing engine oil circulation. Air pockets are generated in the engine oil system and the temperature of engine components rise, causing bearing failure.

To prevent this failure, check the engine oil level by using the dipstick when the engine is level. The maximum inclination angle refers to an angle when the oil level is at the minimum oil level mark of the dipstick.

The maximum inclination angle for the TNV series engine with deep oil pan (standard) is as follows:

Engine type	IDI	DI	
Continuous operation	25° for all directions	30° for all directions	
Instantaneous operation (within 3 min.)	30° for all directions	35° for all directions	

* The above values have been confirmed in tests using a single engine. For the driven machine with significant movement, identify the inclination characteristics associated with the operating conditions.

Consult Yanmar if the engine must be used at an angle exceeding the maximum inclination angle.

Inclination angle during continuous operation

Note: Keep the engine flat while supplying engine oil or coolant.

25° or less

Figure 11-10

CRANKCASE BREATHER SYSTEM

A fluctuation of pressure is generated in the crankcase by the reciprocating motion of the pistons. Blow-by gas escapes through the clearance between the cylinder and the piston ring and flows into the crankcase. The purpose of the breather system is to maintain normal pressure inside the crankcase. The breather system is either an intake circulation system or release system. The release system releases upward pressure fluctuation and blow-by gases into the open air through a pipe installed in the valve cover. However, emission of the blow-by gases (emissions from the crankcase) into the open air is prohibited by recent EPA and EU emission regulations. In the intake circulation system, the valve cover and intake manifold are connected by a pipe or other means to release pressure fluctuation. The breather gas in the crankcase is sucked back into the intake manifold for re-combustion.

All of the TNV series engines (except for 3TNV84T/4TNV84T/4TNV98T with turbocharger) use intake circulating systems. This system is also used particularly for turbocharged engines which comply with next regulations such as EPA Intermiddle Tier4 or Tier3. In a turbocharged engine, however, blow-by gas cannot be sucked into the intake manifold because the air pressure is very high. Therefore, turbocharged engines have a structure between the air cleaner and turbocharger inlet to suck back the blow-by gas. Care is required if the routing of hoses between the air cleaner and turbocharger is performed by an OEM company. Refer to Precautions for Breather System Hoses.

Structure of Breather System (the Intake Circulation System)

The blow-by gas enters the diaphragm assembly through a baffle plate located in the valve cover. It goes through the breather pipe to the intake manifold and then returns to the combustion chamber. The mist of engine oil mixed in the blow-by gas is removed by the action of the baffle plate chamber. Pressure inside the crankcase is regulated by the function of the diaphragm assembly and a suitable amount of blow-by gas is returned to the intake air system.

Two breather systems are classified according to the structure.

Breather System Components

For all TNV engines *except* 4TNV94 and 98 and all turbocharged engines:

A system that returns the blow-by gas from the breather to the intake manifold through a pipe.

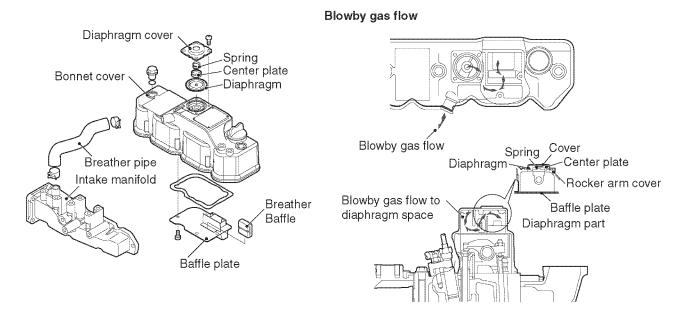


Figure 11-11

Breather System (pipeless type) Components

For engines of 4TNV94 and 98

Pipeless system that returns the blow-by gas to the intake manifold through a passage in the valve cover, without using pipe.

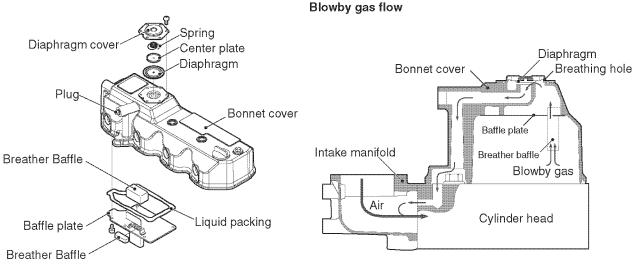


Figure 11-12

Breather System Components (Turbocharged Engines)

3TNV84T-Z, 3TNV84T-B, 4TNV84T-Z, 4TNV84T-B, 4TNV98T-Z engines

A system that returns the blow-by gas from the breather before the turbocharger through a pipe.For turbocharged engines, blow-by gas must be returned before the turbocharger because the air pressure of the intake manifold side becomes very high.Please note that you need to perform the routing of the breather system hoses if you have the intake system components (including intake air hose, air cleaner) prepared by yourself.The hoses must be routed according to the following precautions:

Precautions for Breather System Hoses

· Recommended location of the breather system hoses

Route the hose between the area just after the air cleaner to 300 mm away from the air cleaner. Route the hose as near as possible to avoid being affected by the intake restriction of the turbocharger.

• About the height difference between the bonnet and blow-by return position

To return oil to the bonnet, place the blow-by return position higher than the joint part of the bonnet. Any pitting of the hose will trap oil and the passage is narrowed. This may cause the negative pressure to increase and the oil may be sucked by the TC side. Please be sure to route hoses without any pittings.

• About the specifications of piping components (return joint, intake air hose)

Provide ϕ 18 mm outer diameter for the return joint part and an aperture (ϕ 3) inside.Do not use a return joint inside a curved pipe because the return joint will increase the negative pressure.Use intake air hoses made of materials with oil resistance.

The following optional components are available:

Part name	Code No.	NOTE	
Blow-by gas return joint \$\$	129009-03050		
Blow-by gas return joint \$\$\phi\$ 46	129509-03050	For 4TNV84T-Z/4TNV98T-Z	

LUBRICATING SYSTEM

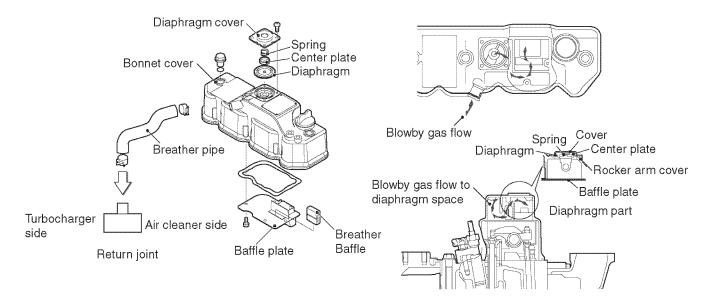
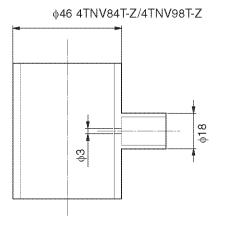
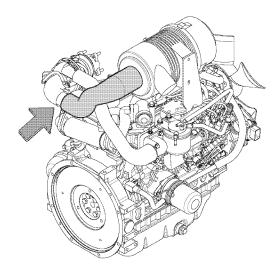




Figure 11-13

Return joint

Figure 11-14

Location of the breather system hoses

Figure 11-15

ENGINE OIL PRESSURE SWITCH

Decreased engine oil pressure may cause engine failure. An engine oil pressure switch is installed and used in combination with an indicator, buzzer or shutdown system to alert or prevent problems.

Engine oil pressure switch mounted on the TNV series engine			
	Non-electronic control engines Electronic control		
Yanmar code No.	114250-39450	119761-39450	
Actuation pressure of engine oil pressure switch	<49.0 ± 9.8 kPa (0.5 ± 0.1 kgf/cm ²)		
Contact capacity	12 VDC/0.4 A, 24 VDC / 0.2 A		

* M4 thread connection terminal type (121252-39450) is also available as an option. Refer to the Option Menu.

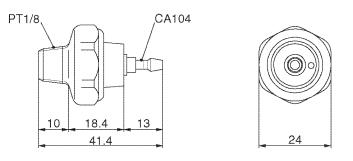
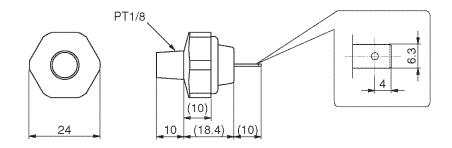



Figure 11-16

Figure 11-17

The contacts of the engine oil pressure switch are closed when no pressure is present in the engine oil system. If the key switch is turned to the ON position before engine operation, the oil indicator will light. When the oil pressure is at a high level during engine operation and the pressure switch contact is open, the indicator turns Off. If engine operation is stopped using the stop lever without turning the key switch Off, the oil pressure drops to close the pressure switch contact and the indicator goes On again.

The oil pressure switch is used to detect reduced oil pressure due to wear or inclination. The dipstick or another level control system must still be used to check the oil volume.

An Example of Wiring Diagram

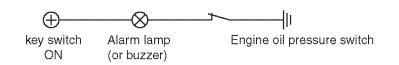


Figure 11-18

LUBRICATING SYSTEM

ENGINE OIL COOLER

The engine oil cooler is used on the following engines:

Turbocharged engines: 3TNV84T, 4TNV84T and 4TNV98T

Direct injection naturally aspirated engines: 3TNV82A to 4TNV88 with engine speeds at 2800 min⁻¹ or greater.

Depending on the installation of the driven machine, the engine oil cooler can be used for engines other than the above if engine oil temperature are above the limits shown in *Application Standard on page 1-3*.

Specifications of Engine Oil Cooler

For the TNV series engines, the specifications of the engine oil cooler and their applicable engine models are as shown below.

Code No.		119717-33010	129508-33010	123962-33010	Remarks
Exchangeable heat amount	kW	3.0	4.0	5.8	
Core size	mm	ϕ 73 $ imes$ 7 steps	ϕ 93 $ imes$ 7 steps	ϕ 93 $ imes$ 11 steps	
Oil side heat release area	m ²	0.074	0.117	0.242	
Water side heat release area	m ²	0.037	0.048	0.105	
Applicable engine models		(2TNV70) (3TNV70) (3TNV76)	3TNV84T 4TNV84T (3TNV82A) (3TNV84/88) (4TNV84/88)	4TNV98T (4TNV94L) (4TNV98)	Optional

Installation of Engine Oil Cooler

The engine oil cooler is installed between the cylinder block engine oil outlet and the engine oil filter so that the engine oil is cooled before it passes into the filter.

Engine coolant comes out of the engine block coolant jacket and goes through the coolant inlet hose that connects to the engine oil cooler. After it leaves the engine oil cooler, the engine coolant goes back to the coolant pump via the coolant discharge hose.

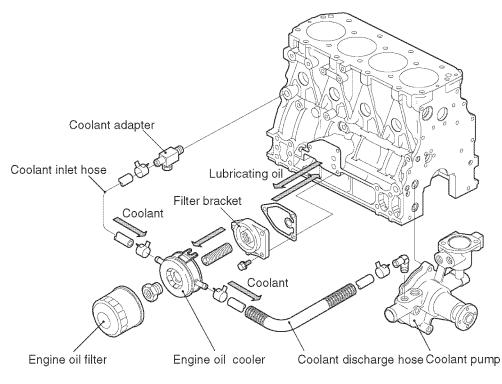


Figure 11-19

Notes on Installation of Engine Oil Cooler

• When adding an engine oil cooler to an engine that does not come with one as standard equipment, check the specifications of the cooling system because the engine coolant temperature may be higher in these configurations.

This Page Intentionally Left Blank

Section 12

MATCHING TEST PROCEDURE

Page

Purpose of Matching Test	12-3
Items Required for Test Measuring Instruments Engine Parts Tools Data Recording Paper Other	12-4 12-5 12-6 12-6
Instructions for Mounting Measuring Instruments	12-7 12-7 12-8 12-8 12-9 2-10 2-11 2-12
Preparation for Matching Test Operation1	
Heat Balance Test1	
Test Data Interpretation and Criteria 1 Test Data Interpretation and Criteria 1 Heat Balance Evaluation 1 Coolant Use Limit Atmospheric Temperature Estimation 1 Engine Oil Temperature Evaluation 1 Intake Air Temperature Evaluation 1 Temperature Evaluation 1 Intake Air Temperature Evaluation 1 Temperature Evaluation of Various Other Components 1	2-15 2-16 2-17 2-18 2-19
Output Matching Test 1	2-19
Engine Performance 1	
Evaluation of Output Matching 1	2-21

MATCHING TEST PROCEDURE

Evaluation of Output Matching for General Purpose Industrial	
Machines 1	
Preparation for Matching Test 1	
Preparation of Engine Performance Curve at Matching Test. 1	
Evaluation of Machine Load 1 Evaluation of Output Matching at the Maximum Ambient	12-23
Temperature	12-23
Preparation of Engine Performance Curve at the Maximum	
Ambient Temperature 1	12-24
Evaluation of Output Matching at the Maximum Ambient Temperature1	12-21
-	
Evaluation Notes 1	
Evaluation of Output Matching of Generator	12-26
Evaluation of Output Matching at the Maximum	
Ambient Temperature 1	12-26
Engines Compatible with Both 50 Hz and 60 Hz 1	12-27
Maximum Output of Generator 1	12-27
Vibration Measurement 1	12-28
Installation State Check	12-28

PURPOSE OF MATCHING TEST

All engine performance specifications are developed under standard atmospheric conditions as described in *Atmospheric Conditions and Engine Configuration Affect Engine Output on page 3-3.* Engines are installed in driven machines that are literally operated all over the world. It is expected that their operating environments will be totally different from standard atmospheric conditions.

It is important to know in advance if an engine and its driven machine can function without problems in a given operating environment.

As it is not practical to reproduce all operating conditions in a laboratory, the substitute performance verification method is a series of tests called the matching test. This series of tests predicts how data collected under standard atmospheric conditions changes under the operating environment of the driven machine and determines if the result would adversely influence the performance of the driven machine. This method includes suggestions for improvements to meet the functional requirements.

The matching test should be performed on the engine and the driven machine, with the cooperation of the driven machine manufacturer. Verification of reliability and durability should be conducted by the driven machine manufacturer.

The matching test is divided into three parts: the heat balance test, the output matching test and installed state checking. If possible, the test, evaluation and improvements should be conducted simultaneously.

Refer to the separate publication TNV Series Engine Installation Evaluation.

ITEMS REQUIRED FOR TEST

Measurement instruments and tools needed for the test are dependent on the purpose and application of the driven machine. Below is a minimum list of measurement instruments to consider.

Measuring Instruments

	Measuring instrument	Comments			
1	Barometer	easure the atmospheric pressure during the test (or inquire at a local eather bureau).			
2	Dry and wet-bulb thermometer	Measures the outside temperature and relative humidity. Take measurement in a shady, well-ventilated area that will be not influenced by the temperature of the subject machine.			
3	Tachometer	High pressure fuel pipe clamping type (for IDI engine only), or non-contact type (optical reflection or magnetic pulse) to measure engine speed in the operating state. For instructions to install a magnetic pulse tachometer to a gear case, refer to <i>Engine Speed Measurement on page 12-12</i> . Special parts are available as Yanmar parts. Check the battery (if any) on the instrument before you use it.			
4	Thermocouple	For exhaust temperature measuring: 800°C (1472°F) maximum temperature x 1 pc. For other temperature measuring: 500°C (932°F) maximum temperature x 5 pcs. Have extra thermocouples available in case of failure.			
5	Six-channel digital thermometer				
6	Vibration meter	Measures acceleration and amplitude in both directions. Make sure AC power supply is available on the test site. Take adhesive and metal fittings for mounting the pickup.			
7	Stopwatch	Measures data measuring intervals and the speed of running vehicle.			
8	Angle meter	Measures the hill climbing angle of a vehicle.			
9	Anemometer	Measures radiator air flow rate.			
10	Manometer	Checks intake and exhaust restriction, range 1.5 m min. H_2O .			
11	Data logger	For mobile driven machines or automatic data recording.			

Engine Parts

		Engine parts	Comments						
	Exh	naust gasket	Measures exhaust temperature. Two gaskets required including one for repairing the test subject machine. Use the following gaskets for standard exhaust manifold.						
1		Engine model	2TNV70 3TNV70 3TNV76	3TNV82A 3TNV84 3TNV88	4TNV84 4TNV88	3TNV84T	4TNV84T	4TNV94L 4TNV98	4TNV98T
		Code No.	119515 -13200	129004 -13200	129930 -13200	129403 -18091	129508 -18091	129930 -13201	123901 -18080
		Bolt hole pitch (mm)	52 × 52	52 × 52	62 × 62	For T/C (Special)	For T/C (Special)	62 × 62	For T/C (Special)
		ly blocked open rmostat	Use for a heat balance test. Mandatory when the engine coolant outlet port temperature is predicted to be under 85°C (185°F). Parts for the fully blocked open thermostat testing are available for each engine model as shown in the table below.						
2		Fully blocked open thermostat for testing	penthermostat 119717-92100			129155-92100			_
No need to use a fully blocked open thermostat if the driven machine is tested u of the actual operating environmental temperature in a high constant temperatistandard thermostat unchanged.									
			For the thermostat cover. For repair after replacing with the fully opened thermostat. Two sets for repairing possible breakage during the test.						
3	Gas	sket	2TNV70 3TNV70 3TNV76	3TN 3TN 3TN 3TN	IV84 V84T	4TN	IV84 V84T IV88		V94L IV98 V98T
		Thermostat For cover	_	129795	5-49551	_	_	129900)-49540
		Thermostat For main unit	_	129150)-49811	_	_	121850)-49550

MATCHING TEST PROCEDURE

Tools

	ΤοοΙ	Tool carrying cautions, etc.	
1	Phillips and straight- edge screwdrivers	For digital thermometer terminal and coolant hose band.	
2	Wrench set	For bolts of the exhaust outlet port, thermostat cover, installed muffler, air cleaner, and for fixing the thermocouple.	
3	T box wrench set	For the above mentioned work.	
4	Instant glue	To fix metal fixtures of vibration measuring pick-up.	
5	Double-stick tape	To mount vibration meter pick-up, in case the subject machine is a finished product to be sold.	
6	Pliers	To mount high pressure pipe type tachometer pick-up.	
7	Cutting pliers	For various works.	
8	Tape measure	To measure the speed of the running vehicle.	
9	Silicon sealant	To seal the hose connection when thermocouple is installed between hose and fitting, to prevent loss of coolant.	
10	Needle file	To modify exhaust gaskets.	
11	Inflating needle	For intake measurement.	
12	Drill	To fit thermocouple if gasket location not possible.	
13	Exhaust back pressure probe		
14	Circle compass knife	To slit rubber hoses for thermocouple or pressure tap.	
15	Electrical tape (good quality)	For fixing thermocouples and leads.	

Data Recording Paper

	Data recording forms	Comments
1	Sample machine data	Rated speed performance curve and load performance curve during operation with engine installed in driven machine.(Understanding load factor under the actual work conditions) Specific fuel consumption data of sample machines at shipment can also provide effective information when measuring/evaluating the fuel consumption of engines as a part of generator specifications or other purposes.
2	Test plan	Arrangements for the matching test.
3	Measured data recording sheet	See the separate publication, TNV Series Engine Installation Evaluation.
4	Installed state check sheet	See the separate publication, TNV Series Engine Installation Evaluation.
5	Memo pad	

Other

The following items may also be needed: ruler, camera, TNV Operation Manual and TNV Service Manual.

INSTRUCTIONS FOR MOUNTING MEASURING INSTRUMENTS

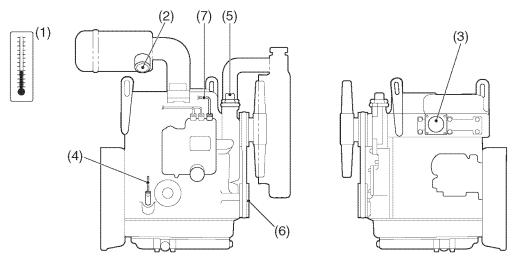


Figure 12-1

The heat balance test is the most important. The purpose of this test is to measure the temperature of various engine systems. If the measuring instrument is improperly mounted, incorrect temperature may be measured. Follow the instructions below for correct mounting of the measuring instruments.

Atmospheric Temperature (Dry and Wet-bulb Thermometer)

See (Figure 12-1, (1)):

- Measure in a well ventilated place that is not exposed to direct sunlight.
- Set the dry / wet bulb thermometer where it will not be influenced by the heat from the driven machine or engine.
- The atmospheric temperature will be the calculation basis for the temperature rise value of respective sections.
- Obtain the relative humidity from the temperature difference between the dry and wet bulbs.

Intake Air Temperature (Use a Thermocouple)

See (Figure 12-1, (2)):

- Bring the end of the thermocouple to the air cleaner inlet or at about 50 mm away from the intake extension hose end.
- Avoid the heat radiated from the exhaust system or other engine components.

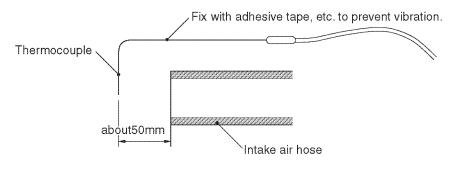


Figure 12-2

Measurement of Air Intake Restriction

See (Figure 12-1, (3)):

- Air intake restriction is measured between the air cleaner outlet and the beginning of the engine intake manifold.
- Typically, a negative pressure sensor is attached to the hose that runs between the air cleaner output and the intake manifold.
- Negative pressure is measured by a manometer that is connected to the sensor with a piece of hose.Be sure that there is no water in the air intake pipe.
- If the distance between the intake manifold and air cleaner is short, you can measure the negative pressure by connecting the sensor to the negative pressure indicator part.

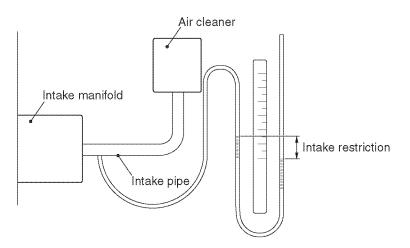


Figure 12-3

Exhaust Temperature: Thermocouple

See (Figure 12-1, (4)):

- Measure the exhaust temperature at the exhaust manifold outlet (or the outlet port of turbocharger).
- Insert the thermocouple by cutting a slot or groove in the gasket. If cut slot or groove is too wide, the exhaust gas may leak or the thermocouple location will not be maintained.
- Attach the flange to the exhaust pipe side so the end of the thermocouple is positioned at the center of the exhaust port.
- Make sure you keep the end of the thermocouple at the center of the exhaust port.

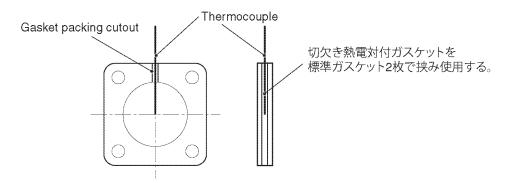


Figure 12-4

Measurement of Exhaust Back Pressure

See (Figure 12-1, (5)):

- Exhaust back pressure is measured by installing an adapter near the outlet of the engine exhaust manifold.
- The measurement adapter is normally connected to a manometer using a flexible hose. Since the adapter is exposed to heat from the exhaust gases, the vinyl hose may be damaged if the adapter is too short. To avoid this, use an 8 mm diameter copper pipe for the adapter. An extension pipe of about 1 meter will be needed for radiation of the heat.
- To isolate the extension pipe from engine vibration as much as possible, wind it into a spiral form.Make sure the manometer is filled with water before running the test.
- Fully equip the engine with exhaust system parts that will be used on the driven machine to create the equivalent maximum load.
- NOTE:For electronic control engines with EGR, the differential pressure between air intake restriction and exhaust back pressure must be matched within the allowable value.

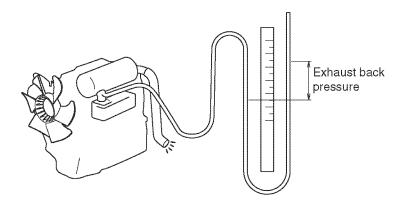


Figure 12-5

MATCHING TEST PROCEDURE

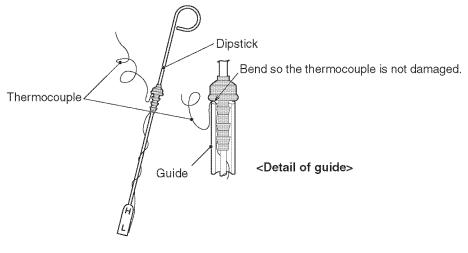
Engine Oil Temperature (Use a Thermocouple)

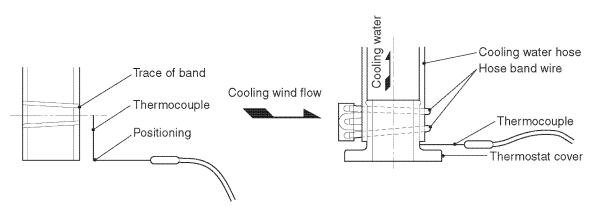
See (Figure 12-1, (6)):

• Measure the temperature of engine oil in the main gallery. When measuring in the main gallery, remove the oil pressure switch and prepare an adapter which is equipped with a thermocouple (with an R1/8 taper thread).

If this adapter is not available, measure the temperature of engine oil in the oil pan according to the following procedures:

- Measure the temperature at the lower level (L) mark on the dipstick.
- Attach the thermocouple to the dipstick so that the end of the thermocouple is positioned at the lower level mark on the dipstick.
- Normally, it would be sufficient to wind the lead of the thermocouple around the dipstick. Make sure that the end of the thermocouple is not separated from the dipstick after assembly.




Figure 12-6

Clloant Temperature (Use a Thermocouple)

See (Figure 12-1, (7)):

- Drain the engine coolant to where no coolant leaks from the upper hose before removing it and mounting the thermocouple.
- If the temperature of the engine coolant outlet port is predicted to be equal to or below 85°C (158°F), a fully blocked open thermostat should be used.
 Use the standard thermostat unchanged if the driven machine is tested under the evaluating value for the actual operating environmental temperature in a high constant temperature chamber.
- When measuring the engine coolant temperature, remove the coolant temperature switch part of the thermostat case (or the coolant temperature sensor) and measure the temperature using an adapter, prepared for this purpose, which is equipped with a thermocouple (with a 16M thread).
- If this adapter is not available, measure the engine coolant temperature at the engine outlet port or radiator inlet port. In that case, perform the measurement according to the following procedures:
- Insert the thermocouple at the end of the coolant hose nearest the hose clamp.
- Trace the outline of the hose clamp on the coolant hose. The leading end of the thermocouple will be inserted between the hose clamp wires to prevent coolant leakage as illustrated below.
- Mount the thermocouple away from the wind so it will not to be influenced by it.
- Before mounting the thermocouple, loosen the hose clamp and remove the coolant hose, then position the leading end of the thermocouple by aiming at the trace of the hose clamp you previously made.

- If engine coolant leaks develop in the above setup, prick a hole on the coolant hose with an eyeleteer (stiletto) as diagonally as possible so the thermocouple can de inserted directly into the hose.
- Replace the hose after the test is complete.

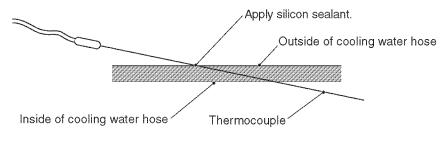


Figure 12-8

• The thermocouple can be inserted directly into the coolant and sealed with silicon sealant.

Engine Speed Measurement

See (Figure 12-1, (8)):

- A non-contact tachometer (optical reflection or magnetic pulse) is effective for measuring the engine speed of stationary and moving driven machine applications. The optical reflection tape is usually pasted on the crank pulley or flywheel for both engine types.
- How to measure engine speed (counting gear teeth)

Since TNV engines, especially the direct injection system equipped with MP fuel pump, have a two-way delivery valve for controlling the pressure fluctuation of the fuel injection pump, their engine revolution speed cannot be measured the conventional way by measuring the vibration of the fuel injection high pressure lines.

An alternative method like the one described below should be used.

This method utilizes the fuel pump driving gear at the filler port of the gearcase as shown in (Figure 12-9). The engine revolution speed is measured by counting the gear tooth pulse using the speed pick-up attached to the engine oil filler port through the adapter. The adapter and other necessary components are available from Yanmar as genuine accessories.

Adapter: 119802-99911

Lock ring: 119802-99921

Note that the number of teeth of the fuel injection pump driving gear varies among the models as described below.

2TNV70 - 3TNV76 models: 62 teeth

(For the above models, which are IDI system, the conventional method that utilizes the injection high pressure lines can be used for the measurement.)

3TNV82A - 4TNV88 models: 56 teeth

4TNV94L - 4TNV98T models: 64 teeth

Since the gap between the speed pick-up and the driving gear is a very important factor, set it according to the instructions packed with the pick-up device. It is recommended to select a speed pick-up that is a little longer than the specifications. (Figure 12-10) shows how to assemble the components.

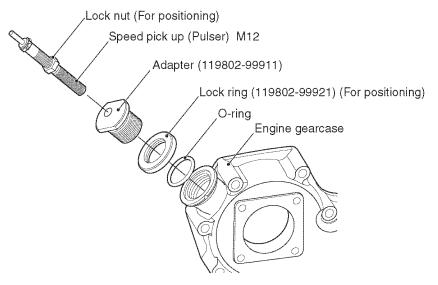
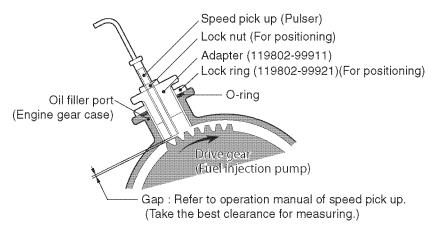



Figure 12-9

Figure 12-10

1. If you are using a high pressure pipe tachometer, mount the pick-up to the straight section of the high pressure pipe near the fuel injection valve. Use the pliers to firmly tighten it. (For IDI engine only)

Other Temperature Measurements (Use Thermocouple, etc.)

Measure the temperature of engine components as required:

- 1. Measure the temperature around electrical parts at any position 10-30 mm away from the engine body part.
 - Solenoid
 - Starter Motor
 - Alternator
 - Controller for electronic control
 - Governor for electronic control (actuator)
- 2. Fuel Temperature
 - Fuel temperature at injection pump inlet.
 - Fuel temperature at return fuel outlet.

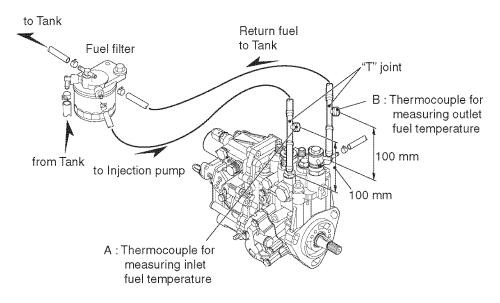


Figure 12-11

PREPARATION FOR MATCHING TEST OPERATION

After preparation for temperature and speed measurement as described in the preceding subsection, begin preparation for operating the driven machine.

Check the engine oil and coolant level and make sure that the test equipment is not in contact with any rotating parts.

If the driven machine has an engine compartment, open it before starting the engine. While the machine is warming up, check for leakage of oil, water, or diesel fuel from the thermocouple mounting or other areas of the engine. Close the engine compartment and add the load.

Operation with the machine loaded varies by the type of the driven machine. Even if it is designed for the same purpose, every driven machine application varies somewhat. Consult with the driven machine manufacturer and Yanmar to determine the correct setup before actually starting the matching test.

Both sides should verify the following items:

- Test is made under a load actually applied by the user.
- Test by following the work pattern designated by the driven machine manufacturer.
- Conduct the test under the maximum load capacity of the driven machine.

Often the matching test is performed at the manufacturer's laboratory or test site and in a different season from the intended use.

It is important is to establish and agree on the appropriate maximum load and duty cycle. This should be documented as part of the engine evaluation.

HEAT BALANCE TEST

Engine cooling performance is a critical component of the quality of the driven machine.

Conduct the loaded operation after making preparation as described in the preceding subsection. Sample the temperature data after all of the engine components are stabilized. Depending on the driven machine, and season, it will take 30 to 50 minutes for the temperature of all of the components to stabilize.

Data sampling may be started when engine oil temperature becomes stable (less than 1°C rise in 10 minutes). If the load changes, the coolant temperature and the exhaust temperature change sharply, but the engine oil temperature will remain comparatively stable.

TEST DATA INTERPRETATION AND CRITERIA

A number of things can be judged from the stable temperature data obtained from the test.

Although a final, comprehensive judgment is necessary, a guide for interpreting discrete temperature data and making a judgment is listed below.

Test Data Interpretation and Criteria

te	Measured mperature item	Allowable maximum temperature (criteria)	Improvement review item
1	Atmospheric temperature	 In evaluating the heat balance, atmospheric temperature shall be the maximum actual operating temperature of the driven machine. This temperature is determined depending on customer's specifications because the setting value may be different for each driven machine. If not specified by your customer, atmospheric temperature shall be 40°C (104°F). This will be the baseline you should use when you analyze the data for the engine components. 	
2	Engine coolant temperature	 The allowable maximum coolant temperature shall be 105°C (221°F). This must be strictly adhered to regardless of the ambient temperature. (with radiator cap of 88 kPa (0.9 kgf/cm²).) If the coolant temperature reaches 105°C (221°F), see if the actual operating temperature of the driven machine is exceeded. If it is exceeded, see if the coolant temperature tracks with an atmospheric temperature rise (see <i>conversion rate</i>). If it cannot be explained by atmospheric conditions, try the Improvement Review suggestions. The conversion rate between the atmospheric temperature rise and the engine coolant temperatures rise is 1:1. That means if the atmospheric temperature rises 1°C (1°F), the coolant temperature should also rise 1°C (1°F). 	Engine compartment shape & openings (air outlet or inlet), recirculation of hot air, fan diameter and speed, radiator capacity, load capacity, duty cycle, exhaust outlet
3	Engine oil temperature	 The maximum engine oil temperature shall be 115°C (239°F). This must be strictly adhered to regardless of the atmospheric temperature. Using the conversion rate, determine whether the converted engine oil temperature would be 120°C (248°F) when setting the atmospheric temperature to the actual operating temperature of the driven machine. Using this conversion rate, you can also calculate/estimate the converted atmospheric temperature when setting the engine oil temperature to 120°C (248°F). The conversion rate for the atmospheric temperature rise and the engine oil temperature rise shall be normally 0.8. If the atmospheric temperature rises 1°C (1°F), the engine oil temperature would rise 0.8°C (0.8°F). 	Engine compartment shape (air outlet and inlet), recirculation of hot air, air flow around the oil pan, review of the oil cooler, load capacity, duty cycle
4	Intake air temperature	 Set the development target for the allowable intake air temperature so it is no more than 5°C (41°F) above the atmospheric temperature. If the intake air temperature cannot be lowered to 10°C (50°F) above the atmospheric temperature, even after you add or relocate the intake air hose, review the driven machine capacity since the engine output will be affected by atmospheric temperature. 	Engine compartment shape (air outlet and inlet), recirculation of hot air, air cleaner position, intake air hose position, load capacity
5	Temperature inside engine compartment	 Set the development target for the allowable engine compartment temperature so it is no more than 10°C (50°F) above the atmospheric temperature. As this is difficult to achieve using a puller fan, improve air flow so the diesel fuel temperature and electrical parts ambient temperature meet the specifications. 	Engine compartment shape (air outlet and inlet), recirculation of hot air, fan type, panel position
6	Diesel fuel temperature	 Diesel fuel temperature should be a maximum of 80°C (176°F) to protect rubber materials in the pump. Engine output will start to drop as the diesel fuel temperature rises above 40°C (104°F). It is recommended that you maintain a temperature below 60°C (140°F) at the fuel inlet port of fuel injection pump. If the diesel fuel temperature rises higher than 60°C (140°F), the engine output will be adversely affected. The temperature conversion rate shall be 1.0. 	Engine compartment shape (air outlet and inlet), recirculation of hot air, fan type, panel position

Measured temperature item		Allowable maximum temperature (criteria)	Improvement review item
7	Temperature around electrical parts	 Set the development target value for ambient temperature around electrical parts (such as starter motors, alternators, solenoids, and relays) to 80°C (176°F) or below regardless of the atmospheric temperature. Also for the electronic control engines, the ambient temperature around the governor as well as the controller must be set to 80°C (176°F) or below. Even if the ambient temperature is under 80°C, do not allow the air to stagnate. Ambient temperature above 80°C (176°F) may cause degradation of electrical parts and components. 	Engine compartment shape (air outlet and inlet), recirculation of hot air, fan type, panel position
8	Exhaust temperature	For exhaust temperature, see Output Matching Test on page 12-19.	

Heat Balance Evaluation

This subsection describes how to evaluate heat balance by examining temperature data collected from the matching test.

Suppose that the final stable temperatures obtained from operation under load are as follows:

			Calculation Example
Τ _a	: Ambient temperature	°C (°F)	19°C (66.2°F)
T_{w}	: Coolant engine outlet port temperature	°C (°F)	87°C (188.6°F)
Τo	: Engine oil temperature	°C (°F)	101°C (213.8°F)
T_{x}	: Intake air temperature	°C (°F)	34°C (93.2°F)

The following temperatures are also necessary for the heat balance evaluation:

T _{mw}	: Allowable maximum temperature of coolant	105°C (221°F) (radiator cap: 0.9 kgf/cm ²)
T _{mo}	: Allowable maximum engine oil temperature	115°C (239°F)
T_{cw}	: Coolant use limit atmospheric temperature	°C (°F)
T_{co}	: Engine oil use limit atmospheric temperature	°C (°F)
T _{dif}	: Intake air temperature rise value ($T_x - T_a$)	°C (°F)

Coolant Use Limit Atmospheric Temperature Estimation

Calculation Example

This calculation estimates the coolant use limit atmospheric temperature T_{cw} when the maximum allowable coolant temperature ($T_{mw} = 105^{\circ}C$ [221°F]), the atmospheric temperature T_a and the coolant temperature Tw are known.

Calculate the estimated T_{cw} as follows:

 $T_{cw} = (T_{mw} - T_w) + T_a$

T _a : Ambient temperature

- T_w : Coolant engine outlet port temperature
- $T_{mw}\;$: Allowable maximum temperature of coolant

T_{cw}: Coolant use limit atmospheric temperature

19°C (66.2°F) 87°C (188.6°F) 105°C (221°F) (radiator cap: 0.9 kgf/cm²) °C (°F)

 $T_{cw} = (T_{mw} - T_w) + T_a$ = (105 - 87) + 19 = 37°C (98.6°F)

It is necessary to evaluate the coolant use limit atmospheric temperature T_{cw} by considering the environment in which the driven machine is operated.

For example, if this driven machine was to be used in Japan, the coolant use limit atmospheric temperature T_{cw} would generally be set at 40°C (104°F).

In the present example, $T_{cw} = 37^{\circ}C$ (98.6°F), the heat balance would not be met.

To make $T_{cw} = 40^{\circ}C$ (104°F) or higher, you need to lower the engine coolant temperature by the following amount:

(Target T_{cw} - Test result T_{cw}) x 1 = (40°C [104°F] - 37°C [98.6°F]) x 1 = 3.0°C (37.4°F)

To do this, improve the air flow by changing the shape of the engine compartment, the fan diameter and speed, radiator capacity, and conduct the heat balance test again.

Engine Oil Temperature Evaluation

Calculation Example

This calculation estimates the engine oil use limit atmospheric temperature T_{co} when the maximum allowable oil temperature [$T_{mo} = 115^{\circ}C$ (239°F), the atmospheric temperature T_a and the engine oil temperature T_o are known.

Calculate the estimated T_{co} as follows:

 $T_{co} = (T_{mo} - T_o) / 0.8 + T_a$

T _a : Ambient temperature	19°C (66.2°F)
To: Engine oil temperature	101°C (213.8°F)
T _{mo} : Allowable maximum engine oil temperature	115°C (239°F)
T _{co} : Engine oil use limit atmospheric temperature	°C (°F)

$$T_{co} = (T_{mo} - T_o) / 0.8 + T_a$$

= $(115^{\circ}C [239^{\circ}F] - 101^{\circ}C [213.8^{\circ}F])/0.8 + 19^{\circ}C (66.2^{\circ}F)$

= 36.5°C (97.7°F)

Evaluate the engine oil use limit atmospheric temperature T_{co} by considering the environment in which the driven machine is operated.

In the present calculation example, $T_{co} = 36.5^{\circ}C$ (97.7°F).

For example, if this driven machine is to be used throughout the year in Japan, the limit atmospheric temperature T_{co} is generally set at 40°C (104°F).

T_{co} = 36.5°C (97.7°F) in the present calculation example does not meet the required heat balance.

To make $T_{co} = 40^{\circ}C$ (104°F) or more, you need to lower the engine oil temperature by the following amount:

(Target T_{co} - Test result $T_{co}) \times 0.8$

= $(40^{\circ}C [104^{\circ}F] - 36.5^{\circ}C [97.7^{\circ}F) \times 0.8$

= 2.8°C (37.04°F)(Calculation example)

To do this, improve the air flow around the oil pan by changing the shape of the engine compartment or install an engine oil cooler. Evaluation and measurement of this should be done at the same time as the coolant use limit atmospheric temperature evaluation.

Intake Air Temperature Evaluation

This evaluation compares the engine intake air temperature T_x to the ambient temperature T_a . Suppose the intake air temperature rise value is T_{dif} , then the calculation is as follows:

$T_{dif} = T_x - T_a$	
T _a : Ambient temperature	19°C (66.2°F)
T _x : Intake air temperature	34°C (93.2°F)
T_{dif} : Intake air temperature rise value (T _x - T _a)	°C (°F)
$T_{dif} = T_x - T_a$	

= 34°C (93.2°F) – 19°C (66.2°F)

 $= 15^{\circ}C (59^{\circ}F)$

The unit for T_{dif} in the calculation example shown above is °C.

If the intake air temperature rises, engine output is reduced.

It is best to supply air that is as close as possible to the ambient temperature.

In the prototype of the driven machine, examine air cleaner position and intake air hose direction, targeting T_{dif} at 5°C (41°F) or below.

Depending on the results of the output matching (see *Output Matching Test on page 12-19*), there is no major effect on engine output if T_{dif} is below 10°C (50°F). In the calculation example above, T_{dif} is 15°C (59°F), therefore it is necessary to change the position of the air cleaner or intake air hose.

Temperature Evaluation of Various Other Components

Evaluation of the coolant, engine oil and intake air temperatures are important in the heat balance test.

To evaluate the temperature of other engine components, refer to *Test Data Interpretation and Criteria on page 12-15*.

OUTPUT MATCHING TEST

Mismatching of engine output to the driven machine load may lower engine speed during operation and produce insufficient power. It is necessary to match engine output and load during the early stages of development. Using an actual machine to evaluate this is referred to as the output matching test.

ENGINE PERFORMANCE

Engine performance is generally represented by the output curve and torque curve as shown below. Performance is controlled by the fuel injection pump and the governor. The output, speed and maximum torque requirements vary among driven machine applications. Engines with various specifications are available so that the characteristic requirements of the driven machines are satisfied.

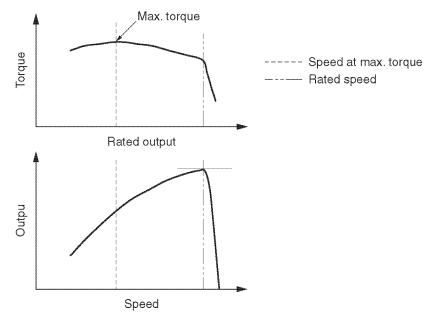


Figure 12-12

Engine performance is only guaranteed under the following conditions and within the range of tolerance.

Engine performance is affected by the following conditions. The amount of change in performance is discussed in the next section.

Output setting under ISO standard atmospheric conditions

Ambient temperature	25°C (77°F)
Relative humidity	30%
Atmospheric pressure	100 kPa (750 mmAq)

- Fuel temperature at output setting: 38 ±3°C (100.4 ±3°F)
- Fuel meeting JIS specifications (density, cetane number)
- Output setting tolerance: ±3%
- Torque setting tolerance: ±5%
- Engine output: Median of tolerance
- Maximum torque: Range value

EVALUATION OF OUTPUT MATCHING

Engine output and torque are guaranteed under the conditions shown in the previous section. Performance is significantly affected, however, by how the engine is installed and the ambient conditions. Performance is also significantly affected by the diesel fuel and intake air temperatures. **Figure 12-12** and **Figure 12-13** show the effect of temperature. Perform the output matching test in the development stage to verify that the machine functions as specified even though temperature changes occur.

During the output matching test, it is essential to measure the temperature of the fuel and intake air. This data is used to estimate the fuel and intake air temperature that will be experienced when the machine is operated under maximum ambient temperature conditions. This allows you to estimate how much the engine performance will change.

Output matching evaluates machine load and engine torque performance.

Engines used for the output matching test must have their performance measured at the plant beforehand. This engine is referred to as a sample engine.

For correction of the output based on the atmospheric conditions and altitude characteristics, see *Power Corrections on page 4-3 and Altitude Characteristics on page 4-13.*

EVALUATION OF OUTPUT MATCHING FOR GENERAL PURPOSE INDUSTRIAL MACHINES

General industrial machines are driven by variable medium speed (VM) and variable high speed (VH) engines. The matching test of the machine and engine output is performed using the following procedure.

Preparation for Matching Test

Before the test, complete the preparation and checks described below.

- Use a sample engine and make sure engine performance data is available.
- Obtain an engine tachometer, fuel thermometer, intake air thermometer and atmospheric thermometer. A barometer and hygrometer are also needed.
- During the test, the engine's speed control must be kept in the full speed position.
- The operation of the machine must conform to the machine manufacturer's standard.
- The loaded operation, temperature measurement and engine speed measurement must be performed after sufficiently warming up the engine.
- Preparation for operation must conform to the operation manual. Fuel level and engine oil levels must be at the upper limit of their respective dipsticks.

Preparation of Engine Performance Curve at Matching Test

To evaluate the load of the machine, estimate the engine performance during the matching test and prepare the performance curve.

- The ambient temperature during matching test is expressed with T_t.
- Find the output ratio from the fuel temperature and **(Figure 12-12)**. For example, when the fuel temperature T_{tf} is 55°C (131°F), the output ratio P_{rtf} is 97% (0.97).
- Find the output ratio from the intake air temperature and **(Figure 12-13)**. For example, when the intake air temperature T_{ta} is 45°C (113°F), the output ratio P_{rta} is 96% (0. 96).

MATCHING TEST PROCEDURE

• Total output ratio P_{rt} is given by the following formula:

$$P_{rt} = P_{rtf} \times P_{rta}$$

For the above example, $P_{rt} = 0.97 \times 0.96 = 0.9312$, or 93.1%.

- This means that the engine output has been reduced to 93.1% of the performance guaranteed in *Engine Performance on page 12-20*. This reduction of output occurred because both the fuel temperature and intake air temperature are higher than those for guaranteed performance.
- The plot data provided under standard conditions for the sample machine (solid line) are multiplied by the above total output ratio P_{rt} over the whole plot area (Figure 12-14).
- The result is the performance curve indicated by the dotted line in (Figure 12-14). This curve represents the engine performance under the ambient conditions of the matching test.

Deration for Fuel Temperature (38°C (100°F) = 100)

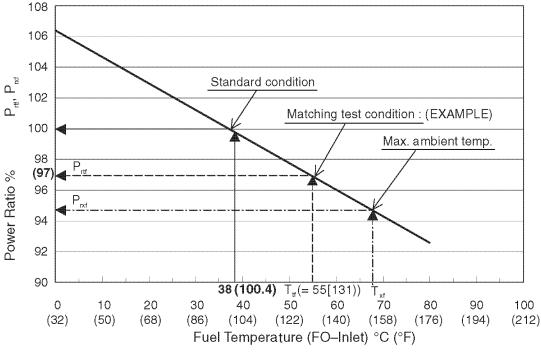
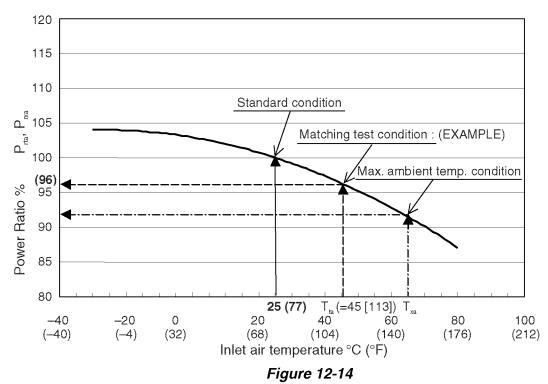



Figure 12-13

Evaluation of Machine Load

The machine load under individual operation pattern is estimated by using the following procedure.

- Plot the engine speed in each operation pattern on the performance curve.
- The intersection of the speed curve and the dotted performance curve indicates the load at the operation pattern.
- The largest load of all the operation patterns is the maximum machine load.
- The estimated machine load is deemed to be unaffected by the atmospheric conditions.
- Confirm with the machine manufacturer to ensure that the load is not affected by the atmospheric conditions.

Evaluation of Output Matching at the Maximum Ambient Temperature

In many cases, the ambient conditions under which machines are actually used are worse than the ambient conditions at the matching test. The method described here is to evaluate whether the engine performance matches the load of the machine at the maximum ambient temperature specified by the machine manufacturer.

Preparation of Engine Performance Curve at the Maximum Ambient Temperature.

First, estimate the engine performance at the maximum ambient temperature and prepare the performance curve by using the following procedure.

- The maximum ambient temperature specified by the machine manufacturer is expressed with T_x.
- The ambient temperature at the matching test is T_t . The fuel temperature and intake air temperature at this time are expressed with T_{tf} and T_{ta} , respectively.
- The fuel temperature T_{xf} and intake air temperature T_{xa} at the maximum ambient temperature T_x are given by the following formulas, respectively:

 $\mathsf{T}_{\mathsf{x}\mathsf{f}} = \mathsf{T}_{\mathsf{t}\mathsf{f}} + (\mathsf{T}_{\mathsf{x}} - \mathsf{T}_{\mathsf{t}})$

 $T_{xa} = T_{ta} + (T_x - T_t)$

- Plot these T_{xf} and T_{xa} on (Figure 12-13) and (Figure 12-14), respectively.
- The output ratio P_{rxf} at fuel temperature T_{xf} is expressed with α , and the output ratio P_{rxa} at intake air temperature T_{xa} is β .
- Then, the total output ratio P_{rx} at the maximum ambient temperature T_x is given by the following formula.
- $P_{rx} = \alpha \times \beta$
- The plot data provided beforehand for obtaining the performance curve (solid line) by the measurement using the sample engine are multiplied by the above total output ratio P_{rx} over the whole plot area (Figure 12-15).
- The result is the performance curve shown in (Figure 12-15) with a dot-and-dash line. This line shows the engine performance at the maximum ambient temperature T_x specified by the machine manufacturer.

Evaluation of Output Matching at the Maximum Ambient Temperature

The machine load has already been measured at the output matching test (*Evaluation of Output Matching for General Purpose Industrial Machines on page 12-21*.

Plot this load on the performance curve shown with dot-and-dash line on (Figure 12-15), and perform the following examination.

Evaluation of output matching at the normal operation of the machine

- Normal operation of the machine refers to the situation where the engine runs in the range from high idle to rated speed when loaded, or the one that is performed longest.
- Check whether the machine load measured in the output matching test is lower than the rated output obtained from the estimated performance curve (dot-and-dash line) at the maximum ambient temperature.
- If the machine load is equal to or higher than the rated output at the maximum ambient temperature, the engine has been used at the rated speed or lower. This is considered the overloaded operation. (The operation in this speed range is evaluated in Step 2. This operation is not deemed the usual one.)
- In case of overloaded operation, it is necessary to reexamine the capacity of machine or selection of engine.
- If it is difficult to prepare the rated output curve (dot-and-dash line) or to estimate it during operation at the maximum ambient temperature, use the following method for evaluation.
- Check whether the machine load is equal to or less than 90% of the rated output obtained from the performance curve (dotted line) at the output matching test. If it is on the 90% level or above, it may be considered as overloaded operation.

Evaluation of output matching at the rare operation of the machine (shown with * in (Figure 12-15))

- The rare operation refers to operations that are performed at the engine's rated speed or lower. Note that the operation is different from the one described in step 1 with regard to the time.
- In this speed range, the torque characteristics of the engine affect the workability of the machine.
- Check whether the allowable speed reduction at the maximum ambient temperature is within the allowable limit of the machine manufacturer standard.
- It is necessary to have an agreement between the machine manufacturer and engine manufacturer beforehand because reduction of speed affects the workability.

The allowable speed reduction from the rated speed is generally in the range from 200 ~ 300 min⁻¹.

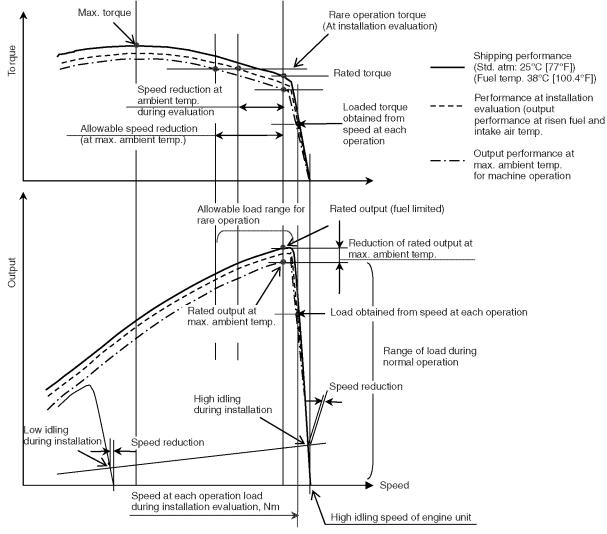


Figure 12-15

EVALUATION NOTES

Be careful of the following when handling the data.

• Note on the evaluation of engine output and engine torque

When performing the evaluation of the load matching of the machine by using engine performance curve (dot-and-dash line) in maximum ambient temperature, note that the tolerance of the engine output is $\pm 3\%$ and that of torque is $\pm 5\%$. Check whether the performance curve (solid line) of the sample engine, is set on the upper or lower limit of the tolerance.

• Note on fuel temperature

The allowable limit of fuel temperature is 80°C (176°F). When it is estimated that the fuel temperature T_{xf} in *Evaluation of Output Matching for General Purpose Industrial Machines on page 12-21* exceeds 80°C (176°F), consider taking the sixth action described in *Test Data Interpretation and Criteria on page 12-15*. However, if the engine output is set at 38°C (100.4°F), power correction according to (Figure 12-12) should be necessary.

• Note on intake air temperature

When the rise of the intake air temperature $(T_{ta} - T_t)$ exceeds 10°C (50°F), consider taking the fourth action described in *Test Data Interpretation and Criteria on page 12-15*.

EVALUATION OF OUTPUT MATCHING OF GENERATOR

Engines classified as constant low speed (CL) or constant high speed (CH) are used to drive generators. Refer to *Engine Classification on page 2-3* for details. The procedure for testing output matching between the generator and the engine and the method for estimating the load of the generator are the same as those described in *Evaluation of Output Matching for General Purpose Industrial Machines on page 12-21*.

However, the method of output matching evaluation described for variable speed engines is different from the one for constant speed engines.Note that the meaning of the rated output for the generator is different from the one for the engine.For the meaning of rated output, refer to *Engine Output for Generator Use on page 3-3*.

EVALUATION OF OUTPUT MATCHING AT THE MAXIMUM AMBIENT TEMPERATURE

The load of the machine has already been measured at the output matching test *Evaluation of Machine Load on page 12-23*. Plot the load on the performance curve shown with dot-and-dash line in (Figure 12-16) to perform the following examination.

Evaluation of output matching at the rated output of generator

• Check whether the load at the rated output of generator that is measured at the output matching test is equal to or less than the engine's continuous rating obtained from the estimated performance curve (dot-and-dash line) at the maximum ambient temperature shown in (Figure 12-16).

If the load is over the rating, the engine is considered overloaded. In this case, reexamine the capacity of the generator or the engine selection.

• Or, use the following formula to make the judgment.

The load at the rated output of generator \leq Total output ratio P_{rx} x engine's continuous rating (specified value)

Evaluation of output matching at the output 110% of the generator's rated output

• Check whether the load at the output 110% of the generator's rated output that is measured in the output matching test is equal to or less than the engine's rated output that is obtained from the estimated performance curve (dot--and-dash line) at the maximum ambient temperature which is shown in (Figure 12-16).

If the load is over the rating the engine is considered overloaded. In this case, reexamine the capacity of the generator or the engine selection.

• Or, use the following formula to make determination.

The load at the output 110% of the generator's rated output \leq Total output ratio $P_{rx} x$ engine's rated output (specified value)

ENGINES COMPATIBLE WITH BOTH 50 HZ AND 60 HZ

For engines that are compatible with both 50 Hz and 60 Hz perform the output matching test at 50 Hz and 60 Hz, respectively.

MAXIMUM OUTPUT OF GENERATOR

Generally, the maximum output of the generator is set to 110% of the rated output of generator. Some generator manufacturers set the maximum output to other percentages such as 105% or 107%. In this case, check whether the load at the rated output of generator (100% of generator output) that is measured at the output matching test is equal to or less than the engine's continuous rating.

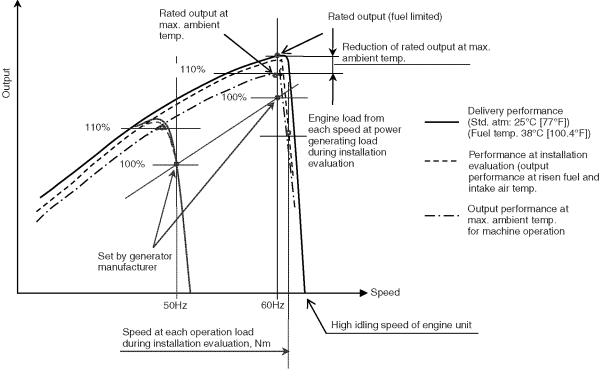
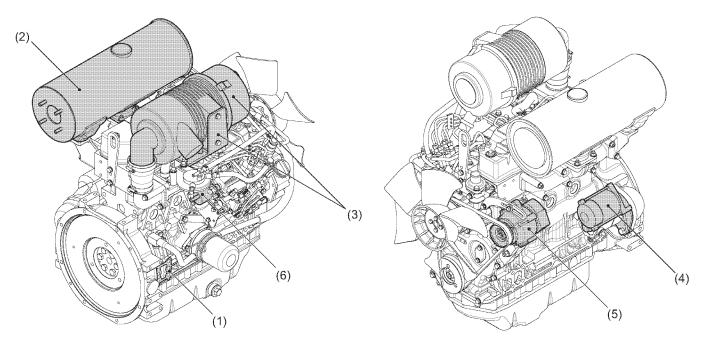


Figure 12-16


VIBRATION MEASUREMENT

Any resonance which occurs in the operating range of an engine will adversely affect the engine and the durability of engine parts. Verify that there is no resonance at each measuring point for the engine operating range.

If any resonance occurs, and the resonance level exceeds the allowable value, it is necessary to improve the vibration by reselecting rubber isolators or any other methods.

Major points to measure the vibration acceleration in longitudinal/lateral directions and vibration amplitude are:

- 1. Mounting part for engine feet
- 2. Silencer and bracket (tail pipe)
- 3. Air cleaner and bracket
- 4. Starter Motor
- 5. Alternator
- 6. Solenoid (* actuator and controller for electronic control engines)

INSTALLATION STATE CHECK

This means you should check engine after it is installed in the driven machine for:

- Serviceability
- · Interference of fuel system and cooling system parts with driven machine structure
- Interference of electrical wiring harnesses with driven machine structure

Make sure these checks are made before the driven machine goes into production.

The check points will vary depending on driven machine application. An example of a check sheet is provided in *TNV Series Engine Installation Evaluation*.

Section 13

ELECTRICAL SYSTEM

Page

Precautions for Using Electrical Components
Starter Motor
Safety Relay
Safety Relay Operation Principle
Stop Solenoid13-24Solenoid Types13-24Features of the Stop Solenoid13-24Control of the Stop Solenoid13-24
Charging System13-2Features of an Alternator13-2Charging System Capacity13-2Output Characteristics13-2
Regulator
Control of Battery Indicator 13-3
Battery

Wiring	13-36
Wiring Precautions	13-36
Battery Cable Selection	13-37
Starter Solenoid Cable Selection	13-39
Selecting Cables for General Electrical Components	13-43
Cable Temperature Rise and Allowable Current	13-44
Allowable Current and Voltage Drop	13-45
Cable Heat Resistance Comparison	13-45
Wiring Diagram for IDI Engine	13-46
Wiring Diagram for DI Engine	13-47
Wiring Diagram for DI Engine	13-48
Machine Wiring Caution	13-50

The battery, generator, alternator supply power to the engine starting / stopping system and the electrical components including control panel indicators. Twelve (12) V is the nominal voltage for TNV series engine electrical components.

Consult Yanmar before deviating from the wiring diagrams provided.

PRECAUTIONS FOR USING ELECTRICAL COMPONENTS

When designing a driven machine application, consider the following precautions for use of electrical components. The driven machine user should also be aware of these precautions.

Starter Motor (See Starter Motor on page 13-6)

Use a Battery with Appropriate Capacity for the Starter Motor

Engine starting performance is affected by battery capacity. Battery capacity varies with ambient temperature and driven machine application. To determine battery capacity, the driven machine manufacturer should identify these applications, consult with Yanmar, and test the machine. (See *Battery on page 13-31*.)

Use Battery Cables with Appropriate Capacity for the Load

Overall battery cable resistance between the starter motor and battery should be equal to or less than the value specified in the wiring diagram. If the overall wiring resistance exceeds the specified value, the starter motor may malfunction. (See *Battery Cable Selection on page 13-37.*)

Use Starter Motor Cables with Appropriate Capacity for the Load

The overall wiring resistance between the starter motor and key switch, power relay or safety relay should be equal to or less than the value specified in the wiring diagram. The engine may be difficult to start if the overall wiring resistance exceeds the specified value. This may also melt the contact point of the starter solenoid and burn the armature coil. (See *Starter Solenoid Cable Selection on page 13-39*.)

Use the Safety Relay in the Starter Motor Circuit

The principal cause of starter motor malfunction is continuing to energize the motor after engine is running (overrun phenomenon). Overrunning the starter motor may burn the armature coil and damage the clutch. Overrunning may be caused by operator error or defective return of the key switch.

The safety relay is a device for avoiding overrun. Users who wish to install the safety relay themselves should consult Yanmar beforehand.

NEVER Use the Starter Motor to Air-bleed the Fuel System

Using the starter motor for air-bleeding the fuel system may burn the magnetic switch coil. Perform airbleeding using an electric or manual fuel pump in accordance with the TNV Operation Manual.

Note: Instruct the driven machine user to perform fuel system air-bleeding in accordance with the TNV Operation Manual.

Protect the Starter Motor from Water

The starter motor is protected from general rainfall or being doused with a bucket of water (level R2 conforming to JIS D 0203). NEVER submerge the unit in water and avoid direct high pressure cleaning.

Note: Instruct the driven machine user not to submerge the unit in water and to avoid direct high pressure cleaning.

ELECTRICAL SYSTEM

Be Careful of Operation in High Temperature

The starter motor is resistant to a maximum ambient temperature of 80°C or maximum surface temperature if 100°C. If the starter motor is placed near hot components, such the exhaust system, an insulator (shield) should be placed between them.

Be Careful of Corrosive Gas

Be sure to make a vent opening on the clutch case of a driven machine that uses a dry clutch. The ammonia gas produced by the friction of the clutch may cause corrosion of the magnetic switch contacts.

Charging System (See Charging System on page 13-27)

NEVER Use the Charging Output Voltage for Control

The starting speed of the engine is not in direct proportion to the charging output voltage. NEVER use the charging output voltage for any control purposes. Using the charging output voltage of the alternator to provide power for the starter motor safety relay control signal will lead to malfunction of the starter motor.

Consult Yanmar Before Using the L-line

Consult the Yanmar Development Division before connecting an electrical load or electrical signal from the L-terminal of the alternator. Manufacturers do not manage the rising output characteristic from the L-terminal and stability and accuracy cannot be guaranteed. Yanmar does not warrant failure of electrical components when the output from the L-terminal is used.

Be Careful with Battery Indicator Operation

When the alternator reaches its specified revolution speed (specified voltage), it begins to charge the battery and the battery indicator comes On. If the battery is not capable of maintaining a charge, the battery may actually be discharged even though the alternator is functioning normally. The battery indicator does not verify that the battery is charging but verifies normal function of the alternator. The charging system still functions normally even if the battery indicator is not working.

When an LED is used as the battery indicator, it may be light faintly during normal operation. This is the effect of the battery indicator controlling circuit and is not abnormal. (See *Control of Battery Indicator on page 13-30*)

Note: Instruct the driven machine user not to be confused by the operation of the battery indicator.

Be Sure to Use the Specified V-belt

Using a V-belt other than the one specified may cause defective charging and shorten the service life of the component.

Note: Instruct the driven machine user to use the specified V-belt.

Protect the Generator / Alternator From Water

NEVER submerge the generator / alternator in water or clean it by using high pressure water, which can cause water to enter the brush area and lead to defective charging.

Note: Instruct the driven machine user of the not to submerge the unit and to avoid direct high pressure cleaning.

NEVER Expose the Alternator Directly to Chemicals

Chemicals such as fertilizer, salt, pesticides, and herbicides (especially those with sulfur content) attach to the IC regulator and may corrode the board, possibly leading to overcharging (boiling of electrolyte) or defective charging. Consult Yanmar before using the alternator in such an environment.

P-terminal

An alternator with a P-terminal is an available option for detecting engine speed. The P-terminal can be used only for pulse signals and the current load cannot be taken from the terminal. The P-terminal can be used only for a Yanmar safety relay and specified tachometer.

If a driven machine manufacturer uses their own safety relay system, Yanmar will not warrant starter motors that are burned due to overrun because reliability of the machine manufacturer's system cannot be verified.

Regulator (See Regulator on page 13-30)

Keep the Battery Voltage at Normal Level

Using a booster to crank the engine when the battery is over-discharged (8 V or less) can cause abnormally high voltage and destroy other electrical components. The over-discharged battery (8 V or less) should be recharged by using a dedicated battery charger.

Note: Instruct the driven machine user to use a battery or charging system that is at full charge (normal voltage), not a high voltage booster.

NEVER Disconnect the Battery Cable During Engine Operation

Disconnecting the battery cable or removing the battery during engine operation may cause the regulator to malfunction causing high voltage, ranging from 24 to 43 V (at dynamo speed of 5000 min⁻¹), to be output continuously. This can destroy the regulator and other electrical components.

Note: Instruct the driven machine user not to disconnect the battery cable or remove the battery while the engine is running.

NEVER Reverse the Battery Cable Connections

Reverse connection of the positive and negative leads of the battery cable will destroy the regulator's SCR diode and could cause the wire harness to burn. To prevent this, design the driven machine by determining the lengths of cables or using a structure that makes it impossible to reverse the connections of the battery cables.

Note: Instruct the driven machine user not to reverse the battery cable connections.

Observe the Following Requirements When Selecting the Location for Installation of the Separate Current Limiter

- NEVER install the unit on the engine block.
- Install the unit in a well-ventilated place where the ambient temperature is 65°C (149°F) or less.
- Layout the unit so that the cooling air flows along the cooling fins of the current limiter.
- NEVER connect the ground of other electrical components directly to the body of the current limiter to avoid ripple voltage.

Stop Solenoid (See Stop Solenoid on page 13-24)

Keep the Minimum Voltage at Solenoid Pull-in Coil Terminal

If the wiring resistance of the solenoid pull-in coil is very large, the amount of pull-in force will be reduced causing problems when you start the engine. The wiring resistance of the pull-in coil should be equal to or less than 0.07 Ω . When calculating the wiring resistance, the resistance should be assumed as 0.01 Ω for one connector and 0 Ω for one connected part using a screw.

ELECTRICAL SYSTEM

Use a Standard Timer and a Relay

A one-second timer and a relay are required to control the pull-in coil of the solenoid. To ensure that these components have a high level of reliability and to protect the solenoid from burning, use a Yanmar standard timer and relay. Yanmar does not warranty the solenoid if a Yanmar standard timer and relay are not used.

Use a Diode on the Wire to the Holding Coil Terminal

To inhibit surge voltage, put a diode on the wire to the holding coil terminal. Use a Yanmar standard diode or component equivalent to 600 V - 1.1 A. Be sure to use the correct polarity when you connect the diode.

Consult Yanmar Before Deviating from the Wiring Diagram Provided by Yanmar

Be Careful of Operation at High Temperature

The solenoid is resistant to a maximum ambient temperature of 80° C (176°F) or maximum surface temperature of 100° C (212°F). When the solenoid is placed near hot components, such the exhaust system, place a heat shield between them to protect the solenoid.

STARTER MOTOR

Although the starter motor is used only to start the engine, its operating environment and installation must be considered to make the most of its performance.

Outline and Precautions

Starter Motor Types

Various mechanisms are used to smoothly engage and disengage the starter motor pinion from the flywheel ring gear. A conventional magnetic engaging starter motor is used on the TNV series engines. With this type of starter motor the pinion is pushed by the solenoid force via the drive lever for engagement with the flywheel ring gear.

Structure of Conventional Type Starting Motor

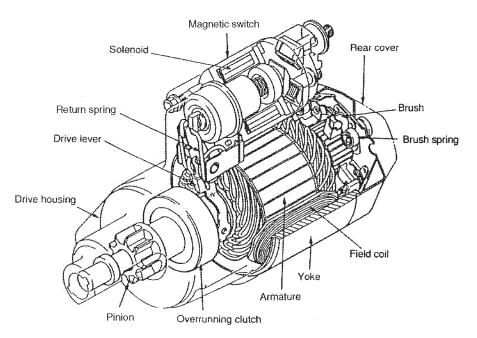


Figure 13-1

The conventional starter motor (Figure 13-1) has a pinion and armature shaft that is coaxial. A reduction starter motor has a pinion and armature shaft that is not coaxial. Both of these are available. The reduction starter motor has a small high-speed motor that rotates the pinion by reducing the armature revolving speed to 1/3 to 1/4. This is smaller in size than the standard starter motor with the same output. An example is shown in the next illustration.

Structure of Gear Reduction Starter Motor

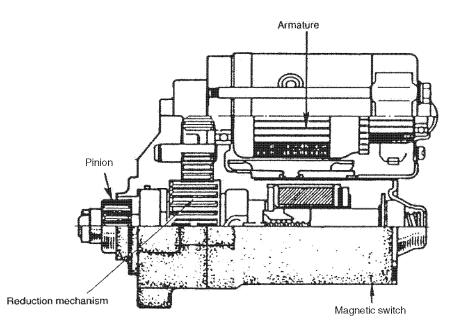


Figure 13-2

Starter Motor Selection

The objective of the starter motor is to crank the engine. Starter motor capacity varies with engine size and the required starting torque for the driven machine. As the required starting torque varies greatly with the temperature, the starter motor capacity must be selected to satisfy all conditions. The standard starter motor and engine combinations are as shown in *Low-temperature startability on page 1-7* but it is necessary to check the connected load state when determining which starter motor to use.

Precautions for Use

Wiring

Starter motor output depends not only on battery capacity but also on wiring resistance. When the wiring resistance between the key switch and magnetic switch is great, defective pinion engagement may occur. The starter motor cable must have a resistance no greater than 0.05Ω . Since the starter motor requires a large amount of current, sufficient starter motor performance cannot be obtained if the battery cable wiring resistance is high, so the appropriate battery cable diameter must be considered. See *Wiring on page 13-36* for the method of selecting the cable diameter.

Temperature

When the ambient temperature rises, wear of the metal bearing in the starter motor tends to increase. This temperature rise also causes the magnetic switch operating voltage to rise, lowering starter motor performance due to decreased pull-in force and pinion malfunction. To prevent this, keep the ambient temperature below 80°C (176°F) during engine operation. In cold areas, the grease used to lubricate the pinion and other drive components may freeze or increase in viscosity, causing pinion malfunction. To prevent this, use low temperature grease when the unit will be used at low temperatures.

Oil

Generally, abnormal wear or defective conductivity of the brushes and contacts occurs if oil enters the starter motor armature commutator or magnetic switch contact. Be careful not to splash oil on the starter motor.

Dust

Dust deposits on the armature shaft or the pinion and drive components increases their friction and causes defective pinion engagement. Carefully perform inspection and maintenance.

Vibration

Try to dampen engine vibration to prevent resonance when installed in the driven machine.

Water

If water enters the pinion drive components, commutator or magnetic switch contacts, the starter motor may fail to operate due to corrosion. NEVER allow the starter motor to be splashed with water. Since the water-proof performance of the starter motor is in the R2 level of JIS D 0203, NEVER subject it to steam or pressurized washing. The R2 level refers to the water spray test for examining the performance of a part indirectly exposed to rainwater or splash.

Salt damage

In cold areas where salt is used on the road to prevent freezing or the driven machine is used near the seashore, salt damage as mentioned below can be expected. The hood and cover of the driven machine should be constructed to prevent direct salt damage to the engine.

- · Rusting of the threaded portion, malfunction of sliding section
- · Short circuit or burning of terminals by galvanic corrosion
- · Defective contact of insert type terminals

Operation

To protect the starter motor from overheating, NEVER hold the key in the START position for longer than 15 seconds or the starter motor will overheat.

Safety

Installation of a safety relay is recommended to prevent the starter motor from overrunning (over speed and / or excessive duration of energization) due to operator error. The safety relay automatically cuts off the starter motor circuit during engine start operation when the motor reaches the prescribed speed. During engine operation, it prevents pinion gear engagement due to operator error.

Principle of Operation

The two major causes of starter motor problems are starter motor coil burning and overrunning clutch damage. In many cases, they are caused by defective wiring or incorrect operation.

To prevent malfunction due to these causes, it is important, to understand the operation of the starter motor. For overall structure of the starter motor, see *Outline and Precautions on page 13-6*.

Starter Solenoid

Figure 13-3 illustrates the magnetic starter solenoid. The magnetic switch has the following major functions:

- Pulls in the plunger to push out the pinion and engage it with the ring gear of the engine
- Closes the moving contact to allow battery current to flow through the armature.

Magnetic Switch

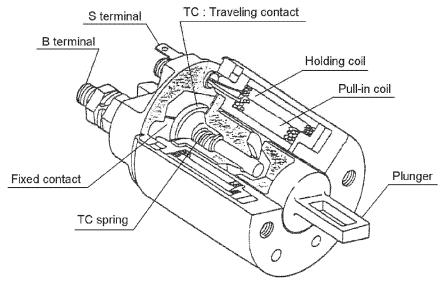



Figure 13-3

Movement of Pinion

Figure 13-4 shows the starter motor electric circuit to illustrate the movement of the pinion and the moving contact point, and the flow of current.

Figure 13-4

Turning the key switch to the START position applies battery voltage V_b to the S terminal. As a result, current flows through the pull-in coil P and holding coil H (+I_p and +I_h respectively), and both coils attract plunger PL. As a result, the pinion flies out to engage the ring gear. At the same time, moving contact TC makes contact with contact points B and M.

Rotation of the Pinion

When contact points B and M are closed, battery current I_b flows from the battery to the armature. The pinion vigorously rotates to drive the ring gear of the engine. This process is illustrated in **Figure 13-5**.

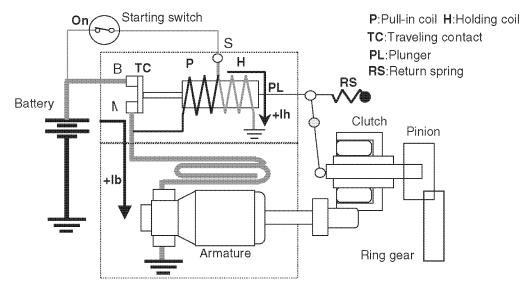


Figure 13-5

At the same time, battery voltage V_b is applied to the M terminal side and S terminal side of pull-in coil P. As a result, the terminals of pull-in coil P are at the same voltage and the current I_p disappears. However, since current I_h still flows through the holding coil, plunger PL is kept pulled-in. As a result, the starter motor continues to crank the engine.

When the starter motor is cranking, no current flows through pull-in coil P. The current I_h that flows through holding coil H is called the holding current. The current that flows through the pull-in coil and holding coil when the key switch is turned to the START position is called instantaneous current. The actual magnitude of the instantaneous current varies among the starter motors. See *Determination of Cable Size and Length on page 13-38*.

When the Engine has Started

When the engine has started, the key switch automatically returns to the ON position. Figure 13-6 shows the flow of current at this moment.

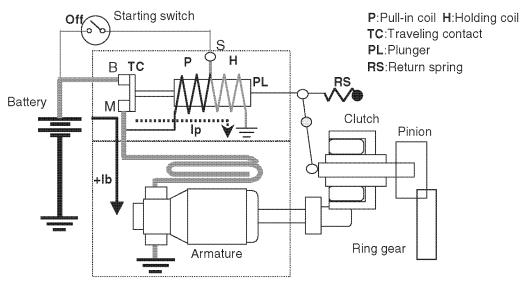


Figure 13-6

At this moment, battery voltage V_b at S terminal disappears. On the other hand, battery voltage V_b is applied to contact point M. As a result, the current flows from contact point M to holding coil H through pull-in coil P, and finally to ground.

In the state shown in **(Figure 13-6)**, both coils are in series connection. Therefore, the magnitude of the current that flows through the coils is the same. However, the direction of the current in the pull-in coil is negative, and the one in the holding coil is positive.

Physical Characteristics of Coils and Their Structures

To understand how the solenoid operates, it is necessary to know the physical characteristics of the coils and their structures. This knowledge is very important for analyzing starter motor failure.

Physical coil characteristics

The physical coil characteristics are provided by the following formula.

 $M_f \propto A \times T$

- M_f : Magnetic force
- A : Amperage
- T : Number of turns of coil

This formula implies that the magnitude of the magnetic force of the pull-in coil and holding coil is the same if the magnitude of the current that flows through the coils is the same and the number of turns of the coils is the same.

Structure of coil

Figure 13-4 shows that pull-in coil P is on the left side of the plunger and holding coil H on the right side. Actually, both coils are in a two-tiered structure as shown in **(Figure 13-3)**. Therefore, though **(Figure 13-4)** describes the flow of current to the left and right separately, it actually flows in the same direction in both coils. That is, the lines of magnetic force of both coils are in the same direction.

If the direction of current flow I_p for the pull-in coil changes, the lines of magnetic force also change their direction. As a result, the lines of magnetic force of both coils cancel each other and result in eliminating the magnetic force that pulls in the plunger. This theory is further explained in *Key Switch Turned to ON Position on page 13-12*.

Another important point in the coil structure is that the number of turns of the pull-in and holding coil are the same. That is, the formula of the magnetic force in *Physical Characteristics of Coils and Their Structures on page 13-11* implies that the magnitude of the magnetic force of both coils is the same if the magnitude of the current that flows through both coils is the same and the number of turns of both coils is the same.

The pull-in coil uses thicker wire. Therefore, though the number of turns of both coils is the same, the resistance of the pull-in coil is lower than that of the holding coil. If a current of equal magnitude flows through these coils, more heat is produced by the holding coil than the pull-in coil. This is why the holding coil has more problems with burning.

Key Switch Turned to ON Position

In the following description, the theory described in *Physical Characteristics of Coils and Their Structures on* page 13-11 is applied to the action when the key switch is turned to the ON position (described in *When the Engine has Started on page 13-11*).

- The magnitude of current (I_p) that flows through both coils is the same. The number of turns (T) of both coils is also the same. Therefore, the magnitude of the magnetic force (M_f) produced by both coils ($M_f = I_p \times T$) is the same.
- The direction of the current that flows through pull-in coil P when the starter motor is cranking is left (positive) as shown in (Figure 13-4). The direction of the current that flows through pull-in coil P when the key switch returns to the ON position is right (negative) as shown in (Figure 13-6). On the other hand, the direction of the current that flows through the holding coil when the starter motor is cranking and when the key switch returns to the ON position is the same (positive).
- That is, the direction of the lines of magnetic force of pull-in coil P when the key switch returns to the ON position is reversed (negative). Therefore, the magnetic force is given by the following formula.

As a result, pull-in coil P and holding coil H negate each other's magnetic force.

When Key Switch Returns to ON Position

At the moment the key switch returns to the ON position, plunger PL is returned to the initial position by return spring RS because pull-in coil P and holding coil H negate each other's magnetic force.

As a result, the pinion is disengaged from the ring gear. Moving contact point TC is also released from contact points B and M. Since battery current I_b that flows through the armature is turned Off, the starter motor stops.

This is the normal operation of the starter motor.

Causes of Starter Motor Failure

There are two types of starter motor failure.

- Burning of the holding coil H due to flow of current through the S terminal for more than the specified period. In most cases overcranking or overrunning will cause burning of holding coil H. The terms overcranking and overrunning are defined in *Safety Relay on page 13-18*.
- Failures due to excessive resistance of the wire harness. The wire harness may have high resistance because of a small cross-sectional area of the cable or due to degradation. The increase of the resistance can lead to melting or roughening of the magnetic switch contacts.

Burning of the holding coil or melting of the contacts can lead to burning of the armature and damage to the pinion and clutch.

The following describes typical starter motor failures. Even if the actual problem is complex, the basic causes of failure can be analyzed based on these cases.

Failure: Turning the Key Switch to the START Position Causes Pinion to Repeatedly Fly In and Out.

Analysis

This failure occurs when the wire of holding coil H is broken. The broken H coil wire causes the starter motor to repeat the operation as described below.

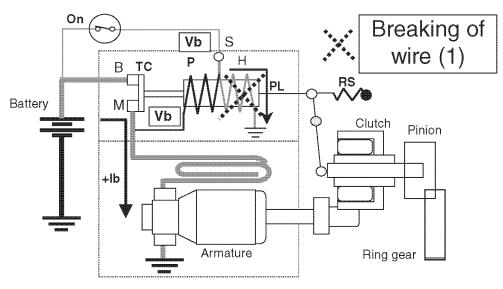


Figure 13-7

Turning the key switch to the START position causes pull-in coil P to momentarily attract plunger PL. The pinion then flies out once and moving contact point TC closes. When moving contact point TC closes, battery voltage V_b is applied to the S terminal side and M terminal side of the pull-in coil at the same time. Since both terminals of the pull-in coil become equipotential, no current flows through the coil and pull-in coil P loses magnetic force. Since the wire of holding coil H is broken, plunger PL is returned to its initial position by return spring RS.

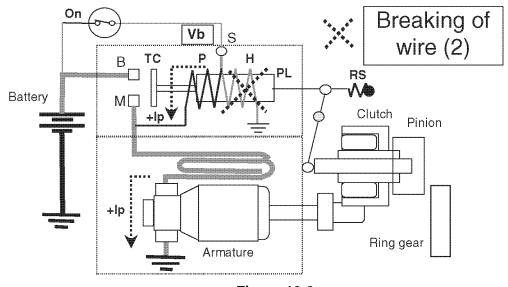


Figure 13-8

When contact points B and M are opened, then, battery voltage V_b is applied only to the S terminal side of pull-in coil P. Since pull-in coil P attracts the plunger again, the pinion flies out. In this way, the pinion keeps flying out and retracting. Moving contact point TC may finally become molten.

Cause of failure

The breaking of the holding coil H wire may be due to the coil burning.

While cranking, the current flows through the holding coil and the armature, as shown in **(Figure 13-5)**. If current flow exceeds the specified period, holding coil H produces excess heat and may eventually burn, although in many cases the heat will only cause discoloration of the armature.

Prevention of failure

The recommended limit of continuous energizing is 15 seconds and the starter motor must NEVER be energized for more than 30 seconds. If the starter motor has been energized for 20 to 30 seconds, it should be turned off for over one minute. This can protect the battery from over-discharging. Exceeding recommended period of continuous energizing or a shorter shut-down period can cause abnormal heating of the starter motor.

Using the motor to air-bleed the fuel system is a common cause of energizing the starter motor for longer than the specified time. Even if the period of continuous energization of the motor is 20 seconds or less, the holding coil can burn if the de-energization period is too short. Air-bleeding should be done in accordance with the *TNV Operation Manual*. It is very important to instruct the users not to use the starter motor for air-bleeding.

A defective key switch may also cause the holding coil to burn. If the key switch does not return to its initial position, the holding coil may burn due to the flow of current through the coil for a long period. This may lead to damage to the pinion or clutch.

Holding coil burning is caused by incorrect operation or other external causes. Therefore, overheating of the starter motor holding coil is not covered by warranty.

Failure: Turning the Key Switch to the ON Position Will Not Stop the Starter Motor.

Analysis

When the key switch returns to the ON position, the starter motor does not stop. In this case, disconnecting the S terminal does not stop the starter motor. Since the pinion and clutch receive starting torque from the engine, they may be discolored by the heat and the clutch may be damaged.

This failure may be misunderstood as the melting of moving contact point TC. The failure occurs, however, when holding coil H has generated a layer short.

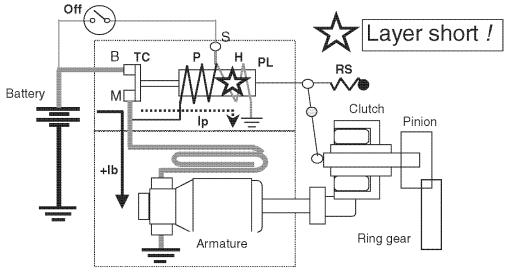


Figure 13-9

According to (Figure 13-6), the pull-in and holding coils negate their magnetic force at the moment the key switch returns to the ON position. For details, read *When the Engine has Started on page 13-11* and *Physical Characteristics of Coils and Their Structures on page 13-11*.

When holding coil H is in the layer short state, the number of turns of holding coil H that function as a magnet is reduced. The magnetic force of the holding coil is then lowered in proportion to the number of turns reduced. As a result, the magnetic force of both coils does not negate each other perfectly, making the magnetic force of pull-in coil P effective, which keeps attracting plunger PL. Thus, the starter motor keeps cranking even after the key switch returns to the ON position.

When the level of layer short is low, return spring RS may return the plunger PL to its initial position.

Cause of failure

A layer short will also cause the holding coil to burn. The cause of the holding coil layer short of is also the same as *Causes of Starter Motor Failure on page 13-13*. That is, the holding coil layer short is caused by incorrect operation or other external factors.

Prevention of failure

Measures for the prevention of failure are also the same as *Causes of Starter Motor Failure on page 13-13*. Therefore, a starter motor holding coil layer short is not covered by the warranty.

Failure: The Key Switch Returns to the ON Position and the Pinion Retracts but the Pinion Keeps Rotating.

Analysis

The situation in which returning the key switch to the "ON" position retracts the pinion but the pinion keeps rotating will occur when the moving contact point TC is welded.

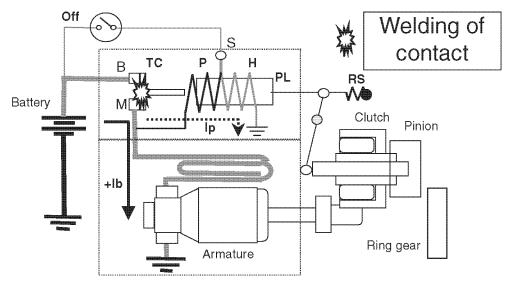


Figure 13-10

At the moment the key switch returns to the ON position, pull-in coil P and holding coil H negate their magnetic force. Plunger PL is returned by return spring RS. The pinion is disengaged from the engine. But when moving contact point TC is welded so contacts B and M remain in contact with TC, current I_b keeps flowing through the armature and the pinion keeps turning even though it retracts from the ring gear.

Since the current keeps flowing through both coils, they produce excessive heat and lead to burning. Since the wire diameter of the holding coil is smaller than that of the pull-in coil, the damage to the holding coil occurs sooner than the pull-in coil and the damage is more serious.

Cause of failure: Mechanism of melting of contact point

The contact point melts when the resistance of the starter circuit (battery - key switch - S terminal) is high.

When the starter circuit resistance is high, the contact point melts in accordance with the mechanism described in (Figure 13-11).

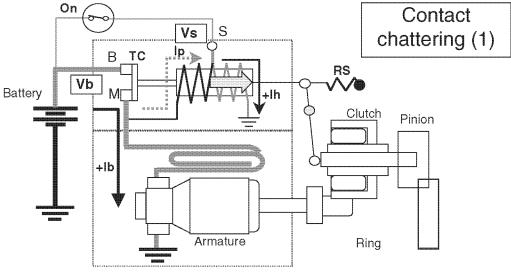


Figure 13-11

When resistance R of the starter circuit is high, voltage V_s of S terminal is lower than voltage V_b of M terminal. As a result, current $(-I_p)$ flows in pull-in coil P from M terminal to S terminal. Since $-I_p$ acts to negate the magnetic force that is produced with holding coil current $(+I_h)$, the plunger holding force is reduced. When the force of return spring RS is larger than the plunger holding force, the plunger is returned to its initial position and moving contact point TC is turned off.

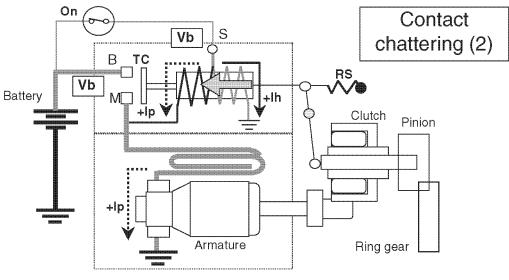


Figure 13-12

When moving contact point TC is turned off, voltage V_b of M terminal disappears. At the same time, current $(+I_p)$ flows from S terminal to pull-in coil P. Since the magnetic force produced by $+I_p$ is added to the one produced by $+I_h$, plunger PL is pulled in again. Moving contact point TC is turned on again, returning to the state shown in (Figure 13-11).

In this way, plunger PL repeats the operation as shown in (Figure 13-11) and (Figure 13-12) very rapidly. The contact point produces an excessively large arc to make the contact point melt. This is the mechanism that melts the contact point.

Prevention of failure

Contact point melting is caused by high resistance in the starter circuit. The allowable resistance of the starter circuit varies among the starter motors. For the allowable resistance of each starter motor, see *Starter Solenoid Cable Selection on page 13-39*.

The resistance of the starter circuit increases gradually, even though the initial resistance is lower than the allowable resistance, due to degradation caused by corroded terminals. Instruct the users to check the wiring harness periodically and remove any corrosion.

Actions To Be Taken When Starter Motor Does Not Function

Many starter motors are returned because they will not start the engine, but check out normally in the shop. This indicates that the problem is elsewhere in the electrical system, such as the wiring harness or key switch.

If a new starter motor starts the engine and the old starter motor checks-out normally, examine the starter motor wiring and battery terminals for corroded contacts or other causes of high resistance.

Starter motors that fit the criteria described in *Causes of Starter Motor Failure on page 13-13* and *Actions To Be Taken When Starter Motor Does Not Function on page 13-18* are not covered by warranty.

SAFETY RELAY

All of the general-purpose engines use a starter motor for cranking. Starter motors often experience burning or breakdown. It has been found that the starter motor itself seldom causes problems. Most problems are caused by incorrect handling and operation.

Most of the problems are from burning of the magnetic switch coils or armature coil, or damage to the pinion or pinion clutch. The immediate cause of the problems varies and may be complex. In any event, energizing the starter motor too long unnecessarily or energizing it unknowingly while the engine is running can cause the components to burn or break.

The safety relay has been employed as a device to prevent problems with the starter motor.

Function of the Safety Relay

The safety relay automatically de-energizes the starter motor when an engine starts to run and exceeds a pre-defined speed. The safety relay can prevent problems as described below.

Prevents Burning of the Magnetic Switch Coil or Armature Coil

The safety relay automatically de-energizes the starter motor once the engine has started even if imperfect return of the key switch or other cause occurs that may keep energizing the unit if the relay is not used. Thus, this function prevents the coils of the starter motor from burning.

When a starter motor is energized after the engine has started, it is called overrunning. The safety relay is able to prevent overrunning and can prevent the burning of the starter motor coils.

Prevents Damage to the Pinion or Pinion Clutch

When the starter motor is overrunning, the pinion and the pinion clutch turn at very high speed while they are engaged with the ring gear of the engine. This causes the sliding part of the pinion to generate heat and discoloration and can lead to clutch damage. It can also lead to generation of heat on the commutator and then damage that part.

Since the safety relay de-energizes the starter motor once the engine has started, the pinion is retracted and problems with the pinion can be prevented.

Prevents Engagement While Engine is Running

If the starter motor is turned on accidentally while the engine is running, the pinion flies out and strikes against the engine ring gear. Since the ring gear is rotating at a very high speed the pinion or pinion clutch can be damaged.

The safety relay can prevent the pinion from engaging while the engine is running.

The Safety Relay Does Not Prevent All Starter Motor Failures

Overcranking

To make the safety relay function, the engine has to run at a pre-defined speed at least once. The speed that an engine has to exceed to make the safety relay work varies among engine types and / or according to engine specifications, which is generally in the 750 to 1100 min⁻¹ range.

If an engine will not start, it may be necessary to make the starter motor crank the engine for a long time (one or two minutes) or to turn the starter motor on and off frequently. This is called overcranking and can cause the starter motor to generate heat that may cause the coils to burn.

The safety relay cannot prevent burning of the starter motor caused by the overcranking. Engine operators sometimes overcrank their engines when attempting to air-bleed the fuel system by cranking the starter motor.

To prevent the burning of the starter motor due to the overcranking, it is important to thoroughly instruct users to bleed air manually or with an electric fuel pump (solenoid pump) in accordance with the air-bleeding procedure described in the *TNV Series Operation Manual*. NEVER use the starter motor to air-bleed the fuel system.

Low Idle Starting

Some combinations of the safety relay and the crankshaft V-pulley may make the safety relay engine speed cutoff higher than the engine low idle setting. If the engine is started at low idle, the safety relay will not function properly.

Before cranking, be sure to set the engine speed control to medium or higher speed. Operate the engine in accordance with the procedures described in the *TNV Operation Manual*.

Safety Relay Operation Principle

The safety relay operates when the engine exceeds a specified engine speed. Engine speed is determined at the output of the charging system. The safety relay system is limited to three types because the charging system varies among the manufactures; Denso, Hitachi, and Kokusan Denki.

Denso or Hitachi Alternators

Denso and Hitachi alternators have a terminal dedicated to the safety relay, which is called the P terminal. This terminal outputs a pulse signal. The pulse count is proportional to the alternator speed (which is proportional to the engine speed).

The safety relay detects the pulse count and performs voltage conversion in the circuit in proportion to the alternator speed. When the magnitude of the converted voltage becomes the value that corresponds to the pulse count of the engine speed, 750 to 1100 min⁻¹ (depending on the engine specification), the safety relay shuts off the starter circuit to turn off the starter motor.

The pulse count output from the Denso P terminal is different from the Hitachi P terminal output even though both alternator speeds are the same. This is due to the difference in the number of alternator poles. It is necessary to provide two types of safety relays that use the pulse detection system.

NEVER connect any electrical device except the safety relay and specified tachometer to this P terminal.

Kokusan Denki's Dynamo

The AC voltage generated by the dynamo is converted to DC by the current limiter. The DC voltage, before the voltage regulator, is proportional to the dynamo's speed (or engine speed). As the dynamo speed increases and the DC voltage reaches a certain point, a voltage of 12 V appears at the terminal dedicated to the safety relay (brown lead of the current limiter).

The voltage of 12 V energizes a separate safety relay (b-contact power relay). The safety relay (b-contact power relay) that is energized shuts off the starter circuit to turn off the starter motor.

The maximum allowable output current of the dedicated terminal (brown lead) is 12 VDC/0.15A.

Safety Relay Selection

There are currently three types of safety relays, Hitachi, NGK, and Kokusan Denki.

These are not interchangeable. The safety relay that is compatible with the charging system of the engine must be used. For the combination of an alternator or dynamo and the safety relay, see *H-d: Dynamo & Alternator* in the *Yanmar TNV Option Menu*.

NGK Safety Relay

NGK safety relays are used with engines equipped with Denso alternators (Part No.: 119802-77200). The alternator with the P terminal should be used.

The safety relay shuts off the starter circuit when the alternator's speed exceeds $1350 \pm 210 \text{ min}^{-1}$ (at ambient temperature). For example, when the pulley ratio of the alternator pulley to the crankshaft pulley is 0.6, the starter motor is turned off automatically when the engine speed reaches $810 \pm 126 \text{ min}^{-1}$. After this, accidental operation of the key switch will not energize the starter motor.

After engagement, the safety relay drops out when the alternator speed becomes $650 \pm 150 \text{ min}^{-1}$ or less (at ambient temperature). For example, when the pulley ratio is 0.6, the engine speed becomes $390 \pm 90 \text{ min}^{-1}$ or less at this time. Since the low idle speed of normal engines is at least around 800 min-1, the safety relay continues to function in all engine speed ranges after it has functioned one time.

External Dimensions

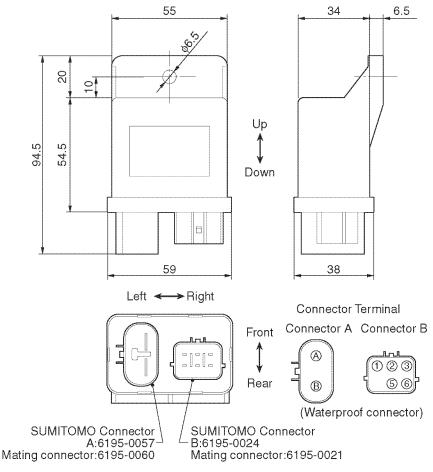
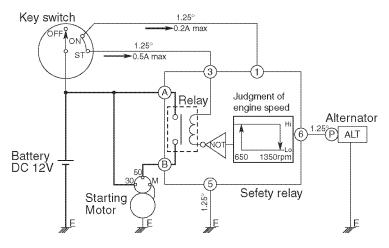
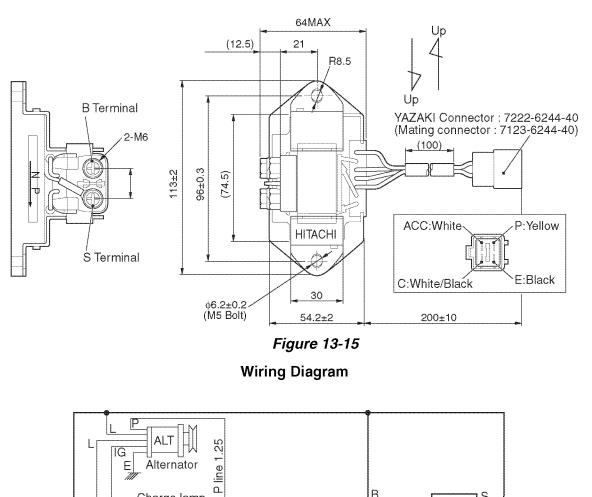


Figure 13-13

Wiring Diagram




Figure 13-14

Hitachi Safety Relay

Use a Hitachi safety relay with engines that have an Hitachi alternator (Part No. 129136-77200). The alternator should have a P terminal. However, this safety relay is only compatible with Hitachi alternators that are 12V/60A or over. It is not compatible with other alternators.

The safety relay shuts off the starter circuit when the alternator's speed exceeds $1400 \pm 120 \text{ min}^{-1}$ (at ambient temperature). For example, when the pulley ratio of the alternator pulley to the crankshaft pulley is 0.6, the starter motor is turned off automatically when the engine speed reaches $840 \pm 72 \text{ min}^{-1}$. After this, accidental operation of the key switch will not energize the starter motor.

After engagement, the safety relay drops out when the alternator speed becomes 498 min⁻¹ or less (at ambient temperature). For example, when the pulley ratio is 0.6, the engine speed becomes 299 min⁻¹ or less. Since the low idle speed of normal engines is at least around 800 min⁻¹, the safety relay continues to function in all engine speed ranges after it has functioned one time.

Charge lamp

2°

1.25°

ŝ

E

M

Acc

Key switch

F BATT

်ဝရိ

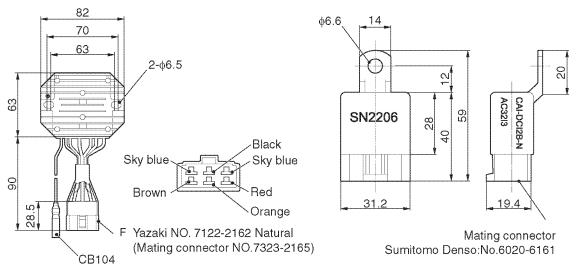
External Dimensions

E

Safety relay

IE

Starter motor


Kokusan Denki Safety Relay

Use a Kokusan Denki safety relay with an engine equipped with a Kokusan Denki dynamo (Part No.: 119247-77100).

The regulator for the safety relay is used. For the combination of these components, see *H-e: Current Limiter* in the *Yanmar TNV Option Menu*.

The safety relay shuts off the starter circuit when alternator speed exceeds $1975 \pm 140 \text{ min}^{-1}$. For example, when the pulley ratio of the alternator pulley to the crank pulley is 0.6, the starter motor is turned off automatically at the moment the engine speed reaches $1191 \pm 84 \text{ min}^{-1}$. After this, accidental operation of the key switch will not energize the starter motor.

After stopping the starter motor, the safety relay stops when the key switch is used to turn off the power. When an engine has stopped for any reason with the key switch in the ON position, the key switch cannot be used for energizing the starter motor without first returning it to OFF.

External Dimensions

Figure 13-17

Wiring Diagram

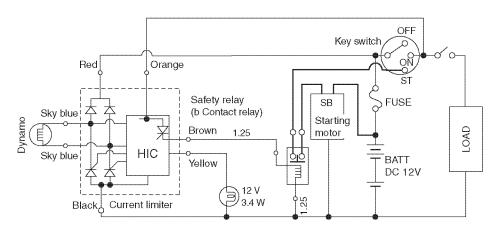


Figure 13-18

Safety Relays Obtained by the Customer

The safety relays are sometimes obtained by the manufacturer of driven machines.

The reliability of the unit's electronic circuit is essential for proper functioning of the safety relay. Matching with the charging system is also important. The reliability of the safety relay system is supported by the electronic circuit reliability test, test for matching with the charging system, and actual performance of the component.

If the system does not function well, Yanmar can investigate the whole system, examine the operations, and improve the system, unless the problem stems from a wire harness that was obtained by the customer.

However, if the safety relay system was obtained by the manufacturer of the driven machines, Yanmar cannot examine and improve the circuit, even though failure of the system is suspected.

Yanmar does not cover a starter motor under warranty if the failure of the starter motor is caused by the improper function of a safety relay obtained by the manufacturer of the driven machines.

Recommendation for Using a Safety Relay

Yanmar recommends that the manufacturer of the driven machines use a safety relay described above to prevent the coils from burning and damaging the starter motor.

STOP SOLENOID

To stop the operation of a diesel engine, it is necessary to shut off the fuel supply to the injection nozzles. A manual system that connects a wire cable to the stop lever or an electrical system that uses a stop solenoid can be used.

TNV series engines use a stop solenoid which is described below.

Solenoid Types

To stop an engine by using a stop solenoid, either of the following two methods may be used.

- · De-energizing the solenoid to stop the engine
- · Energizing the solenoid to stop the engine

TNV engines use the first method. The solenoid is energized when the engine is running. Turning the key switch to the OFF position, de-energizes the solenoid to stop the engine. The solenoid that is used in the system is called an "energize to run" solenoid. The run-on solenoid system functions to automatically stop the engine if the power supply system malfunctions. Many industrial use engines use this system.

If you are using the second method, no current is supplied to the solenoid while the engine is running. To stop the engine, this method energizes the solenoid for a certain period. This system is used in applications power supply malfunction cannot cause the engine to stop. Many marine engine applications use this system.

The following sections describe the energize to run solenoid that is standard on TNV engines.

Features of the Stop Solenoid

The run-on solenoid system is controlled by a timer and a power relay. A diode is also needed to protect the circuit. The functions of individual components are described in the following sections.

Stop Solenoid

This solenoid is also referred to as a three-wire solenoid. This component includes two types of coils; a pullin coil and a holding coil. It has three wires, a positive lead for each coil and a grounding lead that is common to both coils. (Figure 13-19) shows the structure of the solenoid.

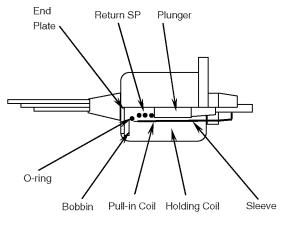


Figure 13-19

Pulling in the plunger requires a large amount of current to be applied to the pull-in coil. This is a common requirement for all types of solenoids. The magnetic force that is produced is called a pull-in force, and the current that is applied to generate the pull-in force is called pull-in current. The component that provides this function is the pull-in coil. After the plunger is pulled-in, the magnetic force that is needed to hold the plunger in is smaller. The magnetic force needed in this process is called the holding force, and the current that produces the holding force is called the holding current. The component that provides this function is the holding force is called the holding current.

Operation of a TNV Stop Solenoid

(Figure 13-20) shows a TNV engine with a governor that is equipped with a stop solenoid. Turning the key switch to the ON position energizes the pull-in coil to draw in the plunger. The plunger and governor components are not linked. The rack that controls fuel injection is placed in the free state so the fuel injection system is ready for engine operation when you crank the starter motor.

Turning the key switch to the OFF position eliminates the magnetic force in the hold coil, causing the return spring to push the plunger out. Then, the plunger returns the rack to the fuel stop position through the governor lever and the engine stops.

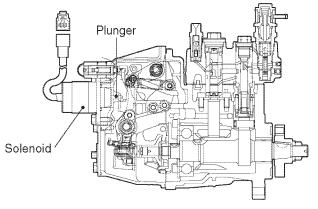


Figure 13-20

Control of the Stop Solenoid

The pull-in current and holding current for TNV stop solenoids is 36.5 A and 0.49 A, respectively. Turning the key switch to the ON position energizes the pull-in coil and the plunger pulls-in. The pull-in coil produces heat, however, and may be burned if the coil is energized with 36.5 A continuously. After the solenoid has pulled the plunger, it is necessary to de-energize the pull-in coil and switch to the holding coil.

The timer and the power relay automatically switch the current from the pull-in coil to the holding coil. The functions of these components and the diode that protects them are described below. (See the *wiring diagram*.)

Timer

While the allowable energization period of the pull-in coil is 30 seconds, actual pull-in time is less than 0.1 second. To protect the pull-in coil from burning, even if it is operated abnormally, such as repeated operation by the customer, this timer is designed to energize the coil for only one second. Since the unit uses an electronic circuit, the large current flow used to energize the pull-in coil cannot be used to power the timer. Therefore, the pull-in coil is energized through a separate relay.

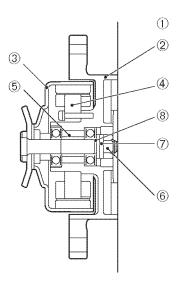
Relay

The 0.3 A current output from the timer energizes the exciting coil of the relay. The 0.3 A signal only lasts one second, during which the pull-in coil is energized.

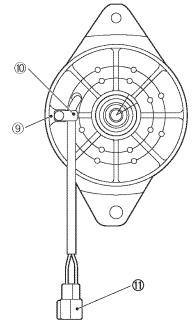
Be sure to use Yanmar's standard timer and relay. If another combination of timer and relay is used, the relay contacts may chatter. This is caused when the characteristics of the timer do not match the specifications required by the relay's contacts. If the contacts chatter, they may fuse together, causing continuous energization of the pull-in coil and eventually the pull-in coil will burn out.

Diode

When turning off the solenoid, surge voltage may be produced by the magnetic force of the holding coil, which can damage other electronic components connected to the same circuit. Put a diode in the wiring that is connected to the terminal of the holding coil to absorb this surge. Use Yanmar's standard diode or the component equivalent to 600 V - 1.1 A. Use the wiring diagram to make sure the polarity is correct when you connect the diode.



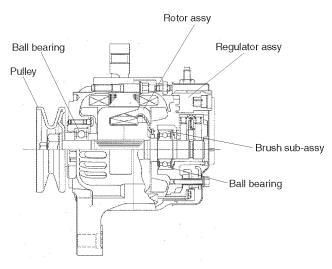
CHARGING SYSTEM


In general, alternators and generators are belt driven, deriving their motive force from the engine. They both charge the battery and supply power to the electric load. They both generate AC power and convert it to DC (the generator requires a separately installed circuit limiter to do the conversion). TNV series engines can use either a generator (dynamo) or alternator. This section compares the attributes of generators and alternators.

Features of a Generator (Dynamo)

The dynamo is a type of magneto generator using a permanent magnet as the field. The alternating current output by the dynamo is rectified into direct current by a separately installed current limiter.

Dynamo Structure


Figure 13-21

- 1. Plate complete
- 2. Plate
- 3. FW complete
- 4. Stator
- 5. Collar
- 6. Hexagon nut

- 7. Spring washer
- 8. Plain Washer
- 9. Washer set screw
- 10. Clamp
- 11. Coupler

Features of an Alternator

In place of the permanent magnet used in the dynamo, the alternator uses an exciting field coil. The alternating current output by the alternator is rectified into direct current by an IC regulator. The regulator is part of the alternator.

Alternator Structure

Figure 13-22

Charging System Capacity

The charging system must be able to supply the necessary power to the electrical system during engine operation and to charge the battery. The types of charging systems used in TNV engines are as shown in the table below. When you select the type of charging system for your application, consider the engine speed range and electrical system load. For details, see the separate *Yanmar TNV Option Menu*.

Nominal output	Dynamo	Alternator
12 V, 15 A	0	-
12 V, 20 A	0	-
12 V, 40 A	-	0
12 V, 55 A	-	0

Output Characteristics

Dynamo output characteristics

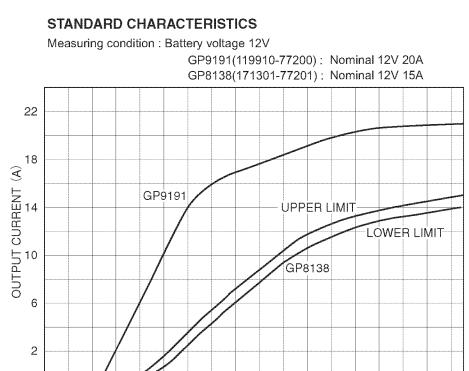


Figure 13-23

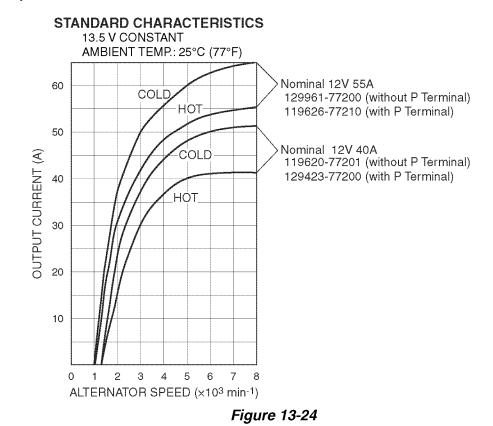
ALTERNATOR SPEED (×103 min-1)

4

5

3

6


7

Alternator output characteristics

0

1

2

YANMAR. TNV Application Manual

REGULATOR

The electric output from the generator or alternator is alternating current. The electronic circuit that rectifies it to direct current is generally called a regulator.

The AC to DC conversion is performed in various ways. The alternator has a built-in IC regulator in the body. Yanmar calls this type of regulator an "alternator with built-in IC regulator."

In the case of the dynamo, the regulator is not built into the body, but is provided separately. Yanmar calls this type of regulator a "current limiter."

The "alternator with built-in IC regulator" and "current limiter" have different circuits for converting the AC to DC, but both of them output DC current.

CONTROL OF BATTERY INDICATOR

A major difference between the IC regulator system and the current limiter system exists in the control of the battery indicator. When the power is turned On, both systems apply voltage to the battery indicator to light it.

In the IC regulator system, when the engine is running, and a specified engine speed (specified charging voltage) is attained, the voltage at the grounding side of the indicator rises and the voltage across the indicator becomes almost equal. If the indicator is a lamp and not an LED, it should go Off because the potential difference across it is very small. When an LED is used, however, it may light "faintly" even in normal operation because of a small potential difference (approx. 0.2 V). A "faint" glow of the battery indicator is normal.

For the current limiter system, when the engine is running and a specified engine speed (specified charging voltage) is attained, the current to the indicator is shutoff.

When the engine speed exceeds the speed specified, but it is so low (generator speed is so low) that the power produced by the generator is less than the amount of current required by the load, the battery makes up the shortfall. Since the battery is not charged in this situation, it will be completely discharged if the situation continues for too long. Since the generator is operating normally, the indicator does not light.

The battery indicator is only used for checking whether the generator generates electricity, and not for checking whether the battery is being charged.

Since the regulator uses electronic parts, avoid connecting the battery cables with the wrong polarity or disconnecting the battery cable while the engine is running as it may cause damage to the charging system or other electronic components.

BATTERY

The battery supplies power to the starter motor while the engine is cranking. It also supplies power to other electrical components and the exciting current to the generator or alternator when the engine is cranking.

How to Check the Battery

Battery Types

Batteries are roughly classified into alkaline storage and lead acid storage categories. Alkaline storage batteries are mostly used in large capacity engines for emergency use. Lead acid storage batteries are mostly used for industrial engines.

Battery Capacity

The battery capacity is represented in Ah (ampere-hour). It represents the total quantity of electricity (Ah) that will be discharged at a constant current. In other words, it is the product of the discharge current (A) and the number of hours (h) until the final discharge voltage is reached. The total quantity of electricity that is discharged decreases as the discharge current increases.

• It is possible to continue battery discharge until the terminal voltage reaches 0 V in principle, but such a discharge makes it impossible to restore the battery to its original state. Discharge, therefore, must be terminated at the proper voltage level. This voltage level is called the final discharge voltage.

Ah = Discharge current (A) x Discharge time (h) until final discharge voltage.

- For example, if the final discharge voltage is reached upon discharging at 10 A for 5 hours, the capacity of this battery is said to be 50 Ah (10 A 5 h) at the 5-hour rate.
- For the reserve capacity and cold cranking current, see Battery Types on page 13-31.
- As already described, a symbol "Ah (ampere-hour)" is used to represent the battery capacity. However, the symbol should be used with care because the meaning of "capacity" is different between the US, Europe and Japan. JIS (Japanese Industrial Standard) defines "Ah" based on the 5-hour rate and in the US and European countries it is based on the 20-hour rate.

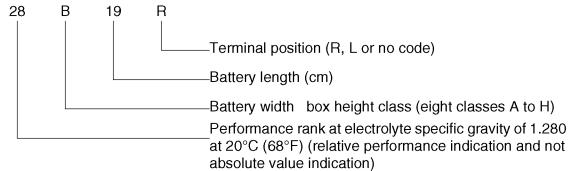
Use the following conversion to determine the approximate equivalence.

"Ah" based on the 20-hour rate x 0.8 = "Ah" based on the 5-hour rate

For example, 70 Ah (20-hour rate) in the US or European standard is equivalent to 56 Ah (5-hour rate) in the Japanese standard because 70 Ah x 0.8 = 56 Ah, which corresponds to 65D31R of JIS. This conversion is accurate enough for use in normal conditions. When driven machines have a large parasitic torque, or when batteries are used in an extremely cold region, it is necessary to compare the CCA (cold cranking current) instead of Ah.

Battery related terms

No.	Term	Meaning
	Nominal voltage	Standard voltage (V) used for indication of battery voltage
	Capacity (5-hour rate)	Product of 5-hour rate current and time (hours) until final discharge voltage. Also, the quantity of electricity (Ah) discharged at 5-hour rate until the final discharge voltage is reached
	5-hour rate current	Indicates the battery charging / discharge current (A) obtained by dividing the (5-hour rate) capacity by 5
High rate discharge Discharge characteris characteristics		Discharge characteristics at a current near the automobile engine starting current
	Final discharge voltage	Battery terminal voltage (V) where discharge must be stopped
constant voltage Reserve capacity Measure of a fully charged automotive battery capacit continuous discharge current of 25 A until a final disch reached. Battery is maintained at 25±2°C (77±2°F) Cold cranking current (CCA) Measure of engine starting performance in terms of di automobile battery at 18°C (64.4°F) that causes the vois seconds Heavy-load life Number of repeated discharge / charge cycles in the heavy-load life		Characteristic showing whether a discharged battery will accept a charge at a constant voltage
		Measure of a fully charged automotive battery capacity in duration (minutes) with a continuous discharge current of 25 A until a final discharge voltage of 10.5 V is reached. Battery is maintained at 25±2°C (77±2°F)
		Measure of engine starting performance in terms of discharge current (A) of an automobile battery at 18°C (64.4°F) that causes the voltage to drop to 7.2 V within 30 seconds
		Number of repeated discharge / charge cycles in the heavy-load range with one discharge depth at 20% or more in the life test method
	Light-load life	Number of repeated discharge / charge cycles in the light-load range with one discharge depth at 10% or less in the life test method


Battery Types

The table below shows the types of batteries specified in JIS D 5301-1999.

		High ra	ate dischar at 258K	ge characte	eristic	Li			(Refe	rence)
	Capacity							Charge	Standard capability	
Туре	5-hour rate (5HR)	Discharge current	Duration	Voltage after 5 sec.	Voltage after 30 sec.	Heavy- load life	Light- Ioad life	acceptab ility	Reserve	Cold cranking current 255K (- 18°C)
	(Ah)	(A)	(min)	(V)	(V)	(cycle)	(cycle)	(A)	(min)	(A)
28B17L	24		2.3	9.0		250	900	3.0	38	246
34B17L	27	1	3.0	9.2		200	1000	3.3	47	279
34B19L	21	150	5.0	9.2		225	1100	5.5	49	272
38B20L	28		3.5	9.5	_	250	1300	3.5	52	332
46B24L	36		4.2	9.5	-	300	1500	4.5	71	325
55B24L	30	300	2.0	8.6			1800	4.5	79	433
50D20L	40	150	4.0	9.6		285	2200	5.0	78	306
55D23L	48		1.9	8		315	3100	6.0	99	356
65D23L			2.5	8.5	8.4	320	3400		111	420
75D23L	52	300	2.9	8.9	-	320		6.5	118	520
75D26L		300	2.9	0.9	8.8	330	3800	0.5	123	490
80D26L	55		3.5	9.2	9.1	330			133	582
95D31L	64		4.3		9.3	375	4700	8.0	159	622
115E41L	88		2.6		8.3			11	212	651
130E41L	92		3.0		8.8	485		11	229	799
115F51	96		2.6		8.2			12	228	638
145F51	112	112	3.4	_	8.8	600		14	269	780
145G51	120	500	3.6	-	8.6	000	-	15	294	754
165G51	136	136 140 160 176	4.8		9.0	785		17	343	983
195G51	140		5.4		9.5	700			362	1146
190H52	160		5.6		9.0	785		20	421	924
245H52	176		7.8		9.9	800		22	460	1532

Types of batteries in general use

Type Code Designation Method

Battery Charging

If an engine is frequently operated, the battery should maintain its charge. But if it is stored for an extended period of time, the battery may lose its charge. Guidelines for long-term storage and charging time is as follows:

Guideline for Self-discharge and Charging Cycle

Batteries self-discharge (natural discharge) without being used. Self-discharge per day is 0.5 to 1.0% of the battery capacity.

To start an engine, residual battery capacity of 40 to 50% will be enough at "ordinary" temperature. By considering charging efficiency and battery life, it is desirable to charge batteries before the residual battery capacity reaches 60 to 70%.

In other words, if a 100% capacity battery that self-discharges at the rate of 1% a day is shelved, it will lose 30% of its capacity after 30 days. Thus the residual battery capacity is 70%. Therefore, batteries should be charged at least once per month.

Starter Motor Battery Discharge and Charging

How long do you need to run the engine to restore the original charge capacity after starting the engine with the starter motor?

Theoretically, this can be calculated if the amount of cranking current that flows through the starter motor, length of time starter motor is energized and the output of the generator / alternator are known. An example of this calculation is shown below:

Battery discharge

$$q = S_a \times \frac{t}{3600}$$

q	: Battery discharge	Ah
Sa	: Mean cranking current	А
t	: Energized duration of starting motor	sec

Operating time for restoring discharged potential

$$H_{c} = \frac{q}{A_{c} \times \beta}$$

H _c	: Charge time (operating time)	h
q	: Battery discharge	Ah
A_{c}	: Generator output	А
β	: Charging efficiency	0.8

Descriptions

Since mean cranking current varies depending on the output level of the starter motor, size of the torque of driven machine and whether the ambient temperature is "ordinary" or "low," it is not possible to provide a definite numerical value.

To estimate the mean cranking current use the following chart.

Starter motor output ≤kW	Mean cranking current A
1.0	170
1.2	215
1.4	260
2.0	290

It normally takes several seconds to start the engine, but when making the calculation, the target duration of 20 sec for the cold starting test will be sufficient.

Calculation Example

What is the battery discharge that occurs when a 3TNV84-SA series engine is started one time, and how many hours does it take to restore the charge? Charging should be made while operating at 2400 min⁻¹.

The starter motor output of this engine is 1.2 kW. Therefore, you set an approximate mean cranking current at 215 A. By energizing the starter motor for 20 sec with allowance, the battery discharge will be calculated as follows:

5 A
sec

$$q = S_a \times \frac{t}{3600}$$
$$= 215 \times \frac{20}{3600}$$

= 1.19 Ah

To restore this discharge while operating the engine at 2400 min⁻¹, first look at the Yanmar TNV Option Menu for the output of the generator / alternator. We will use 37.8A. The operating time necessary for restoring the battery to 100% is:

H_{c}	: Charge time (operating time)	h
q	: Battery discharge	1.19 Ah
A_{c}	: Generator output	37.8 A
β	: Charging efficiency	0.8

$$H_{c} = \frac{q}{A_{c} \times \beta}$$
$$= \frac{1.19}{37.8 \times 0.8}$$
$$= 0.04 \text{ h}$$

That is, if the engine is started one time using the starter motor it should be operated for 0.04 hour or 2.4 minutes to return the battery to 100%.

WIRING

Wiring is an important electrical component that affects all industrial engine functions. If the wiring is not correct, the wiring resistance may be excessive causing malfunctioning of electrical parts or overheating/ burning. When determining which cable to use, make sure that the voltage drop is within the allowable range. Recheck the total load placed on the circuit to ensure that the wiring is adequate.

For the engine electrical components, negative (-) grounding is standard. Consult Yanmar before beginning the design, if positive (+) grounding is to be used.

Wiring Precautions

Electrical wiring is an essential element to make the engines perform safely and efficiently. Keep these precautions in mind.

- 1. Use wires with the most suitable size and length to ensure required current and voltage is available.
- 2. Wires should be as short as possible, without sharp bends, and with sufficient strength.
- 3. Insulate the wires completely.
- 4. Use connectors or screws to secure the wire to the terminal. Connections should be made firmly to avoid looseness and short-circuiting.
- 5. Avoid placing wiring in contact with oil, hot components, or rotating components. Use protectors, such as covers or shields, if necessary.
- 6. When running wiring through an opening, protect the wire with a grommet or equivalent device.
- 7. Secure the wires so that they are not damaged by mechanical vibration. Special care should be taken to prevent resonance with engine vibration.
 - Use wire clamps that are made of plastic. Metal clamps must be coated with plastic or rubber.
 - The area of the wire that is secured by wire clamps should be protected with corrugated tubes or equivalent
 - NEVER use the following components for securing the wires: Fuel tank, fuel hose, and radiator hose.
- 8. Consider using waterproof connectors if the operating environment warrants it.
- 9. Electrical ground connections:
 - Prepare the areas where the grounding wire will be attached (such as removing paint) (Figure 13-25).
 - The grounding wires should not be attached to other components, such as an engine mount.
 - Ground the battery to the engine block as close as possible to the starter motor.

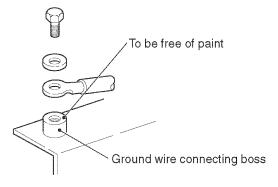


Figure 13-25

- 10. To prevent connecting the battery cables to the wrong terminals, determine their "length" and "battery location" properly.
- 11. The electrical components that are not installed directly on the engine (such as key switch, timer, relay, diodes and current limiter) should be installed in the places where they are not exposed to the rain, and are subjected to good ventilation and vibration acceleration of no more than 39.2 m/sec² (4G).
- 12. Check that surge voltage and surge current do not occur during normal operation and abnormal conditions. To prevent surges, use diodes to protect inductive or capacitive load components.

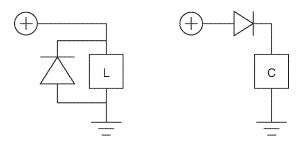


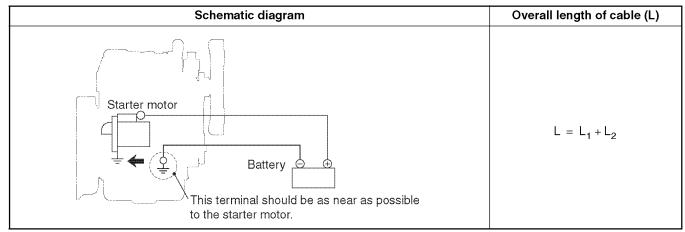
Figure 13-26

Battery Cable Selection

Selection of battery cables is an essential element for full performance of the starter motor. Using the wrong cable size or length can affect the starting performance and also cause damage to the starter motor.

Use the following information to select proper battery cables.

Definitions of Battery Cable Size and Length


Battery cable size

The cable size is defined as nominal cross-sectional area of the conductor of the cable to be used.

Battery cable length

The cable length is defined as the total length of positive and negative cables between the starter motor and the battery.

Schematic Diagram of Connection Circuit (Assuming Body Grounding)

Determination of Cable Size and Length

The most suitable size and length of cable can be obtained by determining the allowable resistance (Ω) of the battery cables (depends upon the rated output of the starter motor) and specific conductor resistance (Ω / m) for each size of cable.

Allowable resistance of the battery cables

The allowable resistance of the battery cables varies according to the capacity of the starter motor. Connect the cables to the terminal using a bolt. The resistance of the connection at the terminal is assumed to be 0Ω .

Rated voltage	12 V		
Rated output of starting motor	Less than 2 kW	2 kW or over	
Total allowable resistance (L = L ₁ + L ₂) of battery cables $R(\Omega)$	0.0020 or less	0.0012 or less	

Note: R should include the resistance (Ω) of the battery switch if it is used in the battery circuit. The resistance should be confirmed by obtaining the information from the manufacturer.

Specific conductor resistance of the battery cables

Nominal cross-sectional area of conductor (mm ²)	Specific conductor resistance (r) of automobile low voltage wire (AV wire) (Ω/m) [at 20°C]
15	0.001380
20	0.000887
30	0.000520
40	0.000428
50	0.000337
60	0.000287
85	0.000215
100	0.000168

Relationship between battery cable length and size

$$L = (R - \alpha) / r$$

Where:

L	: Allowable length of battery cable	m
R	: Allowable resistance of battery cable	Ω

- R : Allowable resistance of battery cable
- α : Resistance of battery switch

Ω (Assume 0.0002Ω if the resistance is unknown)

ρ : Specific conductor resistance of the battery Ω/m cables

Calculation Example:

What is the allowable length of the battery cable when a cable with nominal cross-sectional area of 20 mm² is used for a 1.8 kW starter motor?

• $\alpha = 0 \Omega$ because the battery switch is not used.

L	: Allowable length of battery cable	m
R	: Allowable resistance of battery cable	0.002 Ω
α	: Resistance of battery switch	Ω (because the battery switch is not used)
ρ	: Specific conductor resistance of the battery cables	0.000887 Ω/m

Substituting the above values for their corresponding terms in the formula, the allowable length of the battery cable is obtained as follows.

$\mathsf{L} = (\mathsf{R} - \alpha) / \mathsf{r}$

- = (0.002 0)/0.000887
- = 2.3 m

The allowable length of the battery cable in this example is 2.3 m.

Starter Solenoid Cable Selection

When the starter motor does not crank properly, the magnetic switch produces a "clicking" noise when the key switch is turned to the START position. If this noise continues, the magnetic switch contact will produce heat, which can cause it to melt. If the contact melts, turning the key switch to the ON position will not stop the motor, causing the motor to burn and to be destroyed.

This trouble occurs when the starter motor circuit resistance is large. Even though the starter motor cable resistance is small when it is new, the starter motor circuit resistance increases with time due to contamination and corrosion. When designing a starter motor circuit, it is necessary to select the cables with sufficient size and length and allow for eventual cable deterioration.

Allowable Resistance Of Starter Circuit

Keep the total resistance of the starter circuit equal to or less than the allowable resistance for proper operation of the starter solenoid. The allowable resistance varies according to the starter motor output range, nominal rated voltage and the manufacturer. Determine the type of the starter motor that will be used and find the allowable resistance from the following tables.

Note that the allowable resistance of the starter motor circuit is the overall value that includes the resistance of the cables and cable terminal connections.

Allowable resistance of the starting motor circuit of a Hitachi starting motor: R_s (terminal S)

Voltage	Starting motor output	Starting motor circuit allowable resistance at 20°C	Remarks
12 V	0.8 to 3.0 kW	≤ 0.050 Ω	
24 V	3.5 kW	≤ 0.050 Ω	
24 V	4.0 kW	≤ 0.010 Ω	Use a starter relay.

Allowable resistance of the starting motor circuit of a Denso starting motor: R_s (terminal 50)

Voltage	Starting motor output	Starting motor circuit allowable resistance at 20°C	Remarks
	1.0 to 2.0 kW	≤ 0.050 Ω	
12 V	2.5 kW (R2.5)	≤ 0.035 Ω	Use a starter relay.
	4.8 kW (R4.8)	≤ 0.035 Ω	Use a starter relay.

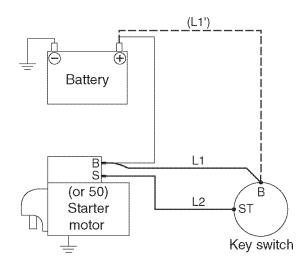
Allowable resistance of the starting motor circuit of a Sawafuji Electric starting motor: R_s (terminal S)

Voltage	Starting motor output	Starting motor circuit allowable resistance at 20°C	Remarks
24 V	4.0 kW	≤ 0.039 Ω	Use a starter relay.
24 V	5.2 kW	\leq 0.039 Ω	Use a starter relay.

Note: Use a starter motor relay when the wiring resistance exceeds the starter motor circuit allowable resistance, such as when you use a remote operator's console. When the current required by the starter solenoid exceeds the contact capacity of the key switch a starter motor relay should be used.

Size and Length of the Starter Motor Cable

Definition of cable size


The cable size is defined as the nominal cross-sectional area of the starter motor cable conductor.

Definition of cable length

The cable length is defined as the total cable length, including supply and return paths as described below.

Starter motor cable length L = L1 (or L1') + L2

General Starting Motor Circuit

Figure 13-27

Current supply to the key switch should be taken from either the battery or magnetic switch terminal B, whichever result in shortest in overall length.

Starter motor cable length L = L1 (or L1') + L2

Starting Motor Circuit That Uses a Starting Motor Relay

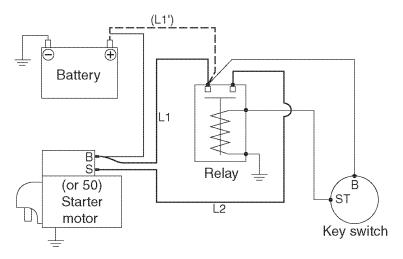


Figure 13-28

Selection of Cables for the Starter Motor Circuit

The size and length of the starter motor cable depends on the specific resistance of the cable (*Specific resistance of low voltage wire for automobiles (AV wires) on page 13-41*), the resistance of the terminals (*How to estimate the cable connection terminal resistance on page 13-41*) and the ambient temperature (*Ambient temperature and allowable current for determination of cable size on page 13-42*).

Specific resistance of low voltage wire for automobiles (AV wires)

Name (AV wire)	Nominal cross-sectional area (mm ²)	Specific resistance of cable (Ω/m) at 20°C
AV1.25	1.25	0.0143
AV2	2.0	0.00881
AV3	3.0	0.00559
AV5	5.0	0.00352
AV8	8.0	0.00232

The specific resistance of each cable is shown in the following table.

How to estimate the cable connection terminal resistance

The allowable resistance of the cable that is shown in the above table does not include the terminal resistance of the connections. For the actual circuit, resistance of the cable connections at the starter motor and key switch has to be taken into consideration. The calculation to obtain the allowable length (L) of the cable is described by the following formula.

$$L = (R_s - R_t) / r$$

- L : Allowable length of starting motor cable m
- R_s : Allowable resistance of starting motor circuit Ω
- $\label{eq:Rt} \begin{array}{l} \mbox{: Overall resistance of coupler connection} \\ \mbox{terminals} \end{array} \begin{array}{l} \mbox{Coupler connection terminal} \\ \mbox{resistance: } 0.010 \ \Omega/\mbox{connection terminal} \\ \mbox{resistance: } 0 \ \Omega \end{array}$

 Ω/m

r : Specific resistance of cable

Calculation Example

When an AV2 cable is used for a Hitachi 1.8 kW starter motor, the allowable length of the starter cable is:

	Allowable	lonath at	etarting	motor	cahlo	m
L	Allowabic	icingui or	saung	motor	Cabic	

- R_s : Allowable resistance of starting motor circuit 0.050 Ω
- R_t : Overall resistance of coupler connection $0.010~\Omega$ terminals
- r : Specific resistance of cable $0.00881 \ \Omega/m$

 $L = (R_s - R_t) / r$

- = (0.050-0.010)/0.00881
- = 4.5 m

This means that the total length of the supply and return wires of Hitachi's 1.8 kW starter motor circuit is approximately 4 meters when a cable size AV2 cable is used, including some margin.

Ambient temperature and allowable current for determination of cable size

The amount of current that is allowable for cables of the same size (nominal cross-sectional area) varies depending on the ambient temperature.

For the determination of the cable size, the standard ambient temperature of 70°C (158°F) is used. When selecting the size of the automotive low voltage wire (AV and AVS wires), determine the nominal cross-sectional area of the cable to be used. Make sure the maximum starter motor magnetic switch holding current is at or below the allowable current shown in the following table.

Allowable current of AV and AVS wires (maximum allowable temperature of conductor: 80°C [176°F]) and their voltage drop (derived from JASOD609, attached table 2)

	Ambient temperature						
Nominal cross-sectional area of cable (mm ²)	30°C (86°F)		50°C (122°F)		70°C (158°F)		
	Allowable current	Voltage drop	Allowable current	Voltage drop	Allowable current	Voltage drop	
()	Α	mV/m	A	mV/m	Α	mV/m	
1.25	23	400	18	313	10	174	
2.0	31	332	24	257	14	150	
3.0	42	285	33	224	19	129	
5.0	57	243	44	188	25	107	
8.0	75	211	58	163	33	93	

For the holding current of the starter solenoid, see Charging System on page 13-27.

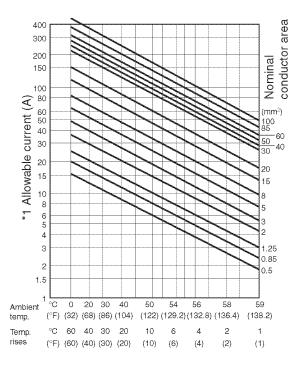
Holding current of the starter solenoid

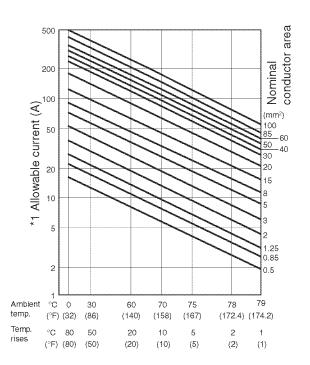
The holding current of the starter solenoid varies depending on the type of the starter motor. Consult with Yanmar when using a starter motor other than specified in the following table.

No.	Part Code	Type of switch	Output (V-kW)	Instantaneous current / holding current (A)
1	119225-77011	Conventional, coil	12 - 0.8	52/19
2	119631-77011	Conventional, magnet	12 - 0.9	52/19
3	129052-77010	Coaxial, (reduction)	12 - 1.2	52/19
4	129608-77010	The same as above	12 - 1.4	52/19
5	171008-77010	The same as above	12 - 1.4	66/20
6	129400-77012	The same as above	12 - 2.0	66/20
7	129900-77012	The same as above	12 - 2.3	66/27
8	121254-77012	The same as above	12 - 2.5	75/20
9	129940-77010	The same as above	12 - 3.0	52/19
10	129900-77030	The same as above	24 - 3.5	-/19

Hitachi Starter Motor

Denso starting motor


No.	Part Code	Type of switch	Output (V-kW)	Instantaneous holding current (A)
1	119225-77010	P1.0	12 - 1.0	44/13
2	119515-77010	P1.0	12 - 1.0	44/13
3	119853-77010	P1.1	12 - 1.1	44/13
4	119717-77010	P1.1	12 - 1.1	44/13
5	129129-77010	RA1.2	12 - 1.2	51/14
6	119740-77020	RA1.4	12 - 1.4	51/14
7	129407-77010	RA1.4	12 - 1.4	51/14
8	129429-77011	RA2.0	12 - 2.0	51/14


Selecting Cables for General Electrical Components

For a general electrical component, select a cable of sufficient size and length so that the voltage drop does not exceed 5%. The cable must also have sufficient mechanical strength.

Cable Temperature Rise and Allowable Current

When a cable conducts electrical current its temperature rises and the quality of its insulation decreases. Check the cable capacity and use a cable of an appropriate size. The figures below show the relationship between the allowable current at 60°C (140°F) and 80°C (176°F), nominal conductor cross-sectional area and temperature rise of the AV cable (low-voltage cables for automotive use). Be careful as the cable types vary from country to country.

Allowable current for AV cables rated for a maximum Allowable current for AV cables rated for a maximum ambient temperature of 60°C (140°F)

ambient temperature of 80°C (176°F)

Figure 13-29

Allowable current: The maximum current is determined for a cable by considering the mechanical strength and insulation degradation caused by temperature rise. This is called the allowable current.

Read the tables (Figure 13-29) as follows:

When the maximum ambient temperature rating for an AV cable is 60°C (140°F) and the nominal cross-sectional area is 0.5 mm² and the ambient temperature is 50°C (122°F), the value of the allowable current is 6A. This allowable current will raise the cable temperature by 10°C (10°F).

These tables show an example where a single cable is used. When a multi-conductor harness is used, the allowable current varies due to the radiation from each cable. When the multi-conductor harness is used, multiply the allowable current shown in (Figure 13-29) by the coefficient in the table below to obtain the multi-cable harness allowable current.

Number of bound conductors	1	2	3	4	5	6, 7
Coefficient	1.00	0.80	0.70	0.60	0.55	0.50

(mV/m) (mV/m) 1000 1000 N. Co Nea 700 700 Horinal Conductor Moninal Conductor 500 500 300 300 200 200 150 150 Voltage drop do 100 100 70 Voltage o 20 20 20 70 50 30 Allowable Allowable 20 current of 20 15 current of ambient 15 10 ambient temp. 40°C 10 temp. 40°C (104°F) (104°F) 5 15 20 50 70 100 150200 300 500(A) 15 20 30 50 70 100 150200 300 500 (A) 3 7 10 30 3 5 7 10 2 5 2 Service current Service current

Allowable Current and Voltage Drop

Allowable current and voltage drop for AV cables rated for a maximum ambient temperature of 60°C (140°F)

Allowable current and voltage drop for AV cables rated for a maximum ambient temperature of 80°C (176°F)

Figure 13-30

How to read the figure above: When the allowable maximum temperature for an AV cable is $60^{\circ}C$ (140°F) (Figure 13-30), the voltage drops by 100 mV (0.1 V) per 1 m when a current of 10 A flows through a cable whose nominal conductor sectional area is 2 mm².

Cable Heat Resistance Comparison

Typically AV cables are used for applications where an engine drives an industrial machine. Typically IV or HIV cables are used for equipment engines and their control circuits. The following table provides information on heat resistance for these cables.

		AV cable	IV cable	HIC cable	
	No.	C3406	C3307	C3317	
JIS	Name	Low-voltage cables for automobiles	600 V Polyvinyl chloride insulated wires	600 V Grade heat-resistant polyvinyl chloride insulated wires	
Heat resistance temperature		120°C (248°F) / 120 hours	100°C (212°F) / 48 hours	120°C (248°F) / 120 hours	
Flame resistance		Must go out spontaneously within 15 sec.	Must go out spontaneously within 60 sec.	Must go out spontaneously within 60 sec.	

Wiring Diagram for IDI Engine

Model: 3TNV70, 3TNV76

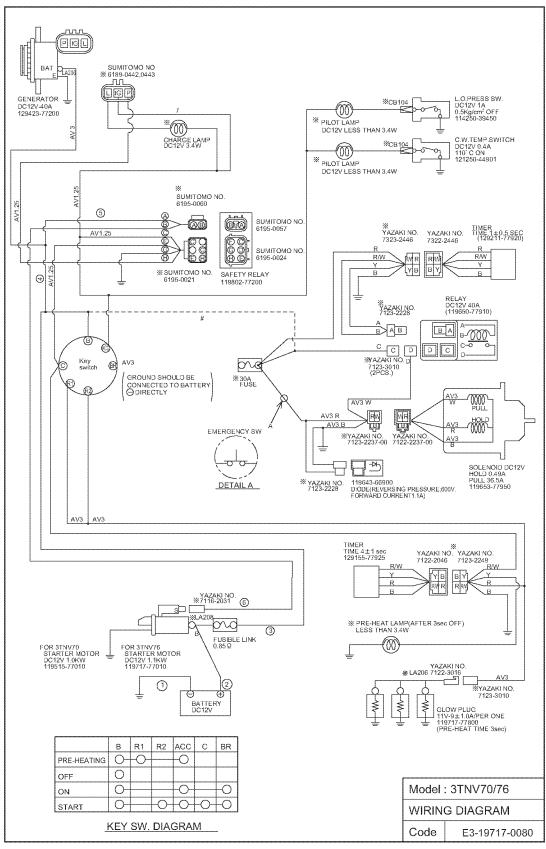
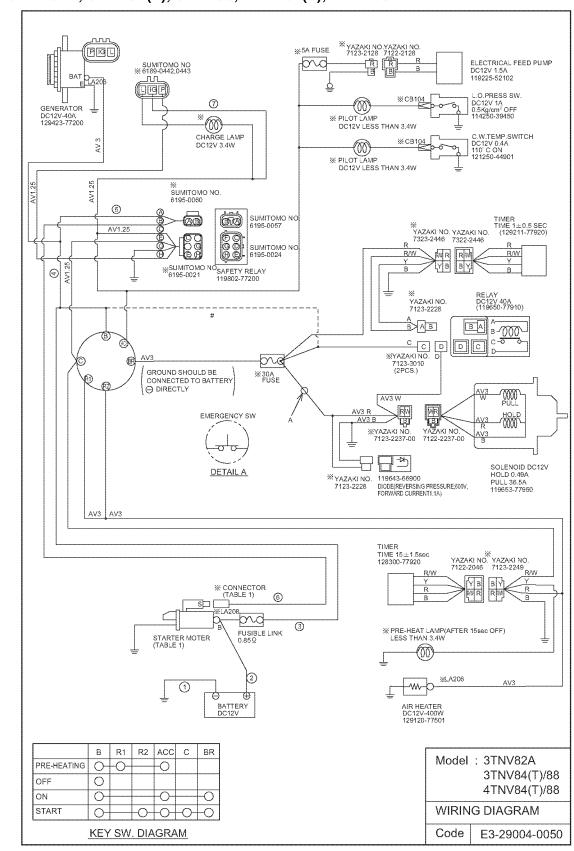



Figure 13-31

Wiring Diagram for DI Engine

Model: 3TNV82A, 3TNV84(T), 3TNV88, 4TNV84(T), 4TNV88

Figure 13-32

Wiring Diagram for DI Engine

Model: 4TNV94L, 4TNV98T

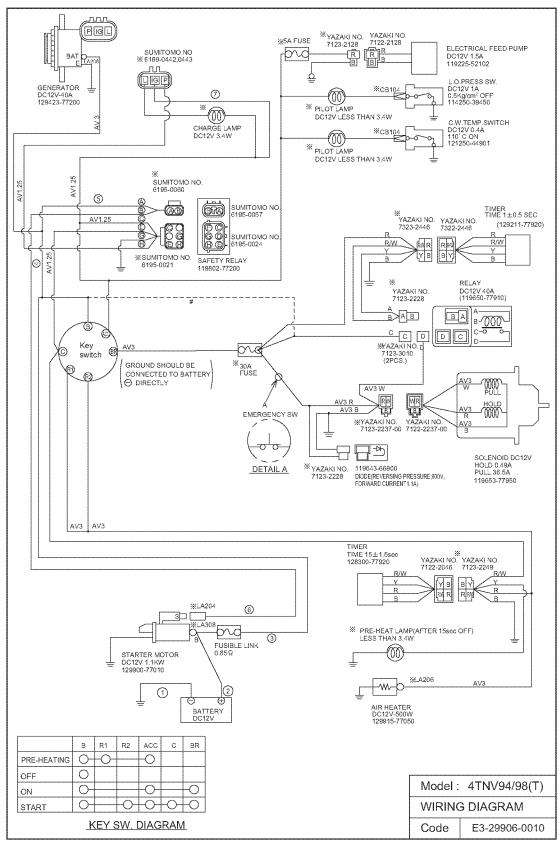


Figure 13-33

Notes for Manufacturing Wire Harness

Notes for main cables

- Starter motor wiring must observe the following precautions to avoid starter motor damage.
 - (a) Total electric resistance of battery cable (①+②) should be calculated according to *Battery Cable Selection on page 13-37*.

(b) Total electric resistance of wiring for starter motor should be calculated according to *Starter Solenoid Cable Selection on page 13-39.*

Reference for terminal resistance:

15/1000 Ω per coupler 0 Ω per screw setting

- (c) Ensure a good battery ground (\oplus) connection by cleaning all paint off the surface the cable will be connected to.
- Handle the battery as follows. Failure to comply may cause electric equipment or components to burn. Alternator (diodes) burning caused by a reversed battery cable connection is not warranted.
 - (a) Battery should be firmly secured and immovable using a mounting bracket.
 - (b) Battery cable length should be adjusted properly and clamped. NEVER reverse battery cable connections.
 - (c) NEVER loosen a battery cable terminal, or turn the battery switch Off while the engine is running.
- Only connect specified loads to the "L" and "P" alternator terminals. NEVER connect a load that is unspecified without Yanmar approval.
- Check for any surge current or voltage under normal operations and expected abnormal conditions, and make sure no surge occurs in the circuit. Provide a diode for "C-load component" and a diode for "L-load component."

Notes for engine stop solenoid

Allowable resistance of solenoid circuit should be less than 0.07 Ω to guarantee lowest allowable voltage (9 V) to operate solenoid (pull-in coil).

Terminal resistance:	15/1000 Ω per coupler
	$0 \ \Omega$ per screw setting

Solenoid connector resistance need not be counted

Reference:	AV15 (0.0088 Ω/m)	: \leq 8.0 mWithout terminal resistance
	AV30 (0.0056 Ω/m)	: \leq 12.5 mSame as above

When solenoid circuit resistance maximum is reached, use a relay. See the dotted lines marked with "#" in the wiring diagrams.

ELECTRICAL SYSTEM

- High temperature parts, such as exhaust pipe, should not contact the solenoid to avoid reducing the pull-in power, and overheating the inner coil (allowable ambient temperature: -30 to 100°C [-22 to 212°F]).
- Install a fuse to protect the harness against problems, such as a short circuit or continuous operation of the pull-in coil.
- The power supply cable for the stop solenoid may not be used to power the alternator exciter circuit. (Otherwise, the solenoid may not stop the engine due to the power supply from the alternator "L" terminal.)
- For a watertight connection, all connectors should be secured using connector clamps to prevent the wire leads from breaking.
- When you need to provide an emergency stop switch, see *detail "A"* in the wiring diagrams.

Symbol for wire Color						
Symbol	Color					
В	Black					
W	White					
R	Red					
L	Blue					
G	Green					
Y	Yellow					
Br	Brown					
Lg	Light Green					
Sb	Sky Blue					
0	Orange					
Р	Pink					
Gr	Gray					
R/W	Red / White					

Symbol for Wire Color

Machine Wiring Caution

Safety precautions during design, assembling and durability testing are the responsibility of the driven machine manufacturer. These are out of the scope of Yanmar's verification process, but we have listed our recommendations.

- 1. A single conductor cable of 0.5 mm² or less should since it might not have enough mechanical strength. Make sure the cables meet the allowable current specifications discussed previously.
- 2. ALWAYS use an insulator between a cable clamp and the cable. NEVER tighten a metal cable clamp directly to a cable without using an insulator.
- 3. Prevent damage from vibration. Standard interval between wire clamps is 250 mm.
- 4. Prevent fires:
 - ① The wire harness should not be attached to the fuel system, lubrication system or exhaust system.
 - ② NEVER run the wire harness through areas that could be exposed to spilled fuel from refueling or air bleeding.
- 5. Prevent damage from contact with other components. The wire harness should be installed away from rotating or vibrating parts.
- 6. Prevent incorrect wire connection. Use a different color for each terminal in a multi-terminal connector.

Section 14

ELECTRONIC CONTROL SYSTEM

Page

Precautions on the use of electronic control components14-3Controller and wire harness14-3Fuel injection pump14-4EGR valve14-5Accelerator sensor14-5Relay14-6Engine diagnosis tool14-6
Control system
System outline 14-7 Timing of the E-ECU 14-11 E-ECU 14-12
Electrical parts14-20
Harness14-25Harness design requirements.14-28Harness clamping.14-29CAN bus termination14-30
Control functions14-31Control software14-31General14-33Engine control - General14-40Application interface outline14-47Engine diagnosis tool function outline14-79
Fuel injection pump 14-83
Coolant temperature sensor 14-84
EGR valve 14-85
Accelerator sensor 14-86
Main relay 14-88
Rack actuator relay 14-88
Sub relay 14-89
Starter relay 14-89

Starting aid relay	14-91
For 400 W air heater (glow plug)	
For 500/800 W air heater	14-92
For 1000 W air heater	14-92
The Eco-governor checklist	14-93
ECU Application Menu	14-97

This chapter describes a Yanmar second-generation electronic governor (herein referred to as the "Gen2 Eco-governor") that conforms to the third EPA regulation by controlling Exhaust Gas Recirculation (EGR). The Gen2 Eco-governor is standard equipped on NV3 and supercharged engines. It is also available as an option for other engines. Contact Yanmar for details.

The engine electronic control unit (E-ECU) controls the speed and power of the engine by adjusting the rack position of the fuel injection pump depending on the signal from the accelerator sensor.

The opening of the EGR valve is adjusted depending on the engine speed and load factor so as to ensure conformance to exhaust emission standards.

The Gen2 Eco-governor provides control to the engine depending on the throttle position, coolant temperature, external-switch positions, signals through CAN or other parameters and is superior to a mechanical governor in versatility.

This manual provides overall description of the Gen2 Eco-governor. Optional setting of the E-ECU must be done by Yanmar. Contact Yanmar for details.

By combination of the machine, these application functions may come into contact with the third party's industrial property. Yanmar disclaims any responsibility for the violation of the third party's industrial property caused by the customer's machine use in combination with the engine application functions provided by Yanmar.

PRECAUTIONS ON THE USE OF ELECTRONIC CONTROL COMPONENTS

Controller and wire harness

Read **Control system (P.7)** carefully before designing an engine control system comprising the engine electronic control unit (E-ECU) and other control components in order to ensure correct application of the components.

Observe precautions in Harness (P.25) when designing wire harnesses.

Be sure to perform installation assessment as specified by Yanmar to ensure applicability of the E-ECU and other control components to the intended machine.

At the first power-up, the E-ECU is initialized and cannot be used to start the engine. See **Check for power-up of the E-ECU (P.15)** for details.

Be sure to use the E-ECU in conjunction with engines, the type and serial number of which are specified by Yanmar. Failure to do so will result in no assurance that the engine develops the intended performance.

Never use the E-ECU in failure condition (the trouble monitor lamp flashes, as described later).Doing so will result in no assurance that the engine develops the intended performance and may cause serious damage to the engine. Never keep running the engine, while the trouble monitor lamp is flashing.

Place the trouble monitor lamp and other indictors so that they are readily visible to personnel.

When replacing the E-ECU, be sure to contact Yanmar in advance. The fuel injection quantity data must be transferred from the old E-ECU to the new unit. See **Control software (P.31)** for details. If the fuel injection quantity data is not transferred to the new E-ECU, the engine is not assured to develop the intended performance.

Updating the fuel injection quantity data in the E-ECU requires a Yanmar genuine engine diagnosis tool. See the manual for the engine diagnosis tool for the maintenance procedure.

The customer must not perform tasks that are specified to be done by Yanmar, including replacement of the E-ECU, rewriting or modification of data in the E-ECU and removal of sensors or actuators. Such tasks done by the customer may be deemed an infringement of exhaust emission control laws and regulations. Yanmar assumes no responsibility for any loss or damage caused by incompliance with instructions or suggestions in this chapter.

Fuel injection pump

Be sure to perform installation assessment as specified by Yanmar to ensure applicability of the fuel injection pump to the intended machine.

Take special precaution on temperature and vibration.Do not expose it to an ambient temperature exceeding 80½C. Make measurement or adjustment by engine leg for vibration.When vibration displacement exceeds the specified value, trouble such as hunting and disconnection of wire harness may occur.

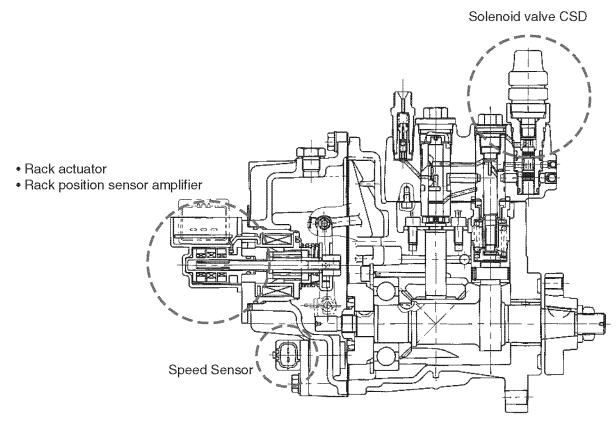


Fig. 14-1 MP fuel injection pump of the Eco-governor

Supply power to the rack position sensor via terminal AVB (E43) of the E-ECU. The rack position sensor may cause malfunction in surge voltage.

The fuel injection pump requires its specific injection quantity data. When replacing the fuel injection pump, be sure to use the attached fuel injection quantity data to update the memory in the E-ECU. Failure to do so will result in no assurance that the engine develops the intended performance.

Updating the fuel injection quantity data in the E-ECU requires a Yanmar genuine engine diagnosis tool. See the manual for the engine diagnosis tool for the maintenance procedure.

EGR valve

Be sure to perform installation assessment as specified by Yanmar to ensure applicability of the EGR valve to the intended machine.

Do not expose EGR valve motor to an ambient temperature exceeding 80½C. Make measurement or adjustment by engine leg for vibration.

Accelerator sensor

Connect the accelerator sensor according to the recommended connection diagram. Make sure the accelerator sensor and the E-ECU have a common reference potential (GND potential) as shown in example [A] of Fig. 2. If the E-ECU is connected to a machine controller as shown in example [B] or [C], the difference between the E-ECU and the machine comptroller in reference potential (V1 V2) may cause excess voltage to be applied to the APS input of the E-ECU or excess current to flow through GND-A, and result in malfunction or damage.

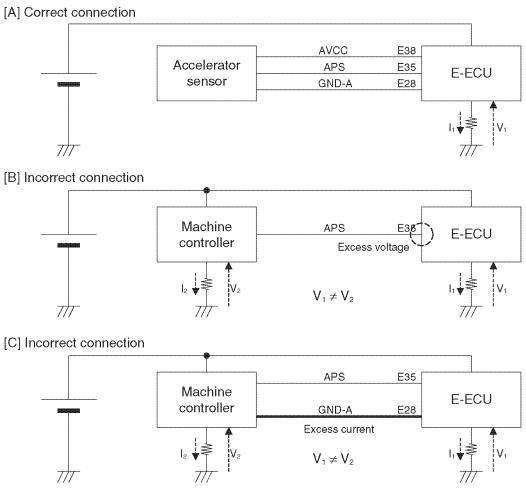
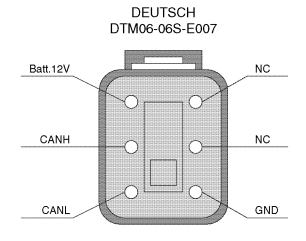


Fig. 14-2 Accelerator sensor connection examples

Read **Accelerator sensor (P.86)** carefully before utilizing a Yanmar genuine accelerator sensor in order to ensure correct use of the sensor.


Be sure to perform installation assessment as specified by Yanmar to ensure applicability of the accelerator sensor to the intended machine.

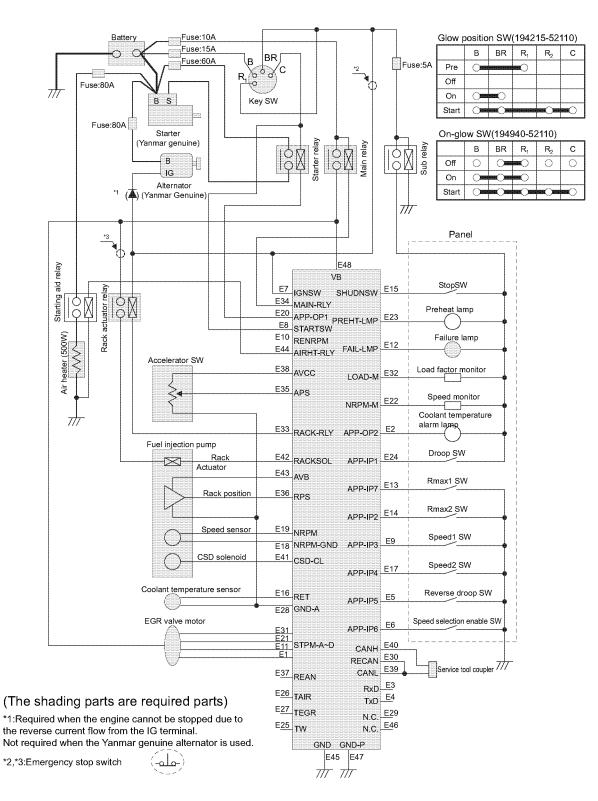
Relay

Be sure to perform installation assessment as specified by Yanmar to ensure applicability of the relay to the intended machine.

Engine diagnosis tool

Install the connector shown in **Fig. 14-3** at a convenient position on the intended machine in order to permit connection of the Yanmar genuine engine diagnosis tool.

Mating connector (of the service tool) DEUTSCH DTM04-06P-E003



CONTROL SYSTEM

System outline

Fig. 14-4 shows the standard electrical connection diagram of the Gen2 Eco-governor.

The following describes each of the components shown in Fig. 14-4

(1) Main relay

- Not using the key switch allows avoiding a long electrical wiring between the battery and E-ECU terminal VB.
- Allows self-holding of the E-ECU power and logging of engine events including faults and running time when the key switch is off.
- A diode contained in the excitation coil prevents reverse current from being applied to the E-ECU or rack actuator in case of reverse connection of battery terminals.

(2) Rack actuator relay

- Cuts off the power to the actuator to stop the engine when the key switch is turned off, regardless whether or not the main relay causes self-holding of the E-ECU power.
- Cuts off the power to the rack actuator to stop the engine when overspeed is detected.

(3) Sub relay

- By separating engine electrical circuit which is essential to running engine from the panel electrical circuit, panel electrical failure to stop running engine is avoided.
- Avoids turning the leaked current to the E-ECU's terminal IGNS (E7) from panel load, when the key switch is turned off.
- A diode contained in the excitation coil prevents reverse current from being applied to the I/O terminals of the E-ECU panel in case of reverse connection of battery terminals.

(4) Starting aid relay

- Not using the key switch allows avoiding a long electrical wiring between the battery and starting aid (air heater or glow plug). As a large current is not flowed to the key switch, the small capacity key switch can be used.
- Enables the E-ECU to provide ON-glow control, simultaneous energization or after heating to the starting aid (air heater or glow plug).
- In the standard electrical connection diagram, both the key switch with a *iglowî* position and the key switch without a *iglowî* position (ON-glow key switch) can be used.

(5) Starter relay

- Prevents the starter motor from starting until the rack self-diagnostics on power-on is completed (for approx. 0.7 second).
- Prevents failure caused by starter overrun.
- Limits the starter-on time to prevent failure caused by starter overcranking (optional feature).
- Synchronizes the starter operation with the crutch pedal switch position or the like (optional feature).

(6) Failure lamp

• Alerts the operator to a fault occurring in the Eco-governor system or a start of energization of the E-ECU.

(7) Service tool coupler

- By using the engine diagnosis tool, control information and history information in the E-ECU can be checked. These information is used when troubleshooting is done by the service manual.
- Enables maintenance of data, programs, parameters etc. in the E-ECU by using the engine diagnosis tool. These are required at the time of changing pump and E-ECU in the market.

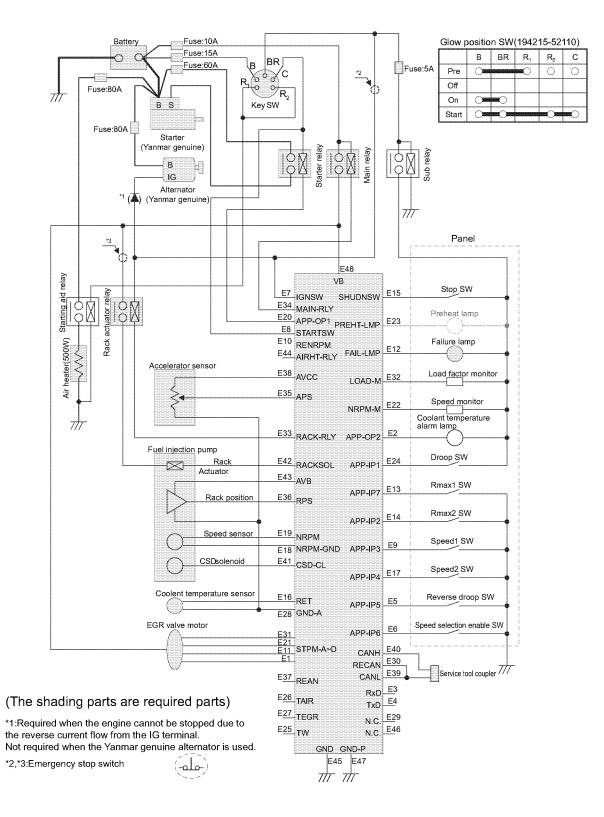
(8) Accelerator sensor

- In the Eco-governor, there is no mechanical governor like governor lever. Accelerator sensor is required to set the target engine speed in place of the governor lever. The target speed is in proportion to the accelerator output voltage.
- If the engine speed is changed stepwise to constant values as in the case of generator engines, a panel switch can be used to change the engine speed. In such a case, the accelerator sensor is not needed.
- Using CAN communication permits a target engine speed to be specified from the ECU of the intended machine. In such a case, the accelerator sensor is not needed.

(9) Coolant temperature sensor

- Detects the coolant temperature to control CSD for low-temperature start and EGR for exhaust reduction. Using the Yanmar genuine sensor eliminates the possibility of using other devices in parallel.
- By using the coolant temperature sensor, coolant temperature high alarm can be generated. At the time of coolant temperature high alarm, it's possible to turn on the alarm lamp (APP-OP2 terminal) and limit the engine operation. Therefore, the conventional coolant temperature switch (121250-44901) is not featured in the Eco-governor specification TNV.

(10) Panel switches and lamps


• Enables options of the E-ECU to be used. If optional features are not needed, the panel does not require to be connected.

(11) About a diode to be inserted in alternator terminal IG

- The engine may be impossible to stop because the current generated by the alternator flows reversely from alternator terminal IG to the harness circuit. To avoid such a trouble, you should separate alternator terminal IG from the rack actuator excitation circuit or insert a diode (marked with an asterisk in Fig. 14-4) into alternator terminal IG in order to prevent reverse current from the terminal.
- Insertion of diode is not required when the Yanmar genuine alternator (119620-77201, 129423-77200, 119626-77210, 129612-77290) is used.

When the key switch with a iglowî position is used in the standard connection diagram, preheat lamp is illuminated both at iglowî position and ON (accessory) position. However, when preheated at iglowî position, it's not necessary to preheat again at ON position.

Fig. 14-5 is the referential electrical connection diagram for not using starting aid by the E-ECU.Starting aid relay is used in the diagram, but if the total length of the starting aid (air heater or glow plug) cable doesn't exceed 5 m, it is possible to drive the starting aid directly from the key switch.

Timing of the E-ECU

The timing concerning start and end of the E-ECU control at the time of turning on and turning off the key switch of the Gen2 Eco-governor control system is described in **Fig. 14-6**.

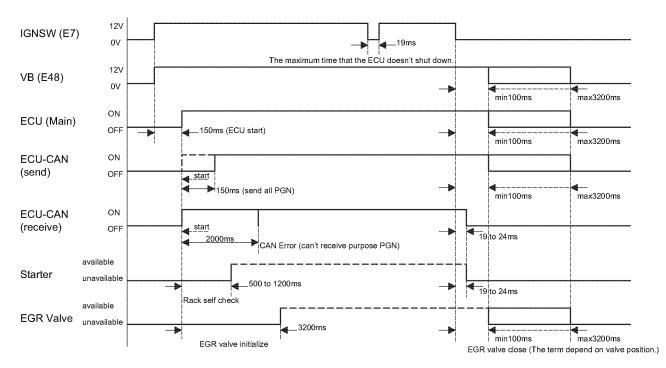


Fig. 14-6 Timing of the E-ECU control

E-ECU

Outline

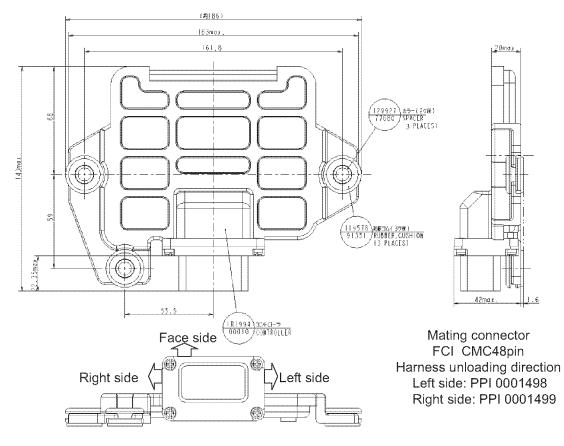
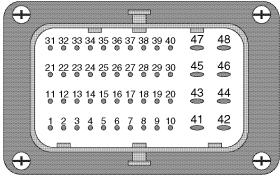



Fig. 14-7 E-ECU Outline

The specified grommets (119578-91351) and spacers (129927-77680) are installed in the E-ECU.Do not use grommets and spacers other than the Yanmar specified.Vibrations of the engine or machine could cause malfunction of the E-ECU.

Fig. 14-8 shown the connector pin numbers of the E-ECU. Note that the connection diagram in **Fig. 14-4** uses the pin numbers with a prefix of "E" as circuit symbols.

Circuit symbols: Pin number with prefix "E"

Fig. 14-8 E-ECU connector pin No.

Requirement

 Table 14-1 shows the operating conditions of the E-ECU.

	I/O	Requirement	
Regulation	Rated voltage	12 VDC	
	Operating ambient temperature	-30°C ~ 80°C	
	Storage ambient temperature	-40°C ~ 110 °C	
Basic Performance	Operating voltage range	10.0 ~ 16.0 VDC	
	Minimum operating voltage	6.0 VDC Min.	
Vibration	Severity level	To be installed on a place of 45 or lower in severity level	
	The acceleration, speed, and displace-	70.4m/s (rms) Max.	
	ment of the ECU mount must conform to the requirements shown to the right in an	44.6 mm/s (rms) Max.	
		0.283 mm (rms) Max.	
	overall range of 5 - 1000 Hz.	0.800 mm (p.p) Max.	
Waterproofness	Waterproofness (of connector)	JIS D0203 S2 compliant	
		The ECU must not be installed with its connector facing	
		upward.	

Table 14-1 E-ECU Specification

Precautions:

- Install the E-ECU in a location that is not subject to steam or high-pressure water for cleaning.
- Install the E-ECU in a location that is well ventilated and not subject to direct sunlight.
- Install the E-ECU so that the connector faces downward. Failure to do so may trap water in the connector, resulting in corrosion of connector pins.
- Do not plug or unplug the connector for at least 6 seconds after the E-ECU is turned on or off.
- Do not touch connector pins with bare hands. Doing so may corrode or statically charge connector pins, resulting in damage to electronic components in the E-ECU.
- Do not force a measuring or testing probe into the female coupler of the connector. Repeated plugging/ unplugging may cause contact failure of connector pins, resulting in malfunction of the E-ECU.
- Ensure no water is trapped inside the coupler when plugging or unplugging the connector. Water inside the coupler may corrode connector pins, resulting in malfunction of the E-ECU.
- Avoid plugging/unplugging the connector more than ten times. Repeated plugging/unplugging may cause contact failure of connector pins, resulting in malfunction of the E-ECU.
- Do not use the ECU that has suffered drop impact.
- When the machine is used in areas where a cryoprotectant/salt is distributed or near the seashore, the aluminum case of the E-ECU may corrode, resulting in malfunction of the E-ECU. Use a cover to protect the E-ECU against salt intrusion.

Current consumption

The engine control-related components including ECU, rack actuator, EGR valve, CSD, main relay, rack actuator relay, starter relay, starting aid relay, lamp, and switch require the current consumption of 4.6 [A] in measurement. Among these, the cold starter such as CSD requires the current consumption of 1A, so select the alternator capacity of 5A for frequent cold starts or 4A for otherwise.

Minimum operating voltage

The minimum operating voltage of the E-ECU is 6.0 VDC. Decreasing the E-ECU power supply voltage to less than the above causes the ECU to stop. When the power supply voltage is recovered, it restarts from the initial condition.

When the battery voltage decreases to less than 6.0 V repeatedly at compression steps during cranking in cold start conditions, for example, the engine may not be able to start. To avoid such a trouble, check the battery and E-ECU power supply for correct voltage.

Fig. 14-9 provides the transition of the E-ECU power supply voltage at engine start.

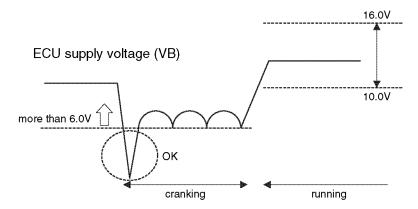


Fig. 14-9 Transition of E-ECU power supply voltage at engine start

Minimum detectable speed

The minimum detectable speed of the engine that can detect E-ECU and fuel injection pump (speed sensor) is set lower than the minimum cranking speed (average engine speed = 75min⁻¹) required for starting the engine. However, when the engine speed is reduced at the starting time and not reaching the minimum detectable speed due to having drastically increased engine start load at the time of extremely low temperature or having the reduced battery capacity because of deterioration and electrical discharge, the E-ECU may indicate the speed sensor failure.For this case, increase the starter start current to decrease the engine start load.

Number of start/stop cycles and duration of energization

The E-ECU saves engine logs in the internal EEPROM and updates them every time the power turns off if the power self-holding feature (described later) is enabled, or at regular intervals if the power self-holding feature is disabled. The design service life of the E-ECU is therefore dependent on the maximum number of EEPROM write cycles.

The service life of EEPROM is limited to the order of 105 key-on operations if the power self-holding feature is enabled, or 104 key-on duration hours if the power self-holding feature is disabled.

EEPROM is a nonvolatile storage; data stored in EEPROM is not lost if the E-ECU power turns off.

Safety features

The E-ECU has the following safety features:

- The function called watchdog timer monitors whether the engine control microcomputer program process is working properly or not. When the microcomputer program failure is detected, the watchdog timer restarts the microcomputer to help recover the program process.
- The other detector also monitors the engine speed besides the engine control microcomputer. If this detector detects an overspeed condition of the engine, it turns off the rack actuator relay to cut off the engine. (On overspeed condition occurs when the engine speed reaches High Idling Speed plus 600 min⁻¹ by default).
- The power supply terminal (VB) of the E-ECU has a zener diode for protection against dump surge. As the rack actuator and the rack position sensor must be protected by the zener diode, the power lines for these components should be branched at a point as close to terminal VB as practicable.

About battery reverse connection

- Battery reverse connection will cause damage to the E-ECU and the rack position sensor.
- To protect the E-ECU and the rack position sensor against inadvertent reverse connection, main and sub relays fitted with a reverse connection prevention diode (198461-52950) should be arranged as indicated on the standard connection diagrams (E3-29927-0041).

Check for power-up of the E-ECU

The E-ECU is factory set so that the internal EEPROM is reset at the first power-up of the E-ECU. At the power-up, check for power-up of the E-ECU (EEPROM) as follows:

When the trouble monitor lamp illuminates at the first power-up, initialization is complete. The engine cannot be started in succession to the initialization process. To enable starting the engine, turn off the power to the E-ECU; then turn on the power again. If the trouble monitor lamp remains off, the harness or the E-ECU is probably out of order. See "Troubleshooting" for details.

When the trouble monitor lamp illuminates for two seconds and then goes out after the second power-up, the E-ECU works normally. If the trouble monitor lamp remains off or flashes, the harness or the E-ECU is probably out of order. See iTroubleshootingî for details.

I/O layout

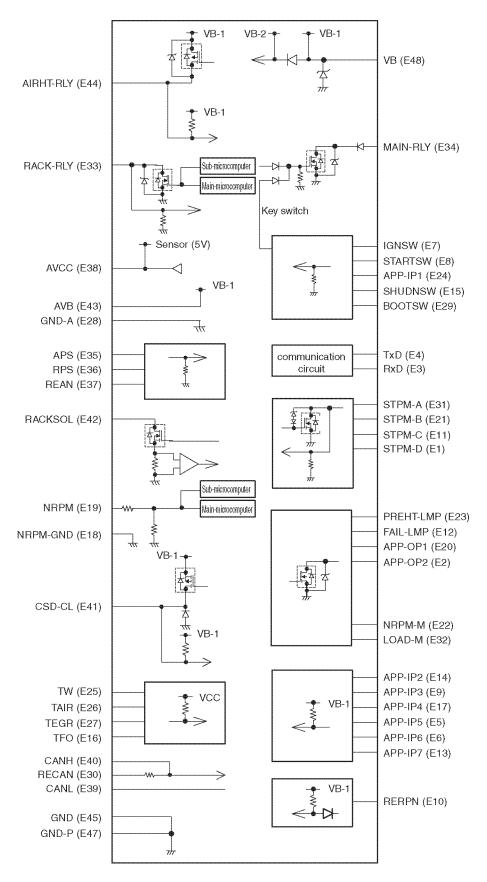


Fig. 14-10 E-ECU I/O layout

I/O description

Table 14-2 E-ECU I/O description

1/0	Туре	Pin function/name	Symbol	No.	Description
Input	Analog	Accelerator position sensor	APS	E35	Recommended load: Potentiometer (5 k Ω) Range: 0 ~ 5 V Accuracy: 512±13 (@2.5 V) Input resistance: 200 k Ω
		Rack position sensor	RPS	E36	Specified load: Rack position sensor Range: 0 ~ 5 V Accuracy after adjustment: 716 \pm 2 (@3.5 V/25 ~ 30°C) Input resistance: 100 k Ω
		Coolant temperature (Unused)	TW	E25	Specified load: Thermistor (119254-44910) Range: -30 ~ 120°C Accuracy after adjustment: 3°C (@0°C/5.88 kΩ) Output resistance: 1.5 kΩ
		Intake air temperature (reserve)	TAIR	E26	Specified load: Thermistor (124399-12750) Range: -30 ~ 120°C Accuracy: 5°C (@20°C/2.45 kΩ) Output resistance: 1.5 kΩ
		EGR temperature (reserve)	TEGR	E27	Specified load: Thermistor (not defined) Range: 0 ~ 200°C Accuracy: ±5°C (@100°C/1.10kΩ) Output resistance: 1.5 kΩ
		Backup temperature	RET	E16	Specified load: Thermistor (129927-44900) Range: -30 ~ 120°C Accuracy: ±2°C (@20°C/2.45 kΩ) Accuracy: ±2°C (@110°C/0.1417 kΩ) Output resistance: 1.5 kΩ
		Backup analog (Optional)	REA N	E37	Recommended load: Backup accelerator sensor Range: 0 ~ 5 V Accuracy: 512±13 (@2.5 V) Input resistance: 100 kΩ
	Contact	Engine start recognition	STARTSW	E8	Circuit: High side Pull-down resistance: 1.2 k Ω (10 mA@12 V)
		Engine emergency stop	SHUDNSW	E15	Circuit: High side Pull-down resistance: 1.2 k Ω (10 mA@12 V)
		Key switch	IGNSW	E7	Circuit: High side Pull-down resistance: 1.2 k Ω (10 mA@12 V)
		Application input 1	APP-IP1	E24	Circuit: High side Pull-down resistance: 1.2 k Ω (10 mA@12 V)
		Application input 2	APP-IP2	E14	Circuit: Low side Pull-up resistance: 1.2 kΩ (10 mA@ 12 V)
		Application input 3	APP-IP3	E9	Circuit: Low side Pull-up resistance: 1.2 k Ω (10 mA@ 12 V)
		Application input 4	APP-IP4	E17	Circuit: Low side Pull-up resistance: 1.2 kΩ (10 mA@12 V)
		Application input 5	APP-IP5	E5	Circuit: Low side Pull-up resistance: 1.2 kΩ (10 mA@ 12 V)
		Application input 6	APP-IP6	E6	Circuit: Low side Pull-up resistance: 1.2 kΩ (10 mA@12 V)
		Application input 7	APP-IP7	E13	Circuit: Low side Pull-up resistance: 1.2 k Ω (10 mA@12 V)

I/O	Туре	Pin function/name	Symbol	No.	Description
Input	Pulse	Speed input (-)	NRPM-GND	E18	Specified load: Electromagnetic pickup (158557-
		Speed input (+)	NRPM	E19	
					Range: 10Hz, 0.4Vp-p - 400Hz, 60Vp-p
		Backup speed sensor	RENRPM	E10	Circuit: Low side
-	0	Dealesstaates	DAOKOOL	E 10	Pull-up resistance: 1.2 k (10 mA@12 V)
Dutput	Contact	Rack actuator	RACKSOL	E42	Circuit: High side, PWM port Output: 6.0 A Max. (@12 V)
		Main relay	MAIN-RLY	E34	Circuit: High side
		Wall Telay		L34	Output: 200mA Max. (@12 V)
		Rack actuator relay	RACK-RLY	E33	Circuit: High side
		,,			Output: 200mA Max. (@12 V)
		Air heater relay	AIRHT-RLY	E44	Circuit: Low side
					Output: 1.2A Max. (@12 V)
		CSD solenoid coil	CSD-CL	E41	Circuit: Low side
					Output: 2.41A Max. (@12 V)
		Trouble Monitor Lamp	FAIL-LMP	E12	Circuit: High side
					Output: 300mA Max. (@12 V)
					Lamp load: 12 V/3.4 W Max. Rush current: 12V/3 A-10ms Max.
		Preheat lamp	PREHT-LMP	E23	Circuit: High side
		Freneatianip		L23	Output: 300mA Max. (@12 V)
					Lamp load: 12 V/3.4 W Max.
					Rush current: 12V/3 A-10ms Max.
		Application output 1	APP-OP1	E20	Circuit: High side
					Output: 300mA Max. (@12 V)
					Lamp load: 12 V/3.4 W Max.
					Rush current: 12V/3 A-10ms Max. Relay load: 40 Min., 200 mH Max.
		Application output 2	APP-OP2	E2	Circuit: High side
			AFF-OF2		Output: 300mA Max. (@12 V)
					Lamp load: 12 V/3.4 W Max.
					Rush current: 12V/3 A-10ms Max.
					Relay load: 40 Min., 200 mH Max.
	Pulse	Speed monitor	NRPM-M	E22	Circuit: High side, direct-coupled to speed input
					Output: 200mA Max. (@12 V)
					ON voltage: 1.5 V Max. OFF voltage: Load power supply voltage
					Output withstand voltage: 200 V
		Load factor monitor	LOAD-M	E32	Circuit: High side, PWM port
					Output: 200 mA (@12 V)
					ON voltage: 1.5 V Max.
					OFF voltage: Load power supply voltage
					Output withstand voltage: 200 V
		Stepping motor phase A	STPM-A	E31	Circuit: High side
		Otomain a materia base D		F 04	Output: 1.0A Max. (@12 V)
		Stepping motor phase B	STPM-B	E21	Circuit: High side Output: 1.0A Max. (@12 V)
		Stepping motor phase C	STPM-C	E11	Circuit: High side
					Output: 1.0A Max. (@12 V)
		Stepping motor phase D	STPM-D	E1	Circuit: High side
	1		1	<u> </u>	Output: 1.0A Max. (@12 V)

Table 14-2 E-ECU I/O description

I/O	Туре	Pin function/name	Symbol	No.	Description	
Com-	Network	CANL	CANL	E39	ISO 11898 (Ver2.0B), 250/500 kbps	
munic		CANH	CANH	E40		
ation		CAN terminator	RECA N	E30	CAN terminator resistance: 120 when E30 is coupled to CANL (E39)	
	Serial	RxD1	RxD	E3	TTL level	
		TxD1	TxD	E4	(Disabled)	
Power	1 1	Sensor 5V	AVCC	E38	Voltage: Vcc0.02 V (Vcc = 5.00.1 V)	
supply		Sensor GND	GND-A	E28	Output: 25 mA Max.	
		Sensor 12V	AVB	E43	Voltage: Internally coupled to VB Protection against dump surge	
	Input	Power supply 12V	VB	E48	Connected to main relay	
		Power supply GND	GND	E45	Connected to battery negative terminal	
		Power GND	GND-P	E47	_	
Misc.	Misc.	Boot mode	BOOTSW	E29	(Disabled)	
		-	-	E46		

Table 14-2 E-ECU I/O description

Notes:

- The function of each pin is described later. Do not use the pins for other purposes than intended.
- Serial communication terminal (E3, E4) cannot be used.
- As required, jumper E30 to E39 to activate the CAN terminal resistor. See Harness (P.25) for details.
- E25, E26, E27, E29, and E46 are unused terminals. Wiring is not required.

Electrical parts

Table 14-3	The Electrical parts	list of the Eco-governor system
------------	----------------------	---------------------------------

Part name	Functional description	Setting *1	Interchan geability *2	
E-ECU (Part No.: Model dependant)	Engine control	۲	Non	
FO pump (Part No.: Model dependant)	 Fuel injection - Rack actuator Rack position sensor Speed sensor CSD solenoid 	۲	Non	
Coolant temperature sensor (129927-44900)	(Do not use for other purposes than engine control).	۲	Non	
EGR valve (37 kW Min.) (129927-13900)	Emission control	۲	Non	
Alternator (129423-77200, etc.)	 Battery charging Battery low alarm/indication (connection to ECU is optional service) Reserved speed detection (pin P) 	۲	Yes	
Starter (129900-77010, etc.)	Engine start	۲	Yes	
Starting aid (129915-77050, etc.)	Cold start	۲	Non	
Accelerator sensor (129938-77800)	Engine target speed directionMay be omitted for generator applications	O ^{*6)}	Yes	
Main relay (198461-52950)	Power self-holding and battery reverse connection protection	۲	Non	
Rack actuator relay (198461-52950)	Overspend preventionEmergency stop	۲	Yes	
Starter relay (129927-77920) ^{*4)}	 Starter motor start prevention Recommended connector: Yazaki 7223-6146-30 Bracket for the above connector: 129927-77910 	۲	Yes	
 Frouble monitor lamp E-ECU operation indication (illuminates for 2 sec after power-on) E-ECU trouble indication (illuminates when a problem occurs) 		O ^{*7)}	Yes	
Sub relay (198461-52950)	Panel power supply and battery reverse connection protection	Δ	Yes	
Starting aid relay (129927-77920, etc.) ^{*4)}	 ON-glow control and the like Recommended connector: Yazaki 7223-6146-30 Bracket for the above connector: 129927-77910 	0	Yes	
Preheat lamp (Part No.: Non)	ON-glow indication, pre-heat indication	Δ	Yes	
Oil pressure switch (119761-39450)	 Oil pressure alarm/indication (actuated when a problem occurs) Use an alarm lamp or equivalent device too. 	۲	Non	
Air cleaner (with sensor) (129601-12610, etc.)	cleaner (with sensor) • Air cleaner blockage alarm/indication (actuated		Yes	

Part name	Functional description	Setting *1	Interchan geability *2
Oily water separator (with sensor) (129245-55700 Availability pending)	Oily water alarm/indication (actuated when a problem occurs)	Sensor attached on user's request	Yes
Harness (129927-91040,129927- 91050)	 Electrical part connection Engine checker connection (Deutsch DTM connector) 	O*8)	Yes
Key switch (194215-52110)	Glow position controlON-glow is optional feature	0	Yes
Fuel feed pump (119225-52102)	Fuel feedAuto bleeding	۲	Non
Oil pressure sensor (119773-91501)	Oil gauge pressure indication	Δ	Yes
Coolant temperature sensor (124250-49351)	Coolant temperature indication	Δ	Yes

Table 14-3 The Electrical parts list of the Eco-governor system

*1 The electrical part of the Eco-governor system is set as the following:

●: Standard part

O: Recommended optional part

∆: Optional part

*2 "Interchangeability" refers to whether or not commercially available parts can be used in place of Yanmar genuine parts. Non: Use Yanmar genuine parts. Otherwise, the intended engine performance will not assured.

Yes: Commercially available parts can be used.Commercially available parts can be used provided that the parts meet requirements specified by Yanmar.

*3 Shading means that the electrical part or component is specific to the Eco-governor (is not required for a mechanical governor).

*4 Yanmar genuine starting aid relay and starter relay have no mounting bracket.ISO relay connector (Yazaki: 7223-6146-30) bracket (129927-77910) is set.

*5 The alternator with pin P can be used as a backup speed sensing means, but it cannot be used to start the engine.

*6 E-ECU for generator engine application is not standard equipped with the accelerator sensor. The engine speed can be changed using a switch connected to terminals APP-IP3/IP4 of the E-ECU.

*7 Be sure to locate the trouble monitor lamp so as to be easily visible to the operator.

*8 The custom development of harness is not conducted.

The Eco-governor does away with the need for the following electrical parts in Table 14-4 that are used for mechanical governors:

Part name	Part number	Remarks		
Coolant temperature switch	121250-44901, etc.	Replace when coolant temperature alarm is generated		
Safety relay	119802-77200, etc.	-		
Stop solenoid	119653-77950, etc.	-		
Timer	129211-77920	1-sec timer for stop solenoid		
Relay	119650-77910	-		
Diode	119643-66900	-		
Timer	128300-77920	15-sec timer for stop solenoid (similar for glow)		
QHS controller	129457-77900	In the Eco-governor, starting aid relay is required (similar for glow)		

Table 14-4 Lis	st of electrical parts	not required for th	ne Eco-governor
----------------	------------------------	---------------------	-----------------

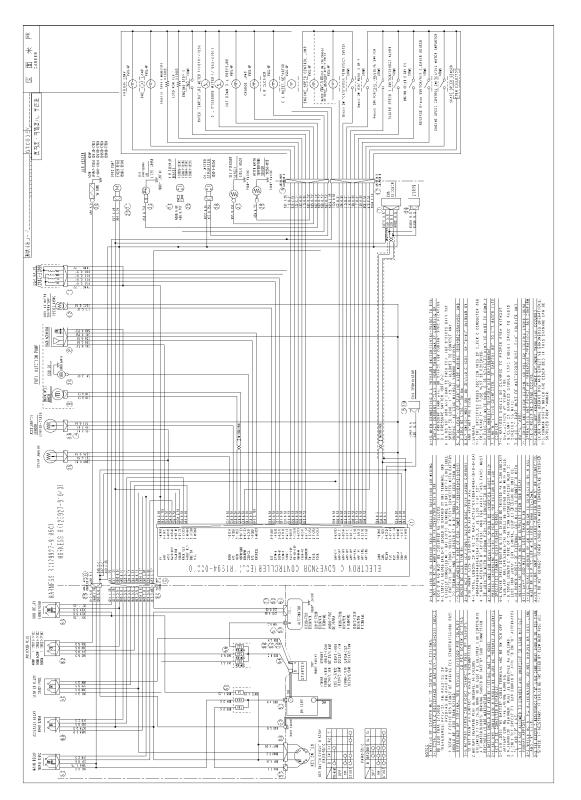
Commercially available electrical parts used instead of Yanmar genuine parts must meet the minimum requirements specified in Table 14-5. Failure to meet these requirements may affect the engine performance or cause malfunction of the E-ECU.

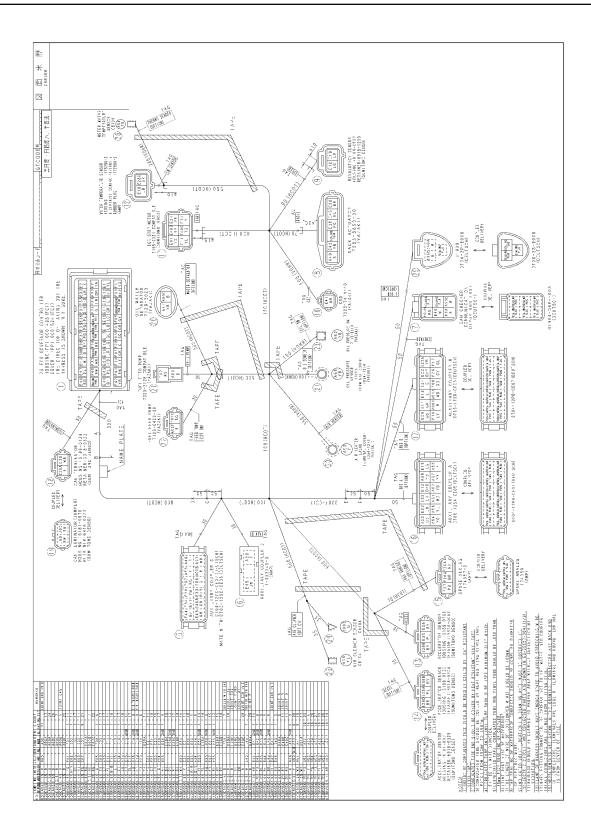
Part name	Electrical requirements		
Accelerator sensor	 Sensor output voltage: 0 ~ 5V (0.7 V Min., and 3.0 V Max. as standard) Resistive potentiometer (2.0 kΩ Min.) or thru-hole potentiometer When a thru-hole potentiometer is used, its current consumption must not exceed 5 V/10 mA. When the sensor input voltage is lower than 0.2 V or higher than 4.6 V, the sensor is assumed to fail. The input voltage therefore recommends to be held within a range of 0.5 ~ 4.0 V (the sensor's operating range is 10 ~ 80% of the actual effective electrical travel). 		
Rack actuator relay	Contact Rated voltage Rated load current Coil current	Normally open (a-contact) 12 VDC 12 VDC/20 A Min., continuous 12 VDC/200 mA or lower	
Sub relay	Switching durability	200 mH Max. 10 ⁶ times or more pliant with applicable specifications.	
Starter relay	0 1	12 VDC/100 A Min 12 VDC/300 mA or lower 200 mH Max.	

Part name	Electrical requirements			
Starting aid relay	Contact	Normally open (a-contact)		
	Rated voltage	12 VDC		
	Rated load current	400 W: 12 VDC/40 A Min., 4 min. (@ 30°C)		
		500 W: 12 VDC/50 A Min., 4 min. (@ 30°C)		
		800 W: 12 VDC/80 A Min., 4 min. (@ 30°C)		
		1000 W: 12 VDC/90 A Min., 4 min. (@ 30°C)		
	Coil current	12 VDC/1.0 A or lower		
	Coil inductance	200 mH Max.		
	Switching durability	106 times or more		
	Other features must be compliant with applicable specifications.			
Trouble monitor lamp	Lamp load 12 V-3.4 W Max.			
Preheat lamp	Rush current 12V/3A-10ms Max.			
Harness	Must meet the requirements shown on the standard connection diagrams. (E3-29927-0031, E3-29927-0041)			
Air cleaner	Contact	Normally open (a-contact)		
(with sensor switch)	When connected to E-ECU	Max. current 20mA or higher		
Oily water separator		Min. current 10 mA or lower		
(with sensor switch)				
Key switch	When the switch is moved from the ON position to the START position, no			
	instantaneous power interruption must occur.			
Oil pressure sensor	Not to be connected to the E-ECU.			
Coolant temperature sensor	Not to be connected to the E-ECU.			

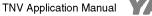
Table 14-5 Electrical requirements of the commercially available electrical parts used for the Eco-governor

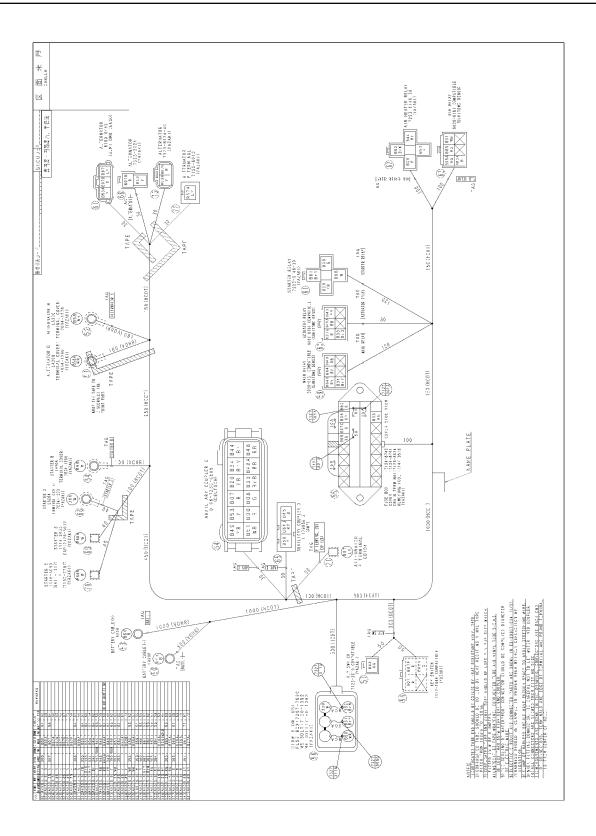
The fulfillment of the requirements shown in the table above does in no way constitute a warranty by Yanmar of user-selected commercially available parts.


Part name	ECU connection Terminal number		Requirements
Backup speed sensor	RENRPM (E10)	Output Rated voltage Max. current	Open connector type 12 VDC 20 mA or higher
Stop switch	SHUDNSW (E15)	Contact NC Max. current Min. current	Normally open (a-contact) Optional 12 VDC/20 mA or higher 12 VDC/10 mA or lower
Load factor monitor	LOAD-M (E32)	Resistive load Max. current	Pulled up to 12 VDC 12 VDC/200 mA or lower
Speed monitor	NRPM-M (E22)	ON voltage OFF voltage	1.5 V Max. power supply voltage
Coolant temperature alarm lamp (Eco-mode lamp) (Speed change indication lamp)	APP-OP2 (E2)	Lamp load Rush current	12 VDC/-3.4 W Max. 12VDC/3 A-10ms Max.
Block heater relay		Coil current Coil inductance Switching durability Other features must specifications. Whe commercial power s regulations concern insulation resistance	t be compliant with applicable n the block heater is connected to the supply, observe standards and ing the dielectric withstand voltage and e of relay contacts.
Droop switch Starter enable switch Foot pedal switch (NC)	APP-IP1 (E24) APP-IP7	Contact Max. current	Normally open (a-contact): standard Normally closed (b-contact): optional 12 VDC/20 mA or higher
Foot pedal switch (NO)	(E13) APP-IP2 (E14)	Min. current	12 VDC/10 mA or lower
Speed1 switch	APP-IP3 (E9)		
Speed2 switch Backup starter enable switch Optional switch	APP-IP4 (E17) APP-IP5 (E5)		
Speed selection enable switch	APP-IP6 (E6)		


Table 14-6 Requirements of user-selected electrical parts

HARNESS


See the standard connection diagram (E3-29927-0041) for harness arrangement. Yanmar has verified the engine performance with the standard harness. If you want to use a harness other than the standard harness, consult the standard connection diagram for harness design.


Yanmar has made available the standard harness (E-ECU side: 12997-91040, Power supply side: 129927-91050), but cannot supply customized harnesses to individual customers.

Harness design requirements

Design and implement the harness according to the following instructions. Neglecting these instructions may affect the engine performance or result in malfunction of or damage to the E-ECU. See 13 "Electrical System" for wiring of the battery and starter. See the standard connection diagram (E3-29927-0041) for harness arrangement.

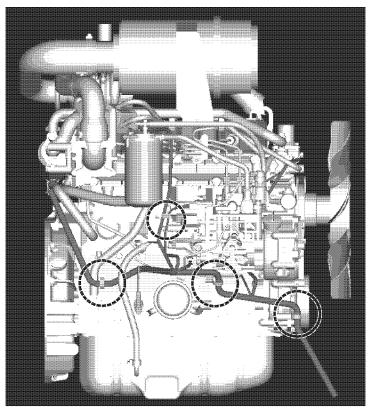
[Wiring of the ECU]

- 1. Connect GND directly to the battery negative terminal or battery negative terminal cable by singlepoint grounding.
- 2. Supply the main relay with power directly from the battery positive terminal using a cable having a length of 4 m or less. Failure to do so may affect the noise immunity or cold-start resetting process of the E-ECU.
- 3. The total length of the ECU power supply line must not exceed 5 m.
- 4. Avoid common impedance between the power supply circuit of the ECU and that of a large current device such as the starter or air heater. Otherwise, the E-ECU could be reset at cold start.
- 5. The total length of the rack actuator line must not exceed 10 m.
- 6. Place the branch of the power supply line for the rack actuator and the ERG valve as close to ECU terminal VB as practicable. Otherwise, transmission noise may be developed.
- 7. Install a reverse connection prevention diode into the main and sub relays or use the Yanmar specified relay (198461-52950) in order to protect the E-ECU rack position sensor. Otherwise, the E-ECU is damaged at the time of battery reverse connection.
- 8. Use a twisted-pair cable for the speed sensor. Use a shielded twisted-pair cable for CAN communication. Otherwise, noise may cause malfunction.
- 9. When using the CAN terminal resistor inside the E-ECU, connect E30 and E39 with a jumper as short as possible.
- 10.Do not connect to the main relay other loads than the engine parts such as the E-ECU (E48), rack actuator, and EGR valve. Supply the extended load power supply such as E-ECU external switches and indicator lamps with power through other circuit. Avoids the malfunction including stopping the engine from the extended load circuit trouble and turning the leaked current to the E-ECU from the extended load
- 11.Do not connect to the E-ECU's IGNSW (E7) terminal other loads than the indicated in **Fig. 14**. **4**. Turning current may cause the E-ECU power supply to not shutdown.
- 12.Do not connect 12-volt/3.4-watt or higher lamps directly to the E-ECU.
- 13. The minimum contact capacity of switches directly connecting to the E-ECU must not exceed 10 mA.
- 14.Be sure to locate the trouble monitor lamp so as to be easily visible to the operator.
- 15.Do not connect unintended loads to the coolant temperature sensor of the E-ECU. Doing so may cause CSD or EGR malfunction and deteriorate durability of the engine.
- 16.When connecting the oil pressure switch (11976-39450) directly to the E-ECU in order to prevent a trouble due to an abnormal oil pressure, insert a dummy load so as to ensure a 0.1-A or higher contact current, or use an oil pressure switch with low contact current (124298-39450).
- 17.Do not connect to E-ECU terminals loads other than intended or specified.

[Wiring of the starting aid]

1. The total length of the starting aid (air heater or glow plug) cable must not exceed 5 m.

[Key switch]

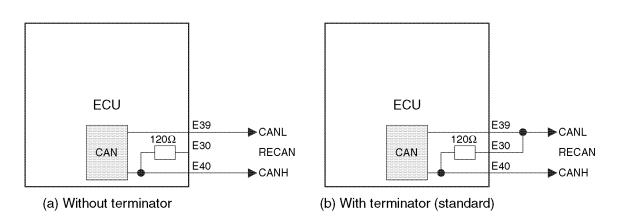

1. Select a key switch whose B-to-BR circuit (E-ECU power supply circuit) is not open between the ON and START positions. An instantaneous power interruption of 1 ms or longer of the E-ECU power supply may cause trouble including changing the engine speed and hindering the engine from starting.Be noted that the above-mentioned trouble tends to occur easily to the key switch at cold start.

[General]

- 1. Observe the cable and fuse requirements specified on the standard connection diagram.
- 2. Use electric cables whose heat resistance is appropriate to surrounding thermal conditions.
- 3. Ensure no water is trapped inside the coupler when plugging the connector.
- 4. Clamp the harness to appropriate structures so as to prevent vibrations.
- 5. Do not strain the harness clamp.
- 6. Use joint couplers or butyl tape to ensure waterproofness at joints.
- 7. Check that no surge current or voltage occurs in normal working conditions or expectedly abnormal conditions.
- 8. Check that no instantaneous power interruption (6.0 V or lower for 1 ms or more) occurs in normal working conditions or expectedly abnormal conditions.
- 9. Do not force a measuring or testing probe into the female coupler of the connector.

Harness clamping

A typical harness clamping method is shown in Fig. 14-11 below:



Clamp the harness at at least 4 locations as shown in the figure above

Fig. 14-11 Typical harness clamping

CAN bus termination

As the E-ECU contains a 120 CAN terminator resistor, jumpering RECAN (E30) to CANL (E39) as scheme (b) in **Fig. 14-12**. enables the CAN signal to be terminated.

Fig. 14-12 CAN terminator resistor

When the CAN bus is not used by any devices other than the E-ECU, select scheme (b) in **Fig. 14-12** to permit a service tool to be connected to the terminator.

When the CAN bus is used by any devices other than the E-ECU, configure the harness according to the devices used.

		CAN terminator resistor
When the CAN bus is not used by	Per scheme (b) in Fig. 14-12	
When the CAN bus is used by the other devices.	There are terminator resistor in the other devices.	Per scheme (a) in Fig. 14-12
	There are no terminator resistor in the other devices.	Per scheme (b) in Fig. 14-12

CONTROL FUNCTIONS

Control software

The functions of the E-ECU software can be divided into the mentioned categories. See Fig. 14-13:

- 1. Driver: Interface between hardware and software
- 2. Diagnostics: Troubleshooting and event logging of the engine and control hardware
- 3. Communication: Data exchange among the checker and other ECU communication features
- 4. Engine control: Control of the engine
- 5. Application: Application interface

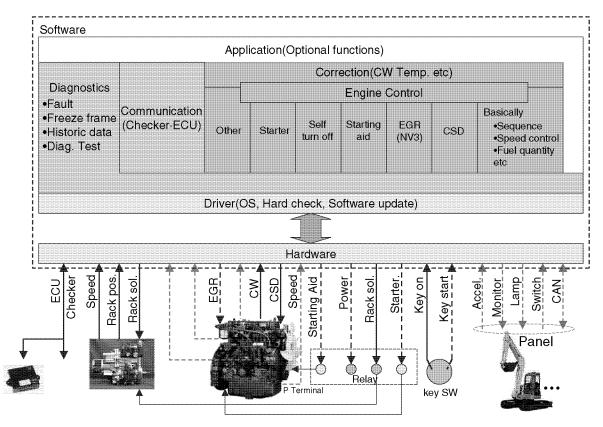


Fig. 14-13 E-ECU software configuration

The E-ECU software consists primarily of the following sections:

- 1. Control program: Engine control logic
- 2. Engine model-specific control map: Torque characteristics and optional settings
- 3. Individual data: Correction values of fuel injection rate, power output etc.

The control program and the engine model-specific control map are maintained as prime constituents by engine models. The individual data is created per each injection pump and engine and maintained as CS data. **Fig. 14-14** illustrates constituents of the E-ECU data.

The control program is common to all engine models and cannot be customized per customers.

The engine model-specific control map is composed of two areas: the base area (unchangeable) that defines engine performance including torque characteristics, and the option area that can be customized per customers.

The individual data is injection pump and engine specific and, when the E-ECU is replaced, the data must be copied to a new E-ECU. When the fuel injection pump is replaced, the E-ECU must be updated according to settings of a new pump. The individual data are stored on EEPROM. Loading new individual data to EEPROM automatically refreshes the map from the Flash memory area to the EEPROM area.

Flash memory is a nonvolatile storage, the maximum number of write cycles of which is usually 100, and data stored in this memory is not lost if the E-ECU power turns off. Flash memory differs from EEPROM in that the former does not accept write cycles during engine operation while the latter can be written to, irrespective of whether or not the engine runs. A special device is needed to write data to Flash memory.

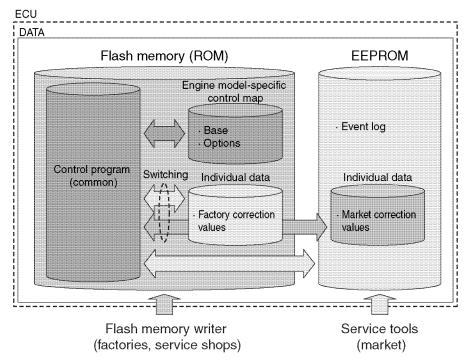


Fig. 14-14 E-ECU data configuration

General

Speed sensor input

The Eco-governor detects the engine speed with 12 pulsers attached to the camshaft. See Fig. 14-15.

Assuming that the frequency of pulses provided by the pulsers is fp [Hz], the engine speed N rpm min⁻¹] is given by. (See **Fig. 14-15 a**) for details.)

Nrpm $[min^{-1}] = (fp \times 2/12) \times 60 = 10 \times fp [Hz]$

The engine speed fluctuates periodically due to compression and explosion strokes. As to a 4-cylinder engine, 3 pulses represent cyclic fluctuation for one cylinder. As to a 3-cylinder engine, 4 pulses represent cyclic fluctuation for one cylinder.

The Eco-governor averages cyclic fluctuations for one cylinder, thus minimizing the effect of cyclic fluctuations in engine speed and ensuring stable measurement. (See **Fig. 14-15 b**) for details.)

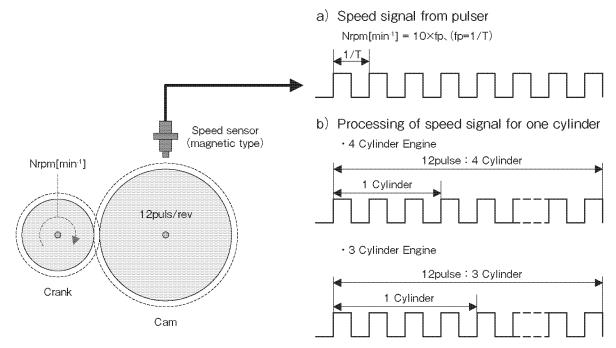
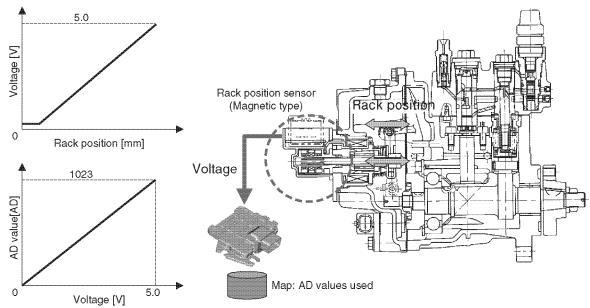



Fig. 14-15 Detection of engine speed

Rack position sensor input

The Eco-governor controls the fuel injection quantity by adjusting the rack position of the fuel injection pump. The rack position is converted into voltage by the rack position sensor, and the voltage signal is applied to E-ECU terminal RPS and sent to an AD converter. The AD converter converts the input voltage of 0 to 5 volt into an AD value of 0 to 1023. See **Fig. 14-16**. The Eco-governor controls the maximum and minimum rack positions and calculates the load factor on the basis of this AD value.

Coolant temperature sensor input

The input characteristics of the coolant temperature sensor are shown in **Fig. 14-17** below. As in the case of the rack position sensor, the input voltage of 0 to 5 volt is converted into an AD value of 0 to 1023. As is clear from the figure, the thermistor resistance decreases with increasing temperatures. The measurement error of the coolant temperature sensor (129927-44900) newly adopted in the Gen2 Eco-governor is approximately $\pm 3^{\circ}$ C at 0°C, $\pm 2^{\circ}$ C at 20°C, and $\pm 2^{\circ}$ C at 110°C. Therefore, the conventional coolant temperature switch (121250-44901, etc.) is not featured in the Gen2 Eco-governor specification TNV as a standard coolant temperature high alarm function. The E-ECU coverts the input voltage into temperature by mapping. Connecting a thermistor with different characteristics to the sensor or connecting an unintended load to the thermistor circuit will affect the relationship between input voltage and temperature, resulting in failure to perform correct temperature measurement. Do not connect a coolant temperature sensor other than the Yanmar genuine sensor to terminal RET (E16 – E28) of the E-ECU.

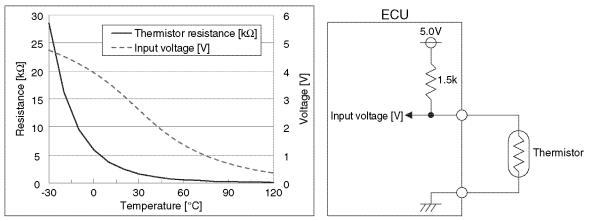


Fig. 14-17 Characteristics of the coolant temperature sensor

Accelerator sensor input

The Eco-governor uses the input voltage from the accelerator sensor or the input value through CAN communication to calculate the target engine speed, which is to become the standard of control. (The actual engine speed is decided by the relationship between maximum engine torque and load torque, so it doesn't necessarily match the target engine speed)

The input voltage from the accelerator sensor is converted into a speed value between the low idling speed and the high idling speed. See **Fig. 14-18**. By default, 0.7 V signal is converted into the low idling speed and 3.0V signal into the high idling speed. Input voltages corresponding to the low and high idling speeds can be adjusted in the range where the later described accelerator sensor failure cannot be detected. The input voltages can also be selected so that the gradient of the input voltage line segment between the high and low idling speed.

See "Application interface outline" for details on accelerator sensor setting.

If the input voltage from the accelerator sensor is lower than 0.2 V or higher than 4.6 V, the E-ECU detects an accelerator sensor failure.

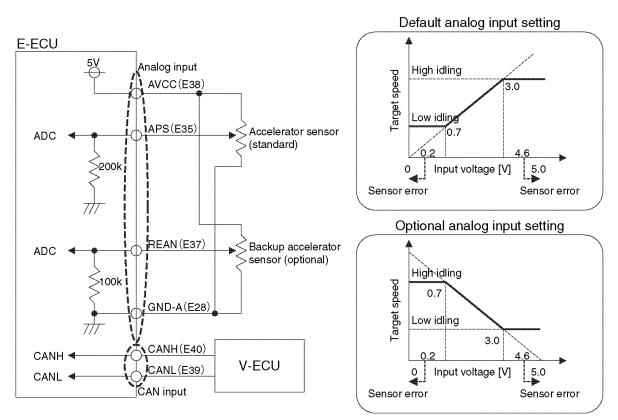


Fig. 14-18 Accelerator sensor input

The E-ECU has detection error on the electrical circuit and hysteresis characteristics on the software for the input voltage from the accelerator sensor. The total of these is 0.125 V. When the accelerator sensor voltage is used in default setting (0.7 - 3.0 V), voltage from the accelerator sensor must be in the range of **Fig. 14-19** at least.

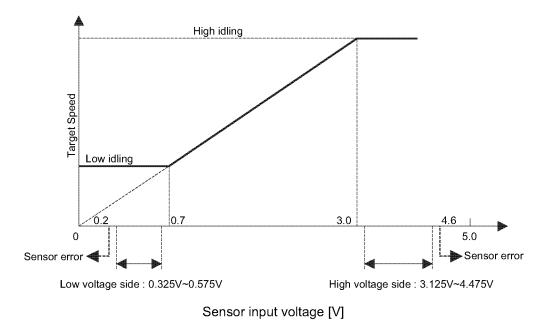
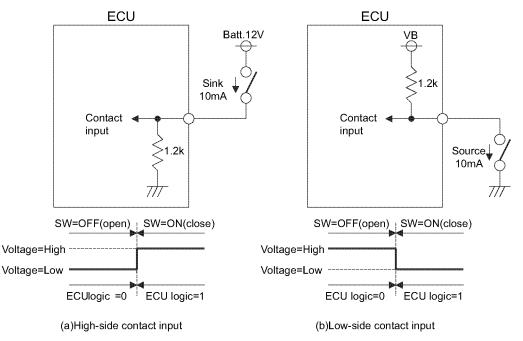
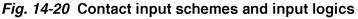
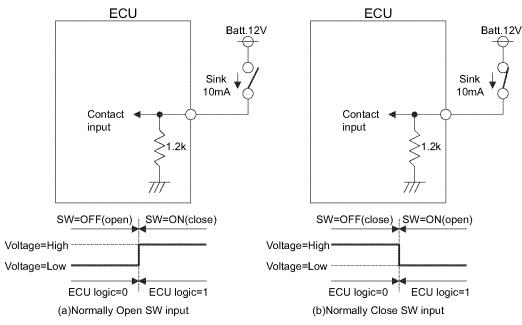




Fig. 14-19 Request accuracy of accelerator sensor

Contact input

There are two schemes for contact input of the E-ECU: high-side input and low-side input. See **Fig. 14-20**. The contact input of the Eco-governor E-ECU has been designed with the same sink current and source current of 1.0 mA typ. See **Fig. 14-10** and **Table 14-2** for the details of the Eco-governor E-ECU contact input circuit specifications.



There are two types of switch contacts connected to contact inputs: Normally open (NO) contact and normally closed (NC) contact.

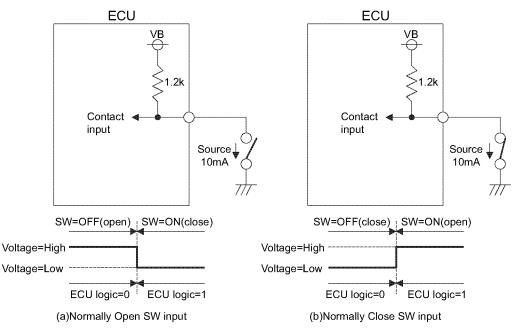


Fig. 14-21 illustrates the voltage levels at the input terminal for the high-side contact input. When the switch turns on, the input terminal goes high for the switch with NO contact and goes low for the switch with NC contact.

Fig. 14-22 illustrates the voltage levels at the input terminal for the low-side contact input. When the switch turns on, the input terminal goes low for the switch with NO contact and goes high for the switch with NC contact.

Fig. 14-22 Switches for low-side contact input

Unless otherwise specified, this manual assumes that switches with NO contact are used. This means that turning on the switch activates the corresponding function.

Selection of NO switch or NC switch is allowed by using mapping plug-ins. **Table 14-17** lists contact input terminals for which a NO or NC switch can be selected.

Contact output

There are two schemes for contact output of the E-ECU: high-side output and low-side output. See **Fig. 14-2**. See **Fig. 14-10** and **Table 14-2** for the details of the Eco-governor E-ECU contact output's sink/source and allowable current.

In this manual, output transistor ON is referred to as logical "1" and output transistor OFF as logical "0". In the high-side output scheme, the output terminal goes high when the transistor turns off. In the low-side output scheme, the output terminal goes low when the transistor turns off.

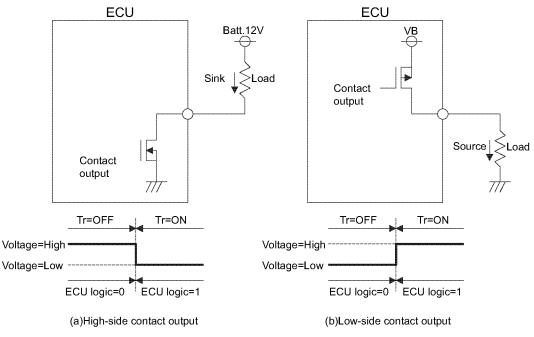


Fig. 14-23 Contact output schemes and output logics

Rack actuator output

The rack actuator output is a high side output as shown in Fig. 14-24.

The E-ECU adjust the magnitude of current flowing through the rack actuator solenoid by shortening or lengthening the ON-duration of the output transistor. The rack position of the fuel injection pump varies depending on the magnitude of current flowing through the rack actuator.

This technique where the ON duration of the transistor is changed to provide current control is called PWM (Pulse Width Modulation).

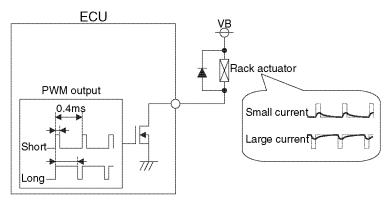


Fig. 14-24 Rack actuator output

EGR valve output

The EGR valve output is a high-side output as shown in Fig. 14-25.

The EGR valve is driven by a stepping motor. This stepping motor adopts two-phase excitation and requires holding current to keep the valve stopped. "Two-phase excitation" means that the solenoid is supplied with two-phase current and "holding current" does that the solenoid is always energized. The motor of the EGR valve is consequently approx. 24 watt (12 watt x 2 phase) heated even while the engine is at rest be warned that touching it could burn you.

The E-ECU turns on or off the output transistors in the sequence shown in **Fig. 14-25**, thereby driving the solenoids for the stepping motor and opening/closing the EGR valve.

In the EGR valve, the full-close position is 0 step and the full-open position is 54 steps.

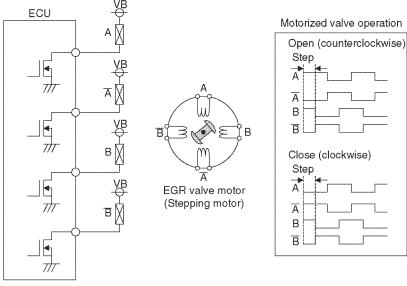


Fig. 14-25 EGR valve driving mechanism

Engine control - General

Self-holding of the E-ECU power

The E-ECU saves engine logs including faults and running hours in the internal EEPROM. And it has a power self-holding feature that allows the power supply to be held until the engine logs are completely saved in EEPROM.

In the E-ECU, the EGR valve is moved to the full-close condition at engine stop to ensure starting the engine start sequence from the full-close condition. Therefore, the power self-holding feature holds the power supply until the EGR valve is cutoff completely after the key switch is turned off.

To implement the power self-holding feature, the main relay and the rack actuator relay must be connected as shown in **Fig. 14-4**.

This feature can also be activated through CAN communication. See "CAN communication specifications" for details.

Start control

The engine start sequence is shown in the figure below. The E-ECU performs rack self-diagnostics directly after power on. The rack self-diagnostics checks the rack motion alone without turning on the engine. So, the starter relay prevents the starter motor from starting until the rack self-diagnostics is completed.

Next, when ON-glow control is alive (default), the time of energization of the starting aid relay is adjusted according to the coolant temperature. The preheat lamp should illuminate while ON-glow control is in progress.

After ON-glow control is complete, the E-ECU waits until the key switch is moved to the START position.

When the key switch is moved to START or the engine speed reaches 240 min⁻¹, rack position control on start takes place to move the rack to a predefined position.

Having detected that the engine speed reaches 600 min⁻¹, the E-ECU goes to speed control mode. In this mode, the rack position is controlled so that the engine runs at a speed that matches the speed command from the accelerator.

When the engine speed is reduced to less than 240 min⁻¹ or the key switch is turned off, the engine will stop.

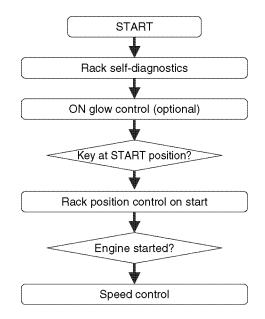


Fig. 14-26 Start sequence

Torque curve and engine regulation

Standard engine torque curves are outlined in **Fig. 14-27**, **Fig. 14-28**. The figure is an image. Details of the curves vary depending on the engine models. When the engine load or speed is changed instantaneously, there is some delay until the engine speed is set to the specified regulations.

For the Eco-governor, engine regulations are available in the following variations:

(a) Isochroous

The engine speed is constant, regardless of the load (regulation 0%).

(b) Virtual droop (torque curve of base engine)

Approx. 7% regulation regardless of the engine speed.

The engine speed is kept until a torque equivalent to a load factor of approx. 30% is reached, in order that the idling (non load) speed does not fluctuate even if installation of the engine on a machine causes some power loss.

Even when virtual droop is active, it is possible that the engine speed does not decrease to lower than the low-idling speed. (Optional)

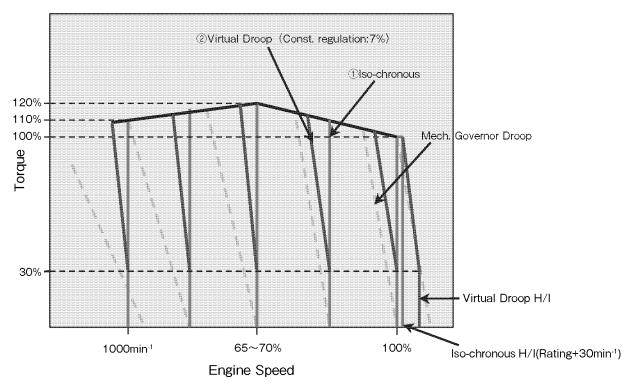
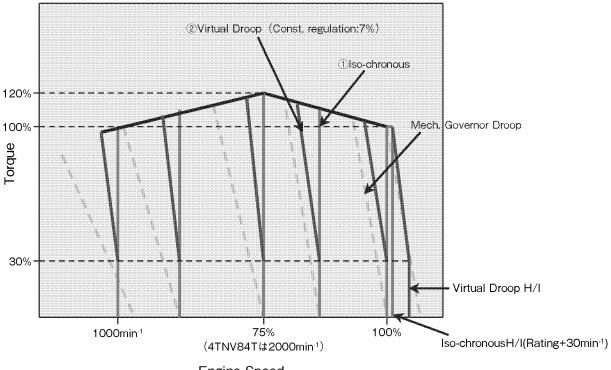
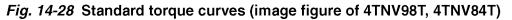
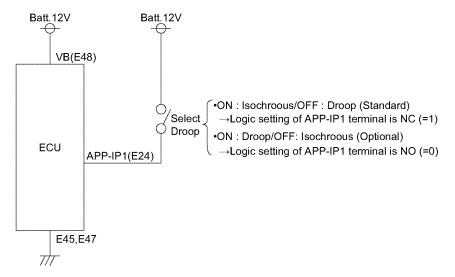




Fig. 14-27 Standard torque curves (image figure of 4TNV98-E, 4TNV98-Z)

Engine Speed



For the NV2 Eco optional engine, torque curve and engine regulation are set to the same specification as a standard mechanical governor specification engine.

Switching between "isochroous" and "virtual droop" can be done with an external switch or through CAN communication, while the engine is running. Selection of either one as default is allowed on customer's request. Whichever is set as default, the high idle speed on application is the high idle speed at droop.

Switching between "isochroous" and "virtual droop" can be done even while the engine is running. Switching between "isochroous" and "virtual droop" while the engine is running can change the engine speed.

The Isochroous-Virtual droop switching by external switch connection diagram is shown in Fig. 14-29.

Fig. 14-29 Isochroous-Droop switching and reverse droop enabling/disabling connection Note: We cannot accept an order for the change of torque curves.

Speed control

The target engine speed is defined by input signals from the accelerator sensor or through CAN communication. **Fig. 14-30** shows the flow of defining the target engine speed. Elements and optional settings in the flow will be described later.

The accelerator input selection feature allows certain accelerator sensors to be selected as input source among others depending on the setting and status of accelerator sensors. (See *14-48* for details).

The engine speed selection feature allows the target speed to be changed depending on the status of external switches APP-IP3/IP4/IP6. (See *14-56* for details).

The idling speed up feature allows the low idling speed of the engine to be raised depending on the coolant temperature. (See *14-64* for details).

The blue and white smoke suppression feature allows the high idling speed of the engine to be reduced depending on the coolant temperature. (See *14-65* for details).

The governor control feature calculates the target engine speed for virtual droop. (See 14-41 for details).

The accelerator filter suppresses fluctuations in target engine speed, minimizing overshoot or undershoot. (See *14-66* for details).

The low/high idling speed limiting feature checks if the target engine speed is in the range of the low idling speed to the high idling speed and adjusts it if required.

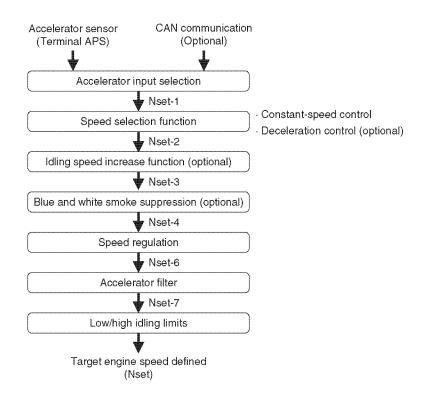


Fig. 14-30 Flow of defining the target engine speed

Fig. 14-31 shows the engine speed control block diagram.

[Speed control]

The deviation of the actual engine speed (Nrpm) from the target engine speed (Nset) is used to determine the target rack position (Rset) with PID control. The target rack position is the basis for providing torque limitation or rack motion delay adjustment for transition control (described later).

[Rack position control]

The deviation of the actual rack position (Ract) from the target rack position (Rset) is used to determine the target current (Iset) with PID control. To check that the control system of the Eco-governor works properly, use the engine diagnosis tool to make sure that Ract is approximately equal to Rset while the engine is running.

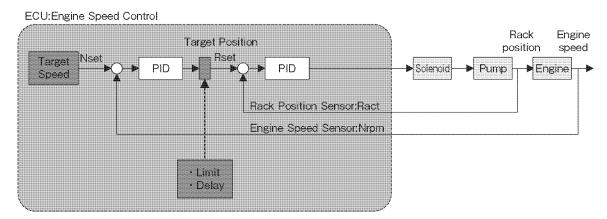


Fig. 14-31 Engine speed control block diagram

Transition control

The Eco-governor delays the rack motion at engine start or during acceleration in order to minimize the emission of black smoke. See **Fig. 14-32**. Surplus fuel injection control during acceleration is adopted only in the supercharged engines.

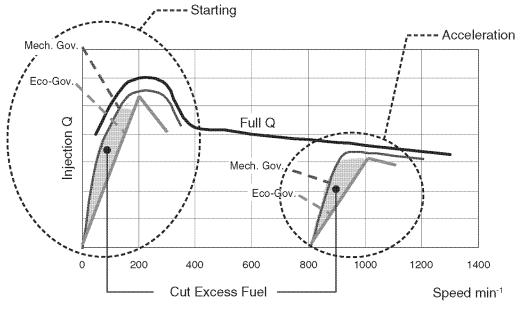


Fig. 14-32 Transition control

EGR control

The Eco-governor uses an electronic-controlled EGR valve to reduce the emission of NOx from the rated power 37 kW or more engines.

The EGR valve is driven by a stepping motor. The opening (0 ~ 54 steps) of the EGR valve is adjusted depending on the engine speed and load factor so as to control recirculation of exhaust gas. **Fig. 14-33** outlines the relationship between the number of steps and the flow rate.

The EGR valve does not open when the coolant temperature is lower than 60°C. This is because low temperature corrosion due to condensation of exhaust gas components must be prevented.

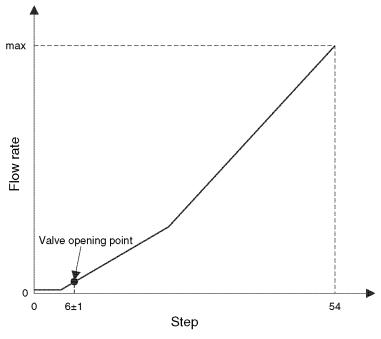


Fig. 14-33 EGR valve characteristics

CSD control

The fuel injection pump (MP pump) has a CSD valve mechanism that allows the fuel injection timing to advance, thereby improving the cold start performance of the engine.

The Eco-governor has a solenoid valve CSD where the CSD can be opened or closed with a solenoid. The E-ECU opens the CSD valve when the coolant temperature sensor detects that the coolant temperature is 5°C or lower in case of the NV2 engine and 10°C or lower in case of the NV3 engine at cold start. The CSD stops when the coolant temperature is 5°C or higher in case of the NV2 engine and 10°C or higher in case of the NV2 engine and 10°C or higher in case of the NV3 engine at cold start. The CSD stops when the coolant temperature is 5°C or higher in case of the NV2 engine and 10°C or higher in case of the NV3, or five minutes have elapsed. Once the CSD is stopped from the actuation state, it doesn't reactuate until the temperature is reduced by 5°C from the above-mentioned actuation stop temperature.

In the Eco-governor, the engine speed is increased 50min⁻¹ in case of the NV2 engine and 75min⁻¹ in case of the NV3 engine during CSD actuation in order to check the CSD actuation. However, the high idling speed isn't exceeded during CSD actuation. After the completion of CSD actuation, the engine speed is automatically reduced to the normal speed.

When the idling speed up feature (described later) is used, the added value of the idling speed up speed increase and the CSD actuation speed increase to the speed command from the accelerator become the target speed.

Target speed = speed command from the accelerator + idling speed up speed increase + the CSD actuation speed increase. The CSD control action is summarized in **Table 14-8**.

	CSD actuation stop	CSD actuation	CSD actuation
	temperature	maximum time	speed increase
NV2 engine	5°C or lower	5 minutes	50min ⁻¹
NV3 engine	10°C or lower	5 minutes	75min ⁻¹

Table	14-8	CSD	control	action

Calculation of load factor

The load factor of the engine is determined as a percentage from the rack position at idling (Ridl), maximum rack position (Rmax), minimum rack position (Rmin) and actual rack position relative to Rmin (Ract). See **Fig. 14-34**.

The calculated load factor is delivered as a PWM signal from an E-ECU terminal or through CAN communication.

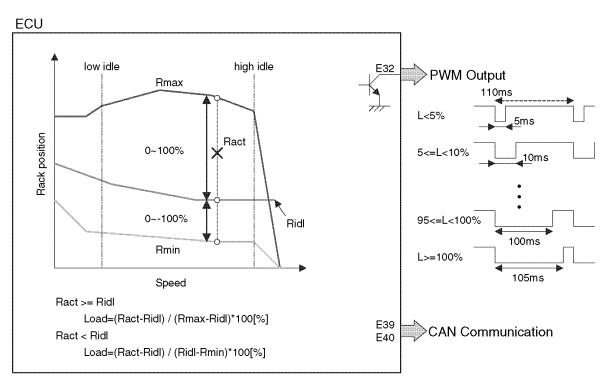


Fig. 14-34 Detection of load factor

Application interface outline

Droop selection feature (switching droop-isochroous control)

The Eco-governor can switch the Isochroous control and the virtual droop control by external switch. By default, when external switch is not connected (when ECUterminal APP-IP1 [E24] is open), it is set that it becomes the virtual droop control.By option, changing the logic setting of APP-IP1 terminal enables the isochroous control to be set when external switch isn't connected.See **Fig. 14-29** for details.

Isochroous control at low idling

As shown in **Fig. 14-35**, it's possible to make the engine speed (target speed) not go below the low idling speed even when virtual droop is selected. (Optional)

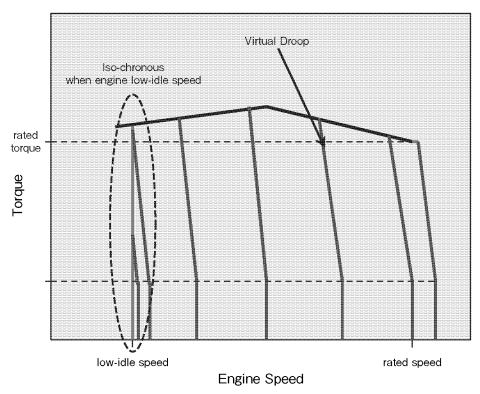


Fig. 14-35 Isochroous control at low idling

Accelerator input selection

Accelerator sensors are available in three types: standard (analog voltage), backup (analog voltage) and CAN communication (communication command) types. See **Fig. 14-18**. Using accelerator sensor setting flags allows combined use of these sensors.

In standard mapping (1), the main accelerator sensor is solely used. In generator standard mapping (O), selecting a contact input can switch the engine speed without the use of accelerator sensors.

In option mapping (2), a higher speed setting is selected from the main accelerator sensor input and the backup sensor input. If one of the two sensors fails, the other is used to control the engine speed.

In option mapping (3), the engine target speed is commanded via CAN communication.

In option mapping (4), the engine target speed is commanded via CAN communication, and if CAN communication fails, the main accelerator sensor input is used for engine speed control.

In option mapping (6), the lastly used speed setting is selected from the main accelerator sensor input and the backup sensor input.

Initially, the main accelerator sensor is prioritized. If one of the two sensors fails, the other is used to control the engine speed.

When an accelerator sensor failure is detected while the engine is running, either (1) a value immediately before the failure is used for engine speed control, or (2) a value set in the accelerator sensor failure flag is used for engine speed control, can be selected.

- A value immediately before the failure is used for engine speed control (standard) When an accelerator sensor fails while the engine is running, a value immediately before the failure is used for engine speed control. When an accelerator sensor fails while the engine is at rest, a value set in the accelerator sensor failure flag is used for engine speed control.
- Note: When an accelerator sensor fails due to the gradual change of the accelerator sensor value to the acceleration side, there are cases in which the target speed is held at the high idling speed. Oppositely, when an accelerator sensor fails due to the gradual change of the accelerator sensor value to the deceleration side, there are cases in which the target speed is held at the low idling speed.
 - 2. The engine runs at a speed determined by the accelerator sensor failure flag (optional). The engine always runs at a speed determined by the accelerator sensor failure flag. When an accelerator fails while the engine is running, the engine target speed changes until the speed setting at the rate of 100min⁻¹/s (default is 1500min⁻¹ but it can be changed optionally).
- Note: Depending on the operation conditions, an accelerator sensor failure may cause the engine to accelerate. Because the speed setting is a target speed, the actual speed is decided by the load factor of the engine.

The speed determined as an accelerator sensor failure flag can be selected from (1) low idling, (2) 1500min⁻¹ (standard), (3) 1800min⁻¹, and (4) engine stop.

Map setting	Main Accelerator sensor APS (E35)	Reserve Accelerator sensor REAN (E37)	CAN input (E39, E40)	Priority operation
0 (Generator standard)	×	×	×	By the following contact input • APP-IP6 (E6) • APP-IP3 (E9) • APP-IP4 (E17)
1 (Standard)	0	×	×	-
2	0	0	×	 Priority in the high-speed side sensor Priority in the normal operation sensor
3	×	×	0	-
4	0	×	0	Priority in the CAN input
6	0	0	×	 Priority in the lastly used sensor (initially main) Priority in the normal operation sensor

Table 14-9 Accelerator sensor setting flags

The accelerator position sensor input (APS: E35) and the backup analog sensor input (REAN: E37) can be flagged so that the corresponding sensor types are changed. See **Table 14-10**. These inputs have been flagged so that accelerator sensor signals (flag setting: 1) and foot pedal signals per SAE J1843 (flag setting: 2 - 4) can be applied.

When these inputs are open, they must be flagged to 0 to disable sensor failure detection.

Table 14-10 Analog in	put assignment
-----------------------	----------------

ECU terminal	setting flag	Connection sensor type	
APS: E35	REAN: E37	Connection sensor type	
0(Generator standard)	0(Standard)	No connection (failure detection disabled)	
1(Standard)	1	Normal accelerator sensor	
2	2	Foot pedal (SAE J1843 configuration) Analog + APP-IP2: NO & APP-IP7:NC)	
3	3	Foot pedal (SAE J1843 configuration) Analog + APP-IP2: NO	
4	4	Foot pedal (SAE J1843 configuration) Analog + APP-IP7: NC	
-	5	(reserve)	

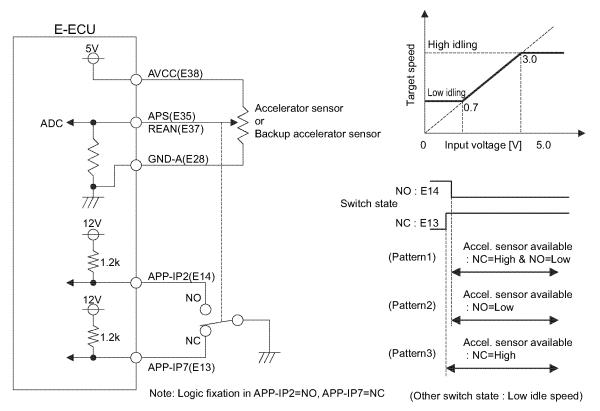
To connect the accelerator position sensor input (APS: E35) and the backup analog sensor input (REAN: E7) to the foot pedal (flag setting: 2 - 4), APP-IP2: E14 and APP-IP7: E13 must be configured to enable reception of signals from the foot pedal switch. In addition, APP-IP2: E14 and APP-IP7: E13 must be configured to enable connection with an NO switch and NC switch respectively. Åi(Set APP-IP2 to NO and APP-IP7 to NC. See **Table 14-17**).

[Example]

- When ECU terminal setting flag setting = 2, set APP-IP2 to NO and APP-IP7 to NC.
- When ECU terminal setting flag setting = 3, set APP-IP2 to NO.
- When ECU terminal setting flag setting = 4, set APP-IP7 to NC.

When the foot pedal connection is selected, it's recommended that you set the low idling voltage and the high idling voltage of ASP terminal and REAN terminal to 1.0 V and 3.5 V.

Fig. 14-36 shows the foot pedal operation and engine speed. When the flag is set to 2, the input voltage at APS terminal or REAN terminal is effective only when APP-IP2: NO is low and APP-IP7: NC is high. Otherwise, the engine runs at the voltage input of 0.83 V (when the recommended setting is selected, the engine runs at the low idling speed).


When the flag is set to 3, the input voltage at APS terminal or REAN terminal is effective only when APP-IP2: NO is low. Otherwise, the engine runs at the voltage input of 0.83 V (when the recommended setting is selected, the engine runs at the low idling speed).

When the flag is set to 4, the input voltage at APS terminal or REAN terminal is effective only when APP-IP7: NC is high. Otherwise, the engine runs at the voltage input of 0.83 V (when the recommended setting is selected, the engine runs at the low idling speed).

When 2 foot pedals are connected, it's necessary to set that APS and REAN don't require the same foot pedal switch.

[Example]

- APS: E35 for 3 (APP-IP2 pedal switch), REAN: E37 for 4 (APP-IP7 pedal switch)
- APS: E35 for 4 (APP-IP7 pedal switch), REAN: E37 for 3 (APP-IP2 pedal switch)

Fig. 14-36 Operation of foot pedal

Fig. 14-37 shows the foot pedal failure detection scheme. When either of the following is approved, the sensor fails.

The E-ECU has an error of ± 0.125 V for the following detection voltage. Therefore, be noted that the pedal switch must switch in between 0.775 V and 0.975 V.

The operation while the sensor failure is in detection is same as the normal accelerator sensor. When the foot pedal is selected, interrupting the E-ECU power supply by turning off the key switch is

required to meet the cancellation condition of sensor failure. In case of the normal acceleration sensor, the sensor failure is automatically cancelled when the sensor signal is returned to normal.

- As in the case of the acceleration sensor, when the input voltage reaches below 0.2V or above 4.6 V, the sensor failure is detected
- When APP-IP2: NO becomes high or APP-IP7: NC becomes low and the input voltage is above 1.1 V, the sensor failure is detected. (depending on the status of the active switch when the flag is set to 3 or 4).
- When APP-IP2: NO becomes low or APP-IP7: NC becomes high and the input voltage is above 0.65 V, the sensor failure is detected. (depending on the status of the active switch when the flag is set to 3 or 4).

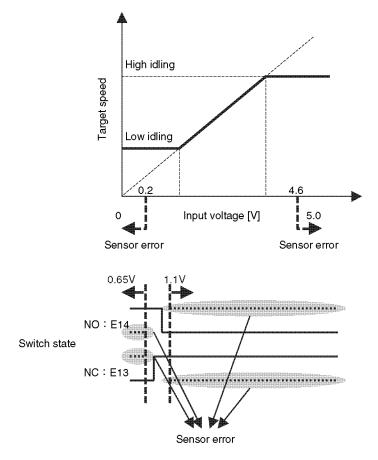


Fig. 14-37 Failure detection of foot pedal

Starting aid

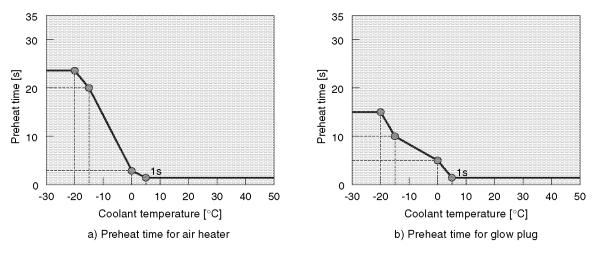
Using a standard starting aid relay allows the starting aid (air heater or glow plug) to be controlled as follows. The starting aid relay permits the E-ECU to check for disconnection or short-circuit. (Standard)

1. ON-glow control (standard feature)

When the key switch is moved to the "ON" position, the starting aid relay is automatically energized for a duration that depends on the coolant temperature. The preheat lamp can be on during energization. (The same feature as QHS controller 129457-77900. QGS controller 119650-77900 has a two-stage temperature control feature).

The preheat time for ON-glow control differs for an air heater and a glow plug used as the starting aid. See **Fig. 14-38**.

2. Simultaneous energization (standard feature)


This feature allows energizing the starting aid relay while energizing the starter when the key switch is in the START position, facilitating cold start. (This feature is the same as provided by QHS controller 129457-77900 and QGS controller 119650-77900).

When the voltage at the power supply terminal of the E-ECU decreases to 6.5 V, the starting aid relay is de-energized to prevent the E-ECU from being reset due to "supply voltage low" (the E-ECU is reset when the supply voltage lowers to 6.0 V).

For reduction of the battery power consumption and voltage drop control of the starter in use, it's possible to make the starting aid relay de-energized, but in this case the cold start check with installation of the engine on a machine is requested.

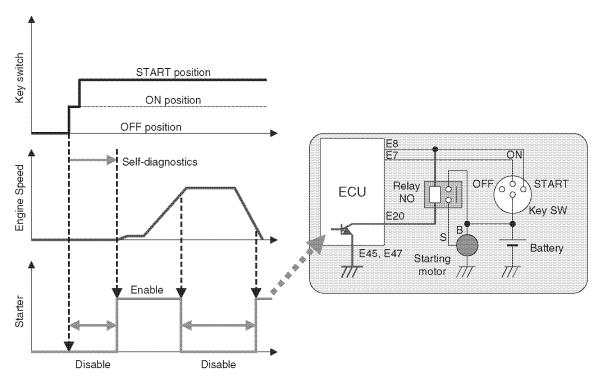
3. After heating (optional feature)

This feature allows the starting aid relay to be energized for 80 seconds after engine start or as long as the coolant temperature is lower than 10½C, thereby reducing the time required for self-extinguishing of blue and white smoke. (This feature is the same as provided by QHS controller 129457-77900 except for temperature and time settings. QGS controller 119650-77900 has no after glow feature). The after heating feature is disabled by default to avoid a heavy burden on the battery. Use this feature in due consideration to the battery charging/discharging cycle.

Note When the key switch with a iglowî position is used in the standard connection diagram, preheat lamp is illuminated for a duration that depends on the coolant temperature, and the starting aid is automatically energized at the same time.

However, when the key switch is moved from the OFF position to the ON position to start the engine after the completion of preheat, preheat lamp is illuminated again. Be noted that it's not necessary to preheat again at this time.

Starter motor start prevention


When the key switch is turned on, the Eco-governor performs rack self-diagnostics before starting the engine in order to check the fuel injection pump rack operation. Starter motor staring prevention can be implemented by connecting a starter relay to the E-ECU. As shown in **Fig. 14-39**, the starter motor start prevention is done by connecting the E-ECU to the starter relay.

The starter motor start prevention factor is checked by connecting the engine diagnosis tool to see the prevention factor flag. (Table 14-28 (Reference))

In addition to rack self-diagnostics, the E-ECU has the following features:

1. Safety relay (standard feature)

This feature turns the starter off when the engine speed reaches 675 min⁻¹, and disables the starter to start until the engine speed decreases to 325 min⁻¹ or less. (This feature is the same as provided by 119802-77200 when the pulley ratio is 2).

2. Starter disable (optional feature)

This feature turns off the starter when it is energized continuously for 30 seconds, and disables it to be energized for 30 seconds, thereby providing protection to the starter.

3. External switch control (optional feature)

This feature allows the starter to be disabled until an external switch turns on. This can be used for creating a safety system where the starter cannot start unless a safety pedal is depressed. Like **Fig. 14-40**, the external switch can be connected to APP-IP1 terminal (E24: in common use for droop selection). Also, the starter can be enabled via CAN communication in place of contact input at APP-IP1 terminal. Furthermore, the starter can also be enabled by the AND of the APP-IP1 contact input and the CAN communication input.

When the coexistence of droop selection feature and starter prevention external switch feature is desired, the external switch can be connected to the APP-IP4 terminal (E17: in common use with SW2), as shown in **Fig. 14-41**. In this case, the switch input becomes low-side input.

The conditions that enable the starter can be changed using map flags for setting E-ECU applications.

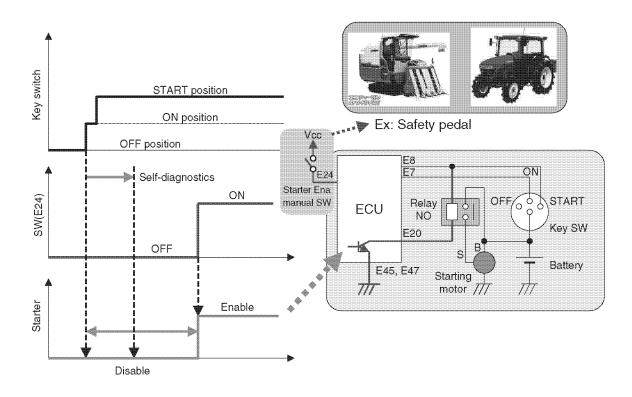


Fig. 14-40 External switch 1 and starter disable/enable circuit

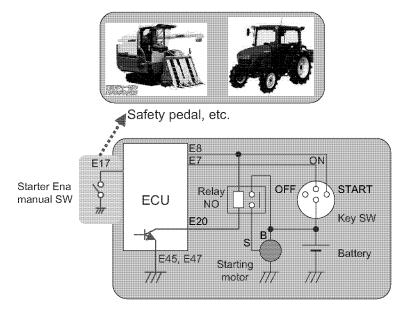
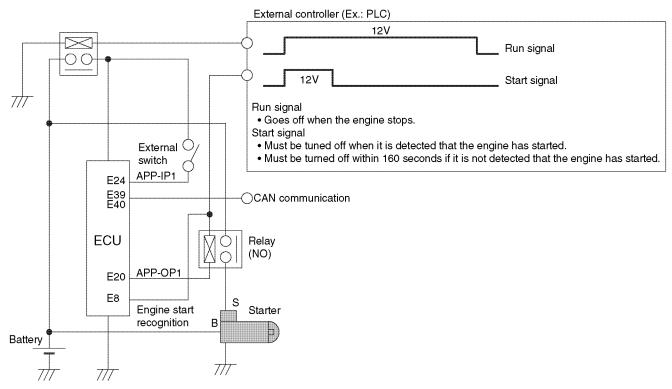



Fig. 14-41 External switch 2 and starter disable/enable circuit

Utilizing features 1 and 2 above permits establishing a remote (auto) start/stop system that can be operated through an external sequence. See **Fig. 14-42** for details. In the figure, a machine start recognition signal (E8) is given from an external control device in place of the key switch.

Fig. 14-42 Connection diagram of a remote (auto) start/stop system

The engine run signal goes on at engine start and goes off at engine stop. The start signal must be turned off within 160 seconds as a guideline. Otherwise, the starter tries to start the engine repeatedly in intervals of 30 seconds when the engine may not be able to start for some reason.

Speed selection

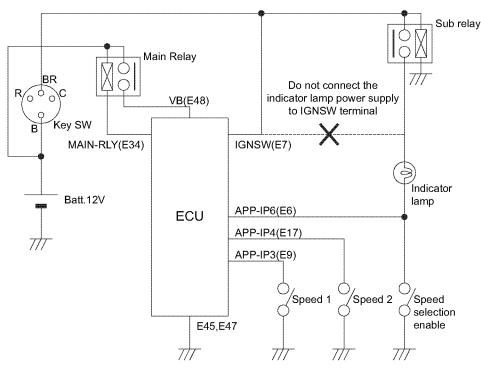
The Eco-governor has a speed selection feature that allows the engine speed to be changed with external switch inputs. The speed selection feature includes three modes: (1) Constant speed mode where the engine speed is kept constant, (2) Constant deceleration mode where the engine speed is reduced from a specified value with a constant deceleration, and (3) Auto deceleration mode where the engine speed is set to a specified value after a specified time has elapsed.

Table 14-11 shows the relationship between the position of external switches and the engine speed in the three modes.

	Exte			
Map setting	Speed selection enable SW (E6)	Speed 1 SW (E9)	Speed 2 SW (E17)	Engine speed
	Disabled (OFF)	-	-	Per accelerator command
(1) Constant speed		OFF	OFF	1500min ^{-1 *1)}
0 or 1	Enabled (ONI)	OFF	ON	Low idling
(Standard)	Enabled (ON)	ON	OFF	1800min ^{-1*2)}
		ON	ON	High idling
	Disabled (OFF)	-	-	Per accelerator command
(2) Constant deceleration	Enabled (ON)	OFF	OFF	Deceleration 70% ^{*3)}
2 or 3		OFF	ON	Per accelerator command
(Optional)		ON	OFF	Deceleration 85% ^{*4)}
		ON	ON	Per accelerator command
	Disabled (OFF)	-	-	Per accelerator command
(3) Auto deceleration 5 (Optional)		OFF	OFF (delay: 4s ^{*)})	Low idling
	Enabled (ON)	OFF	ON	Per accelerator command
	Enabled (ON)	ON	OFF (delay: 4s ^{*)})	1800min ^{-1 *2)}
		ON	ON	Per accelerator command

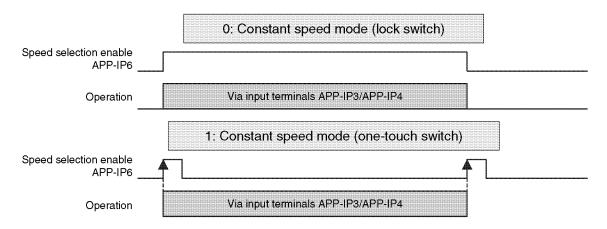
Table 14-11	Engine speed and external switch position	

Values marked with an asterisk (*1-*4) can be changed by map setting.(Optional)


Values marked with an asterisk (*2) is used in map as well.

External switch's ON/OFF can be commanded via CAN communication.

(1) Constant speed mode


Fig. 14-43shows the connection diagram for constant speed mode. Do not connect the indicator lamp power supply to the IGNSW (E7) terminal.Turning current from the APP-IP terminal to the IGNSW terminal may cause the E-ECU power supply to not shutdown.

The indicator lamp can be connected to the APP-OP2 (E2) terminal optionally, but in this case the coolant temperature alarm indication and block heater control cannot be done.Åi**Table 14-16**(Reference)

Fig. 14-43 Connection diagram for constant speed mode

Fig. 14-44 shows the operation timing for constant speed mode. The speed selection enable switch (E6) is available in two types: toggle and momentary.

Fig. 14-44 Operation timing for constant speed mode

Note: The type of the speed selection enable switch: APP-IP6 (toggle or momentary) is mapped. As a momentary switch involves the possibility of a fluctuation in engine speed if the E-ECU is reset, it is recommended to use a toggle switch.

The input voltage from the accelerator sensor (or the input value through CAN communication) is not depended during the constant speed mode in operation, and the target speed is fixed. The speed of constant speed mode of speed1 switch: APP-IP3 and speed2 switch: APP-IP4 can be selected from (1) speed is set to a specified value1 (standard: 1800min⁻¹), (2) speed is set to a specified value2 (standard: 1500min⁻¹), (3) low idling, and (4) high idling.(**Table 14-11**(Reference)) The speed of specified value1 and value2 can be changed (optional).

(2) Constant deceleration mode

Fig. 14-45 shows the connection diagram for constant deceleration. Do not connect the indicator lamp power supply to the IGNSW (E7) terminal. Turning current from the APP-IP terminal to the IGNSW terminal may cause the E-ECU power supply to not shutdown.

The indicator lamp can be connected to the APP-OP2 (E2) terminal optionally, but in this case the coolant temperature alarm indication and block heater control cannot be done. (Table 14-16(Reference))

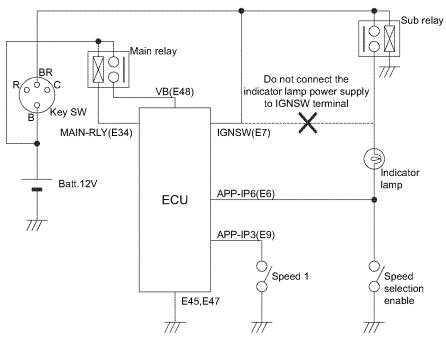
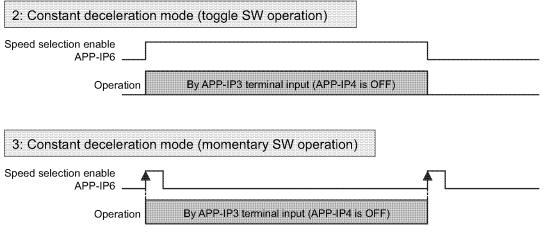
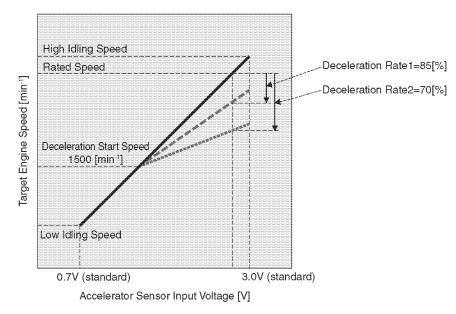


Fig. 14-45 Connection diagram for constant deceleration

Fig. 14-46shows the operation timing for constant decelerationThe speed selection enable switch (E6) is available in two types: toggle and momentary.




Fig. 14-46 Operation timing for constant deceleration mode

Note: The type of the speed selection enable switch: APP-IP6 (toggle or momentary) is mapped. As a momentary switch involves the possibility of a fluctuation in engine speed if the E-ECU is reset, it is recommended to use a toggle switch.

As shown in **Fig. 14-47** the engine target speed in constant deceleration operation is decelerated (see **Table 14-11**) for the input voltage from the accelerator sensor (or the input value through CAN communication).

The before-mentioned indicator lamp (APP-OP2) isn't illuminated even in deceleration operation when the target speed is below the deceleration start speed.

Fig. 14-47 Operation of constant deceleration

The deceleration ratio of constant deceleration in the APP-IP3 condition can be selected from (1) deceleration ratio1 (standard: 85%), and (2) deceleration ratio2 (standard: 70%).(Speed2 switch is: APP-IP4=OFF. See **Table 14-11**).

The speed of deceleration ratio1, deceleration ratio2, and deceleration start speed (standard: 1500min⁻¹) can be changed.(Optional)

(3) Auto deceleration mode

Fig. 14-48 shows the connection diagram for auto deceleration mode. The indicator lamp is connected to illuminate when the auto deceleration is permitted. There is no influence in control action even if it's omitted.

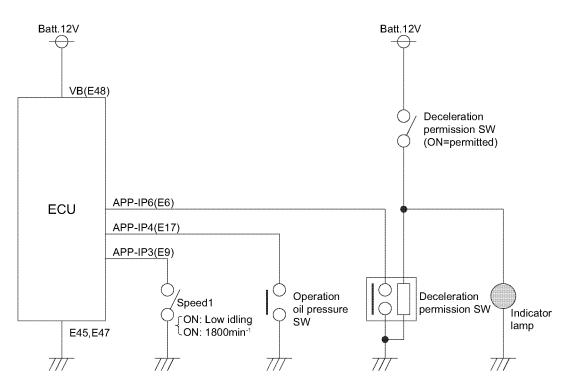
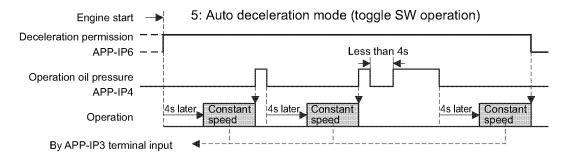



Fig. 14-48 Connection diagram for auto deceleration

Fig. 14-49 shows the operation timing for auto deceleration mode.

Fig. 14-49 Operation timing for auto deceleration mode

Deceleration permission switch: when APP-IP6=ON, operation oil pressure switch: APP-IP4=OFF (in non-operational condition) is continued over 4s, the auto deceleration is affected and the engine target speed is fixed without depending on the accelerator sensor input voltage (or the input value through CAN communication).

The speed of auto deceleration of speed1 switch: in the APP-IP3 condition can be selected from (1) constant speed1 (standard: 1800min⁻¹), or (2) low idling. (**Table 14-11**(Reference))

The speed of constant speed11 in common use with constant speed mode can be changed. The duration of operation oil pressure switch OFF (standard: 4s) can also be changed.(Optional)

Constant speed by the auto deceleration mode can be temporarily released by acceleration use even the operation oil pressure switch is: APP-IP4=OFF, as shown in **Fig. 14-50**. The operated accelerator's target speed is followed during the deceleration release. (Optional)

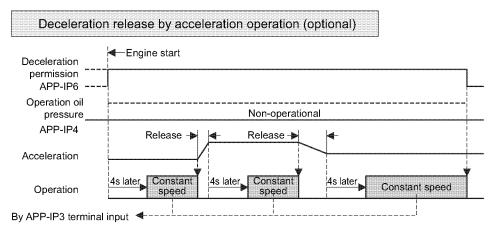
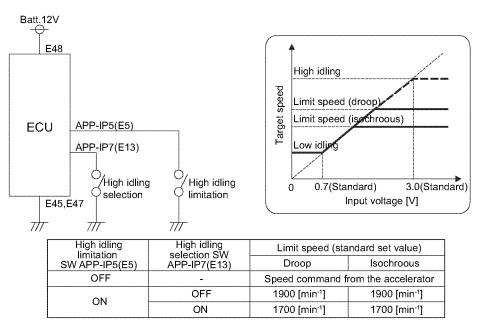


Fig. 14-50 Deceleration release by acceleration operation


High idling limitation feature

When the high idling limitation control is enabled, the Eco-governor has a feature which temporarily reduces the high idling speed by the external switch input (APP-IP5).

Like **Fig. 14-51**, the maximum target speed can be limited by the accelerator input voltage by connecting the high idling limitation switch to the APP-IP5 terminal. The switch used can be selected from the following 2types: normal open type and normal close type.By default, normal open type is set, so the maximum speed is limited when the APP-IP5 terminal is GND connected.

The speed for high idling limitation can be switched by the condition of high idling limitation speed switch, or droop or isochroous drives. Also, the settings of the limitation speed can be changed. (The default settings can be switched by the high idling limitation speed switch condition of 1900min⁻¹ or 1700min⁻¹).

The speed of limitation is the target speed at no load. The actual maximum speed is decided by the size of load.

Fig. 14-51 High idling limitation feature

Engine cutoff

Besides the engine stop caused by overload and out of fuel, the factor for stopping the engine is as follows.

The engine stop factor is checked by connecting the engine diagnosis tool to see the stop factor flag. (**Table 14-28**(Reference))

[Method by key switch]

When the key switch is turned off and the rack actuator is shut off, the engine is cut off. (No stop solenoid is required).

[Method by SHUDNSW terminal]

The engine can also be cut off by turning on terminal SHUDNSW to which an engine stop switch has been connected. The engine stop switch is available in two types: NC (normally closed) and NO (normally open - standard). The connection method of the engine stop switch is shown in **Fig. 14-52**.By default, NO type switch is set, so if the switch is not connected, it's possible for the engine to run.

Once the engine stop switch is turned on, the engine stop condition is held; it's required to turn off the switch in order to re-start. While the engine stop switch is turned on, it cannot be started with the starter.

The operation by the SHUDNS terminal during the engine stop is summarized in Table 14-12.

By setting the NC type for the engine stop switch, this feature is suitable for the utilization as a connection port for immobilizer key; it has high protection to stop the engine drive for disconnection and short of the switch harness, as shown in **Fig. 14-53**.

Note: Be noted that when the NC type is set for the engine stop switch, the engine cannot run with the switch circuit unconnected.

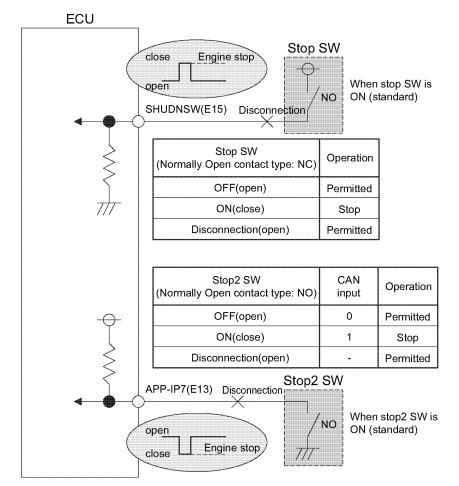
[Method by APP-IP7 terminal]

By connecting the APP-IP7 terminal to the engine stop 2 switch, the engine can be stopped when the terminal input is turned on. The engine stop switch is available in two types: NC (normally closed) and NO (normally open - standard). The connection method of the engine stop switch is shown in **Fig. 14-52**. By default, NO type switch is set, so if the switch is not connected, it's possible for the engine to run.

Once the engine stop switch is turned on, the engine stop condition is held; it's required to turn off the switch in order to re-start. While the engine stop switch is turned on, it cannot be started with the starter.

Such an engine stop switch can be utilized as a safety switch that stops the engine when the engine cover is opened, for example. The input signal to the engine stop2 switch can also be given through CAN communication instead of from terminal APP-IP7.

The operation by the APP-IP7 terminal during the engine stop is summarized in Table 14-12.


[Control failure]

A failure detected by the E-ECU may cause the engine to stop. For details see "Engine/control failure detection" sections.

switch		switch CAN input			top condit	ions	
Terminal	[Circuit]	Momentary	stop	Rack actuator relay	Rack	Starter	Recovery
SHUDNSW	High side	OK	NG	OFF	Halt	Disabled	Key off
APP-IP7	Low side	OK	OK	OFF	Halt	Disabled	Key off

Table 14-12 Comparison of engine cutoff means

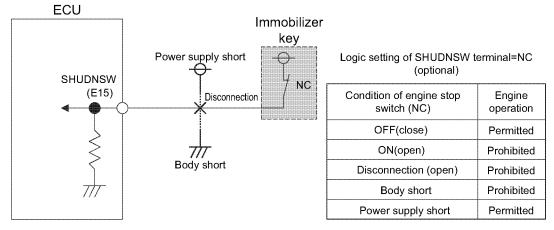


Fig. 14-53 Connection of immobilizer

Emergency stop feature

By installing the emergency stop switch in either *2 or *3 position of Fig. 14-4, the engine can be stopped.

Switch installation position	Advantage	Disadvantage
*2 of Fig. 14-4 (recommended)	 The failure log isn't left in the ECU. Even if the rack actuator relay contact is fastened, the E-ECU cuts off the rack actuator output, so that it's possible to stop the engine. 	 When the rack actuator relay contact is fastened, the stop operation is by the E-ECU control.
*3 of Fig. 14-4 (recommended)	 The engine can be stopped without relying on the rack actuator relay. The engine can be stopped without using the E-ECU. 	 The rack actuator failure remains in the ECU. Be noted that the total length of the rack actuator line must not exceed 10 m.

 Table 14-13
 Comparison of emergency stop feature

Idling speed up

The feature allows the low idling speed to increase gradually until the coolant reaches a specified temperature, helping the engine warm up quickly. See the figure below. See **Fig. 14-54**. In case of the standard engine with the low idling speed of $600 \text{min}^{\tilde{n}1}$, this feature is set by default to keep the minimum speed above 1000min^{-1} to stabilize the engine speed fluctuation in low temperature with the coolant temperature below 10° C. See **Fig. 14-55**.

As in the case of the before-mentioned CSD actuation speed increase, the speed is increased at the same time.

Target speed = speed command from the accelerator + idling speed up speed increase + the CSD actuation speed increase.

For example, the target speed becomes 1075min⁻¹ (800+200+75) in case of the NV3 engine with the low idling speed of 800min⁻¹ in the coolant temperature 10°C.

With the setting of the low idling speed above 1000min⁻¹, this feature isn't required.Be noted that by keeping this feature effective, the engine speed of the NV2 engine increases to 250min⁻¹; the engine speed of the NV3 increases to 275min⁻¹ in the coolant temperature below 10, as mentioned before.

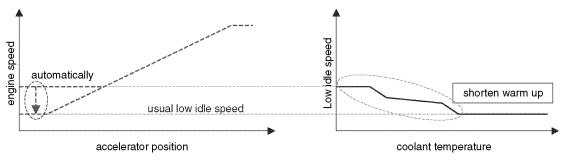
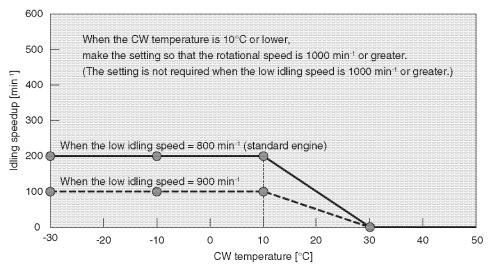
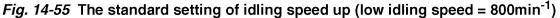




Fig. 14-54 Low Idling speed in cold conditions

By utilizing this feature, the duration in cold conditions can be limited with the optional setting as shown in **Fig. 14-56**.In this manner, the idling speed up speed can be changed. (Optional)

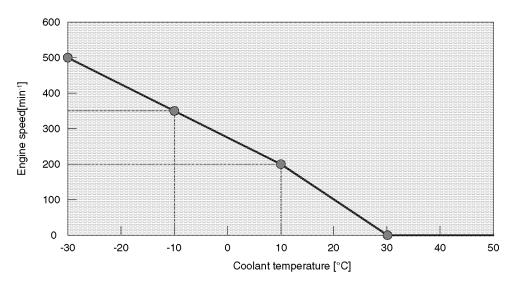


Fig. 14-56 The speed for idling speed up

Blue and white smoke suppression

The feature allows the high idling speed to be limited when the coolant is lower than a prescribed temperature, thus reducing the time required for vanishing the emission of blue and white smoke in cold start conditions. See **Fig. 14-57**. By default, the "blue and white smoke suppression" feature is disabled.

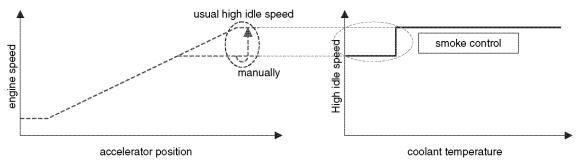


Fig. 14-57 High idling speed limitation in cold conditions

Blue and white smoke suppression is effective in limiting the time required for vanishing the blue and white smoke for the engines with the rated speed of 2300min^{-1} or above by reducing the high idling speed to around 150min^{-1} in the coolant temperature below 30° C when optionally set.

Accelerator filter

The accelerator filter regulates the trade-off between acceleration/deceleration time and overshoot/ undershoot during acceleration or deceleration. This feature is factory set appropriately at Yanmar, but a higher priority may have to be given to either the reduction of acceleration/deceleration time or the suppression of overshoot/undershoot depending on the engine applications.

Fig. 14-58 shows the effect of the accelerator filter. The accelerator filter delays reaching the engine target speed, thereby avoiding overshoot and undershot while trading off the speed responsibility of the engine.

By advancing the engine target speed change, the motion responsiveness at the time of engine acceleration/deceleration can be improved.

When the adjustment requirement is admitted in the engine application test in regard to the stabilization and responsiveness of engine speed mentioned above, Yanmar makes the adjustment to change the model-specific control map by this adjustment.

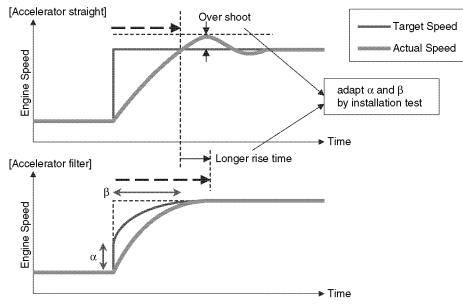
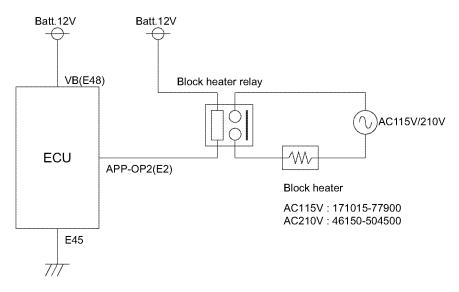


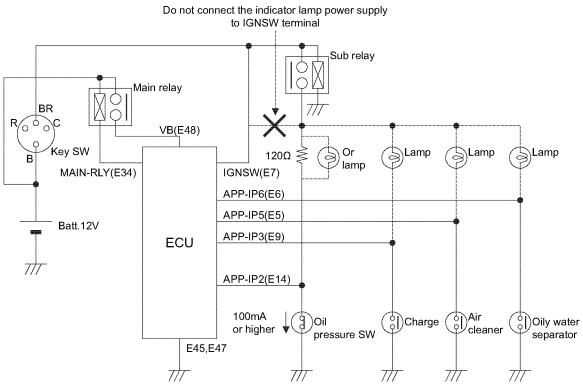
Fig. 14-58 Effect of the accelerator filter

Block heater control

This feature allows the block heater to be turned on or off by an external block heater relay as long as the E-ECU power supply is on. By default, the block heater relay turns on when the coolant temperature decreases to 15°C, and turns off to disable the block heater when the coolant temperature increases to 50°C. By default, the "block heater control" feature is disabled. When the "block heater control" feature is enabled, the coolant temperature alarm indication and block heater control cannot be done. (**Table 14-16**(Reference))

Fig. 14-59 shows a typical connection diagram for block heater control.




Fig. 14-59 Connection diagram for block heater control

Engine failure detection

The E-ECU accepts the connection of engine failure detection sensors as shown in **Fig. 14-60** besides electronic control sensor. Actions to be taken depending on the status of sensors can be programmed. The sensor status can also be sent via CAN communication.

In order to take in each sensor signal to the E-ECU, the E-ECU terminal function setting of APP-IP2, APP-IP3, APP-IP5, and APP-IP6 must be changed. When the sensor connection is enabled by the optional setting, some applications can no longer be used. See **Table 14-16** for details. A failure lamp can be connected to each sensor as shown in **Fig. 14-60**. In this case, do not connect the indication lamp to the IGNSW (E7) terminal. See **Fig. 14-60**. Turning current from the APP-IP terminal to the IGNSW terminal may cause the E-ECU power supply to not shutdown.

Note: Be sure to connect a lamp or load resistance (120Ω) to the pressure switch so that the contact current is 100mA or higher for the oil pressure switch (119761-39450, etc.). Due to the impurity of lube oil, contact failure of oil pressure switch may be caused.

Fig. 14-60 Connection of sensors for engine failure detection

Control failure detection

The E-ECU performs various self-diagnostics as shown in **Table 14-14**.

Diagnostic items are divided into "Always enable", "Default to enable" and "Default to disable" in the table.

Standard : The failure detected in all specifications

Default : The failure that can be disabled by the customer's setting though the initial detection is enabled.

Optional : The failure that can be enabled by the customer's setting though the initial detection is disabled.

No.	ltem	Failure detection conditions	Operation when failure occurs	Action/ condition for recovery	Setting	Lamp Number of flash
1	Coolant tempera- ture sensor failure	Sensor voltage is 4.8 V or more, or 0.2 V or less.	 Continued operation in the coolant temperature condition of 30°C (EGR valve is not in operation) The same limited operation is performed as the EGR vale failure 	Key off	Always enable	4
2	Accelerator sensor failure	Sensor voltage is 4.6 V or more, or 0.2 V or less.	 [Without optional backup accelerator sensor: standard] The speed immediately before is held (standard) The engine operation in 1500min^{-1*}) [With optional backup accelerator sensor: optional] Select backup accelerator sensor: No limitation Backup accelerator sensor failure: The speed immediately before is held (standard) The engine operation in 1500min^{-1*}) 	Correct failure.	Default	5
3	Speed sensor failure	Engine start signal (E8) is on, but the engine speed cannot be detected. When the engine speed is reduced lower than the rated speed instantaneously	 [Without optional backup speed sensor: standard] Engine stop [With optional backup speed sensor: optional] Switching backup speed sensor (speed is limited to 1800 min^{-1*}). Backup speed sensor failed: Engine stops. 	Key off	Always enable	6
4	Rack position sensor failure	When the rack posi- tion sensor voltage is raised above the rated value by rack self-diagnostics When the rack posi- tion relationship for the rack actuator output is raised above the rated value When the rack posi- tion relationship for the rack actuator output is reduced below the rated value	The engine operation with output/speed lim- itation (Rack position control is inactive and speed control is active).	Key off	Always enable	7

Table 14-14	The detected	failure list
-------------	--------------	--------------

		Failure detection		Action/		Lamp
No.	ltem	conditions	Operation when failure occurs	condition for recovery	Setting	Number of flash
5	Rack actuator failure	When the rated rack doesnit oper- ate by rack self- diagnostics When the rack actu- ator output is raised above the rated value When the rack actu- ator output is reduced below the rated value	Engine stop	Key off	Always enable	8
		When the engine accelerates rapidly even with minimum rack actuator output. When engine stalls while rack position sensor is in failed operation.	-			
6	Overspeed	Idling engine speed exceeds high idling speed + 600 min ⁻¹ .	Engine stop caused by independent curcuit	Key off	Always enable	9
7	Backup speed sensor failure	Engine start signal (E8) is on, but the engine speed cannot be detected. When the engine speed is reduced lower than the rated speed instantaneously	 Engine continues to run while main speed sensor is used. Main speed sensor failed: Engine stops. 	Key off	Optional	1-1
8	CAN communica- tion failure	CAN communica- tion packets cannot be received.	 Last value is retained. Switch to backup sensor The failure isn't indicated during the engine start or the power supply voltage is below 10.5 V 	Correct failure.	Optional	1-2
9	EGR valve failure (37 kW Min.)	Low status is detected even through port is off. High status is detected even through port is on.	The limited engine operation in output 92% and speed 1800min ⁻¹	Key off	Always enable	1-3
10	CSD solenoid valve failure	High status is detected even through port is off. Low status is detected even through port is on.	Engine continues to run with CSD being off.	Key off	Always enable	1-4
11	Starting aid relay failure	High status is detected even through port is off. Low status is detected even through port is on.	Engine continues to run with starting aid relay being off.	Key off	Optional	1-5

Table 14-14 The detected failure list

	Callure detection Lamp					Lamp
No.	ltem	Failure detection conditions	Operation when failure occurs	condition for recovery	Setting	Number of flash
12	Main relay failure	ECU power is not shut off even though main relay is off.	Engine runs normally.	Retained until correct failure	Default	1-6
13	Rack actuator relay failure	Low status is detected even through port is off. High status is detected even through port is on.	Engine stop	Key off	Always enable	1-7
14	Backup accelerator sensor failure	Sensor voltage is 4.6 V or more, or 0.2 V or less.	 Engine continues to run while main accelerator sensor is used. Main accelerator sensor failure: The speed immediately before is retained (standard) The engine operation in 1500min^{-1*}) 	Correct failure.	Optional	1-8
15	reserve	-	-	-	-	1-9
16	Oil pressure switch failure	Oil pressure switch fails to turn on when engine is off.	Engine runs normally ^{*)}	Key off	Optional	2-1
17	Charge switch failure	Charge switch fails to turn on when engine is off.	Engine runs normally.	Key off	Optional	2-2
18	Power supply volt- age failure	ECU supply voltage exceeds 10.0 V. ECU supply voltage exceeds 16.0 V.	Engine runs normally.	Correct failure.	Always enable	2-3
19	Sensor 5V failure	Monitoring voltage is approx. 0 V. Monitoring voltage is 4.5 V or less. Monitoring voltage is 5.5 V or more.	Engine runs normally.	Key off	Always enable	2-4
20	ECU overheat alarm	Detected when ECU temperature exceeds $105^{\circ}C^{*)}$ or above Canceled when ECU temperature decreases to $100^{\circ}C^{*)}$ or below (Optional change is possible)	Engine runs normally ^{*)}	Correct failure.	Optional	2-5
21	Oil pressure low	Oil pressure switch fails to turn off when engine is running.	Engine runs normally ^{*)}	Correct failure.	Optional	3-1
22	Charge failure	Charge switch fails to turn off when engine is running.	Engine runs normally.	Key off	Optional	3-2
23	reserve		-	-	-	3-3
24	Air cleaner block- age alarm	Air cleaner switch turns on.	Engine runs normally ^{*)}	Key off	Optional	3-4
25	Oily water separa- tor alarm	Oily water separa- tor switch turns on.	Engine runs normally ^{*)}	Key off	Optional	3-5

Table 14-14 The detected failure list

No.	ltem	Failure detection conditions	Operation when failure occurs	Action/ condition for recovery	Setting	Lamp Number of flash
26	Coolant tempera- ture high alarm	Coolant tempera- ture is 110°C ^{*)} or higher Alarm is canceled when Coolant tem- perature decreases to 105°C ^{*)} or below	Engine runs normally ^{*)}	Correct failure.	Default	3-6
27	ECU failure [ROM error]	Flash ROM's EEPROM check- sum error.	Engine stop	Key off	Always enable	4-1
28	ECU failure [EEPROM error]	Reading/Writing fails. EEPROM suffers checksum error.	Engine runs normally.	Key off	Always enable	4-1
29	ECU failure [Sub CPU failure]	ECU fails to com- municate with sub CPU.	Engine runs normally.	Key off	Always enable	4-1
30	ECU failure [Mapping error]	Map format is invalid.	Engine stop	Key off	Always enable	4-1
31	ECU failure [ECU temperature sensor failure]	Sensor voltage is 4.6 V or more, or 1.0 V or less.	Engine runs normally.	Correct failure.	Always enable	4-1

Table 14-14 The detected failure list

*) The items in which the setting can be changed optionally

When detecting these failures, the E-ECU flashes the trouble monitor lamp to alert the operator to the occurrence of failure conditions. The trouble monitor lamp will illuminate for 2 sec. when the E-ECU is power on. This allows operator to check if the E-ECU is supplied with power normally. (The trouble monitor lamp is an essential means for checking or diagnosing the ECU).

Fig. 14-61 shows the flash method of trouble monitor lamp. When accelerator sensor failure (flashing 5 time) and ERG valve failure (flashing 1 - 3 times) occur, the failure lamp flashes as shown in **Fig. 14-61**. When two or more failures have occurred simultaneously, the failure lamp indicates all the failures in order of increasing number of flashes cyclically.

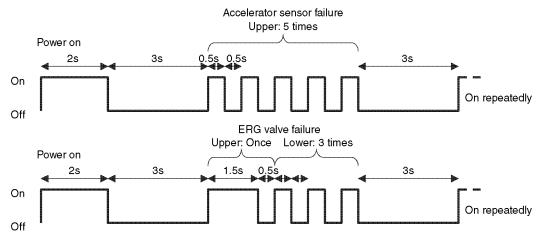


Fig. 14-61 Flash method of trouble monitor lamp

Connecting the Yanmar genuine engine self-diagnosis tool to the E-ECU as shown **Fig. 14-62** allows status monitoring or diagnostic testing as well as the indication of detailed failure information, failure log and freeze frame data.

Failure log indications can include time stamps. The following lists attribute available for time stamps

Table 14-15 Attributes of time stamps			
Flag Attribute			
0 (Standard)	Accumulated engine run time		
1	Accumulated E-ECU energization time		
2	CAN acquision time		

See the engine diagnosis tool manual or troubleshooting chart for details.

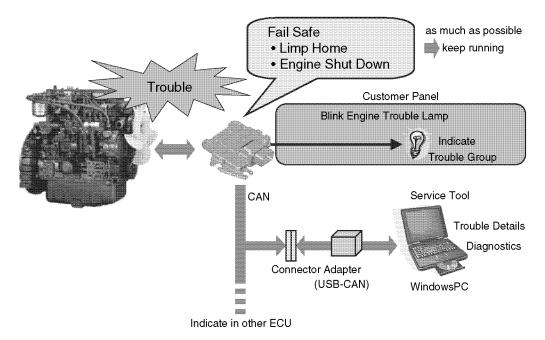


Fig. 14-62 Diagnostics of the Eco-governor

CAN communication

The E-ECU is equipped with a CAN communication port that can be used to communicate with the engine diagnosis tool and another common use communication port that can be used to communicate with other controller (for the inter-ECU communication use). The physical layer for CAN communication conforms to ISO 11898 Ver2.0B and uses 29-bit CAN arbitration ID. Baud rates of 250 kbps (standard) and 500 kbps are available. (**Fig. 14-63**(Reference))

The ECU supports communication protocols conforming to ISO 15765 and KWP 2000 for engine diagnosis tool and ASE J1939 for inter-ECU communication.

The engine diagnosis tool can perform the engine monitoring/diagnostics/setting. See the manual for the engine diagnosis tool for details.

For the inter-ECU communication, various control commands including target speed indication can be sent from the machine ECU to the engine ECU (E-ECU). Also, various information including control conditions such as actual engine speed and failure codes can be printed from the E-ECU to the machine ECU. The inter-ECU communication is enabled optionally. See the CAN communication manual for details.

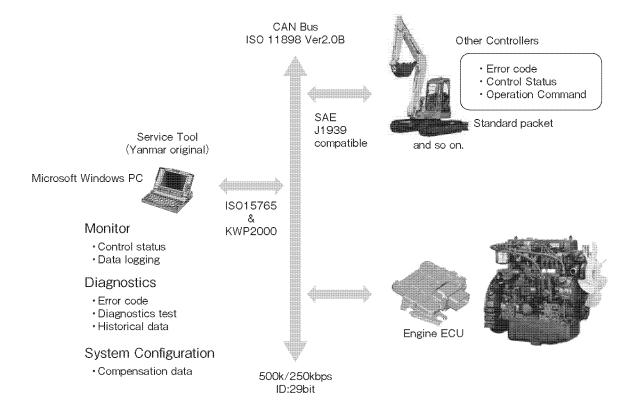


Fig. 14-63 CAN communication outline

Terminal assignment

Each of the E-ECU terminals listed in **Table 14-16** is assigned multiple functions. The active function for each terminal can be changed by mapping.

Contact Yanmar for setting change.

Terminal	Terminal		Map setting				
No.	name	0	1	2	3	4	
E24	APP-IP1	No setting	Droop selection ^{*)}	Starter enable1	Starter enable1	Reserve	
E14	APP-IP2	No setting	Reserve *)	ñ°àŠSW	Reserve	Foot pedal NO	
E9	APP-IP3	No setting	Speed 1 ^{*)}	Charge	Reserve	Reserve	
E17	APP-IP4	No setting	Speed 2 ^{*)}	Reserve	Reserve	Starter enable2	
E5	APP-IP5	No setting	Reserve	Air cleaner ^{*)}	Reserve	High idling limitation	
E6	APP-IP6	No setting	Speed selection enable ^{*)}	Oily water separator	Reserve	Reserve	
E13	APP-IP7	No setting	Reserve	Engine stop2 *)	High idling selection	Foot pedal NC	
E20	APP-OP1	Starter relay *)	Reserve	Disabled	Disabled	Disabled	
E2	APP-OP2	Reserve	Block heater relay	Speed change indication lamp	Coolant temperature alarm lamp ^{*)}	Disabled	

Table 14-16 E-ECU terminals assigned multiple functions

*) default is indicated.

Contact input terminal switches are available in two types: NC (normally closed) and NO (normally open). **Table 14-17** lists contact input terminals for which a NO or NC switch can be selected. Table 15 lists contact input terminals for which a NO or NC switch can be selected.

Terminal No.	Terminal name	Default function	Default input logic
E24	APP-IP1	Droop selection	NC
E14	APP-IP2	Reserve	NO
E9	APP-IP3	Speed 1	NO
E17	APP-IP4	Speed 2	NO
E5	APP-IP5	Air cleaner	NO
E6	APP-IP6	Speed selection enable	NO
E13	APP-IP7	Engine stop2	NO
E15	SHUDNSW	Engine stop	NO

Table 14-17 Contact input terminal switches available in NC and CO types

Table 14-18 lists E-ECU terminals whose functions must be mapped depending on whether or not the specific devices are connected to the terminals.

Terminal No.	Terminal name	Device connected	Setting
E35	APS	Accelerator sensor	0: No accelerator sensor (Generator standard) 1: Analog sensor (default) 2: Foot pedal + APP-IP2/IP7 switches 3: Foot pedal + APP-IP2 switch 4: Foot pedal + APP-IP2 switch (See "Accelerator sensor" for details).
E10	RENRPM	Backup speed sensor	0: Without backup speed sensor (default) 1: With backup speed sensor (default)
E44	AIRHT-RLY	Starting aid relay	0: Starting aid relay failure detection disabled 1: Starting aid relay failure detection enabled (default)
E34	MAIN-RLY	Main relay	Power supply self-holding feature 0: Disabled 1: Enabled (default)
E37	REAN	Backup analog	0: Without accelerator sensor (default) 1: Analog sensor 2: Foot pedal + APP-IP2/IP7 switches 3: Foot pedal + APP-IP2 switch 4: Foot pedal + APP-IP2 switch (See "Accelerator sensor" for details).
E16	RET	Backup coolant tempera- ture sensor	0: Non 1: High-accuracy coolant temperature sensor (default)

Table 14-18 E16 can also be used as a backup coolant temperature sensor input. When terminal TFO is assigned as a coolant temperature sensor input as shown in **Table 14-19**, TFO (E16) must be flagged to 1.

Table 14-19 Selection of the terminal for coolant temperature input

Flag	Input terminal	Sensor to be used
Coolant temperature	0: From TW (E25) terminal	Conventional type (119254-44910)
sensor selection	1: From RET (E16) terminal (default)	High-accuracy type (129927-44900)

Operational limitations in failure situations

Operational limitations are applied to the engine when alarms or failures shown in **Table 14-21** occur. These limitations can be changed depending on properties of the machine to which the engine is installed.

Table 14-20 shows mapping flags to be used for limiting the engine operation.

Flog opting	Limit	ation	
Flag setting	Speed limit	Output limit	
6	Engin	e stop	
5	1800min ⁻¹	92%	
4	1500min ⁻¹	92%	
3	No limit	92%	
2	1800min ⁻¹	No limit	
1	1500min ⁻¹	No limit	
0	No limit	No limit	

Table 14-20 Operational limitations and map settings

Table 14-21 shows alarms and failures at which operational limitations are applied to the engine, and flags for the limitations.

No. ^{*2)}	Failure item	Default flag
2	Accelerator sensor failure *1)	1
7	Backup speed sensor activation	2
9	EGR valve failure	5 (Unchangeable)
20	ECU overheat alarm	0
21	Oil pressure low alarm	0
23	Reserve	Ål
24	Air cleaner blockage alarm	0
25	Oily water separator alarm	0
26	Coolant temperature alarm	0

Table 14-21 Default flag setting for operational limitations

*1) See "Application interface outline" for details on accelerator sensor setting. The applied speed limit at the time of accelerator sensor failure has the different map from the other failure speed limit, so that the special speed at the time of accelerator sensor failure can be set.

*2) **Table 14-14** shows the number inside.

Alarm/failure detection conditions depend on the setting of the flags shown in Table 14-22.

No. ¹¹⁾	Failure item	Failure detection conditions
2	Accelerator sensor failure	APS terminal function assignment flag
7	Backup speed sensor failure	RENRPM terminal function assignment flag
8	CAN communication failure	Application function assignment flag
11	Starting aid relay failure	Starting aid relay failure detection setting flag
12	Main relay failure	Power supply self-holding feature assignment flag
14	Backup accelerator sensor failure	REAN terminal function assignment flag
15	Reserve	
16	Oil pressure switch failure	APP-IP2 terminal function assignment flag
17	Charge switch failure	APP-IP3 terminal function assignment flag
20	ECU overheat alarm	ECU overheat alarm setting flag
21	Oil pressure low	APP-IP2 terminal function assignment flag
22	Charge failure	APP-IP3 terminal function assignment flag
23	Reserve	Ål
24	Air cleaner blockage alarm	APP-IP5 terminal function assignment flag
25	Oily water separator alarm	APP-IP6 terminal function assignment flag
26	Coolant temperature high alarm	Cool temperature alarm setting flag

 Table 14-22
 Alarm/failure detection condition setting flags

*1) **Table 14-14** shows the number inside.

Lamp check functional description

All lamps will illuminate for approx. 2 seconds for lamp disconnection check when the E-ECU's power supply is turned on (at the time of turning on the key switch). Check the lamp, when lamp isn't illuminated at the time of turning on the key switch.

Lamp name	E-ECU I/O name	E-ECU I/O number
Failure lamp	FAIL-LMP	E12
Preheat lamp	PREHT-LAMP	E23
Coolant temperature alarm lamp	APP-OP2	F2
Speed change indication lamp	AFF-UFZ	

Table 14-23 Lamp output of the Eco-governor

Engine diagnosis tool function outline

The Yanmar genuine engine diagnosis tool can perform the E-ECU monitoring/diagnostics/setting of Gen2 Eco-governor. The engine diagnosis tool function is described in the tool manual. The following is supplementation of some functions.

Data monitor and logging functions

Table 14-24 shows the data that can be monitored/logged. The data that can be monitored/logged by default is shown in **Table 14-24** (17 types of freeze flame data shown in the left half side in the middle). In addition to these 17 items, 8 items can be selected from the 19 items shown in the right half side in the middle of **Table 14-24**.

	Freeze flame date (F	FD) ^{*1)}		Optional logging data ^{*2)}			
	I/O	Symbol		I/O	Symbol		
1	Standard engine target speed	RES	21	Accelerator sensor position	APP		
2	Final engine target speed	ERSF	22	Camshaft speed	CMRS		
3	Actual engine speed	ES	23	Backup speed	AUXRSS		
4	Target rack position	REQRP	24	EGR target opening	REVCV		
5	Actual rack position	ACTRP	25	Maximum rack position	RMAX		
6	EGR actual opening	AEVCV	26	Idling rack position	RIDLE		
7	Coolant temperature	ECT	27	Minimum rack position	RMIN		
8	Gross engine load factor	ELRG	28	Net engine load factor	LOAD		
9	Engine start recognition	ESSS	29	Speed control P gain	GCPG		
10	Target rack current	RCV	30	Speed control I gain	GCIG		
11	ECU temperature	EET	31	Speed control D gain	GCDG		
12	Battery voltage	BV	32	Rack circuit	RAC		
13	Accumulated engine run time	ERH	33	Rack position control conditions	RCS		
14	Contact input1	DIS1	34	Virtual droop correction amount	DCV		
15	Contact input2	DIS2	35	Reverse droop correction amount	RDCV		
16	Contact output1	DOS1	36	Engine acceleration flag	EAF		
17	Contact output2	DOS2	37	Engine deceleration flag	EDF		
18	-	-	38	Engine stop factor flag	ESWS		
19	-	-	39	Sensor 5V voltage	SSV		
20	-	-	40	-	-		

Table 14-24 lists the monitor/logging enabled data

*1)The 17 items data recorded by FFD function is also recorded by data logging function.

*2)In the data logging function, 8 types of the optional logging data can be selected and recorded in addition to the 17 FFD items.

Logging function

The E-ECU saves engine logs inside the internal EEPROM. The Yanmar genuine engine diagnosis tool can indicate these logs. See the Yanmar engine diagnosis tool instruction manufal for details.

The E-ECU saves engine logs in the internal EEPROM by utilizing power supply self-holding feature (default) when the E-ECU's power is turned off. When the power supply self-holding feature isn't used, the logging function data cannot be guaranteed.

I/O	Instruction	Record accuracy
Accumulated E-ECU energization	Time connected to the E-ECU.	Record: 1s unit
Accumulated engine run	Time for engine run	Record: 1s unit
Accumulated engine run time at alarm (total)	Fixed error condition ^{*1)} for the engine run time at (dele- tion impossible)	Record: 1s unit
Accumulated engine run time at alarm (trip)	Fixed error condition ^{*1)} for the engine run time at (dele- tion impossible)	Record: 1s unit
Number of engine start	Number for engine run	Number of start completion:
Load factor profile	Average value of 1-minute engine speed and engine load factor in 10 minutes interval is calculated. Calcu- lated corresponding frequency is recorded in the cell of the speed and load factor frequency map ^{*2)} separately regulated.	Record: 0.167 hour unit (Indication: 0.2 hour unit)
Error log	for each error code, first time of occurrence, latest time of occurrence, number of all occurrence and FMI at the latest occurrence are recorded. By default, time of occurrence is engine run time ^{*3)}	Number of occurrence: maximum 127 times First time of occurrence: 0.05 hour Latest time of occur- rence: 0.05 hour FMI at the latest occurrence
Freeze flame date (FFD)	Two-times data ñ 1s and 2s before the error occurrence is recorded Record subject error ^{*4)} is 4 items Number of FFD data ^{*5)} is 17 items	10 times (Disappearance after the 10th time)
Engine stop factor	Engine's stop factor ^{*6)} and accumulated engine run time at occurrence are recorded	Latest 50 times
Starter motor start prevention factor	Starter's stop factor ^{*7)} and accumulated engine run time at occurrence are recorded	Latest 50 times

*1) Fixed error indicates coolant temperature high alarm, EGR failure, oil pressure low, and ECU overheat alarm.

*2) See Table 14-26 for details of frequency map.

*3) Selection is possible from accumulated engine run time, ECU total time, and CAN acquisition time (optional)

*4) See Table 14-27 for details of the subject error recorded in the FFD record

*5) See **Table 14-24** for details of the data types included in the FFD

*6) See Table 14-28 for details of engine stop factor.

*7) See Table 14-28 for details of starter motor start prevention factor.

					Engine sp	eed [min ⁻¹]			
		Less than	Less than	Less than	More than				
		1000	1200	1500	1800	2000	2300	2500	2500
Engineload	Less than 20%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
factor [%]	Less than 40%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	Less than 50%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	Less than 60%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	Less than 70%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	Less than 80%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	Less than 90%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency
	More than 90%	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency

Table 14-26 The use frequency map of engine speed vs. load factor use

Note: Frequency is the result of speed and load factor 1-minute average over 10 minutes interval

Table 14-27	List of	errors	for t	he	FFD	record
	LISCO	enors	IOF L	ne	ггυ	record

Item	DTC code
Engine overspeed	P0219
Rack position sensor failure	P1202, P1203
Rack actuator failure	P1211, P1212, P1213
Rack actuator relay failure	P1222, P1223

Table 14-28 List of engine stop factor and starter motor start prevention factor

Engine stop factor	' flag	Starter motor start prevention factor flag		
Factor	Flag position	Factor	Flag position	
Engine stall	bit0	Safety relay function	bit0	
Key switch	bit1	In rack self-diagnosis	bit1	
Engine stop switch (E15)	bit2	External switch (E24, E17)	bit2	
Engine stop2 switch (E13)	bit3	Immobilizer (CAN message)	bit3	
Speed sensor failure	bit4	Control for duration of energization	bit4	
Rack actuator system failure	bit5	ICAN message	bit5	
E-ECU trouble - ROM	bit6	Engine stop switch (E15, E13)	bit6	
Engine overspeed	bit7	Key switch off	bit7	
E-ECU trouble - MAP	bit8	Rack self-diagnosis defection	bit8	
Engine run at failure flag *)	bit9	E-ECU trouble	bit9	
In EEPROM initialization	bit10	Engine overspeed Engine run at failure flag *)	bit10	
E-ECU trouble - EEPROM	bit11	In performing service maintenance	bit11	
ICAN message	bit12	E-ECU trouble - EEPROM	bit12	
-	bit13	Rack actuator system failure	bit13	
-	bit14	-	bit14	
-	bit15	-	bit15	

*) At the time of engine stop by the operation flag setting (=6) in Table 14-21

Tuning function

Tuning at the time of machine installation is possible for the E-ECU's engine control. In this kind of tuning is basically not needed. However, only when Yanmar judges the necessity of the matching with the machine, it will be implemented by Yanmar.

This tuning is done by the engine diagnosis tool to change the EEPROM data on each individual E-ECU. Therefore, changing the E-ECU's engine model-specific control map is required in order to apply to the mass-produced engines.

I/O		Instruction		
1	Start degradation measure- ment control	This adjustment is used to increase the start injection amount provisionally from the engine diagnosis tool for testing, when the start is reduced due to the wear out of fuel injection pump plunger.		
2	Accelerator filter change	The adjustment is used to change the responsiveness of target engine speed for testing, when there is a problem in engine speed control of the Eco-governor. See Accelerator filter (P.14-66) for details.		
3	Governor gain simple adjustment	The adjustment is used to change the control gain of engine speed control for testing, when there is a problem in engine speed control of the Eco-governor.		
4	Rack position control adjustment	If the engine vibration mount is inappropriate, there are cases in which the engine vibration may influence the rack position control. The adjustment is used to change the control gain of rack position control for testing, when there is a problem in engine speed control of the Eco-governor.		

Table 14-29 Tuning function outline

FUEL INJECTION PUMP

At the time of harness creation, watch for the polarity of rack actuator solenoid and speed sensor.

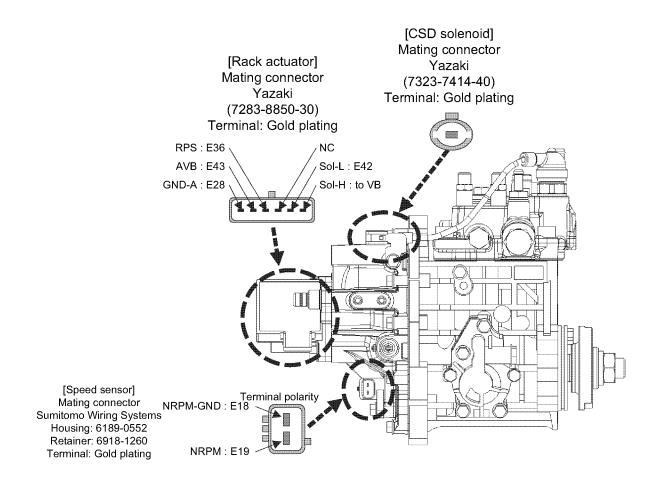


Fig. 14-64 Connectors applicable to the fuel injection pump

COOLANT TEMPERATURE SENSOR

The coolant temperature sensor comprises a thermister and provides control to the Eco-governor.

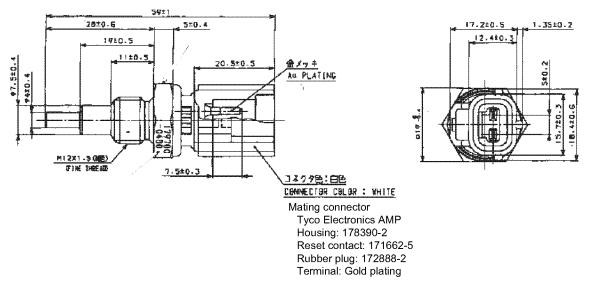


Fig. 14-65 Coolant temperature sensors (129927-44900)

EGR VALVE

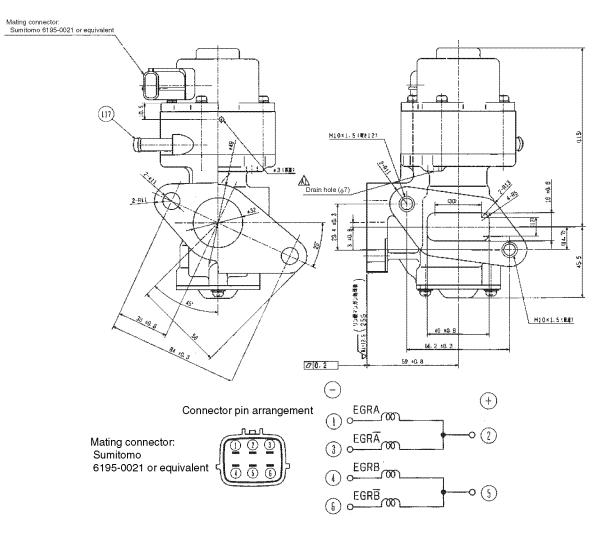


Fig. 14-66 EGR valve outline

YANMAR. TNV Application Manual

ACCELERATOR SENSOR

The Eco-governor has no governor lever unlike a mechanical governor and requires an accelerator sensor to set the engine speed. Use a Yanmar standard accelerator sensor (see Fig. 14-67) or equivalent. See Fig. 14-2, Table 14-5, Accelerator sensor (P.14-86), Accelerator input selection (P.14-48) for general requirements on accelerator.

Constant speed engines for generators may require no accelerator sensor. Contact Yanmar for details.

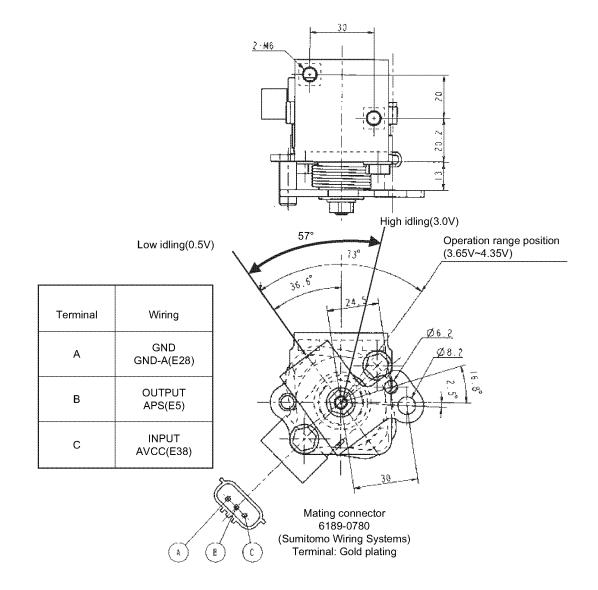


Fig. 14-67 Yanmar standard accelerator sensor (129938-77800)

Installation requirements of the Yanmar standard accelerator sensor:

(1) Waterproofness

In order to avoid water suction, water infiltration, and terminal corrosion, watch out for the following:

- Ensure no water is trapped inside the sensor axis or connector of the sensor.
- Install the sensor in such an area that is not subject to steam or high-pressure water for cleaning.
- Do not strain the harness. Doing so may damage waterproof seals, causing water to intrude into the harness.

(2) To protect against vibrations

To prevent abrasion or deterioration of potentiometer resistance elements and disconnection of the harness, observe the following:

- Install the sensor in such an area that is not subject to vibration of more than 2.4 Grms (5 to 1000 Hz in all directions).
- Install the sensor so that no resonance is produced.
- Install the sensor so that the sensor lever arm does not suffer vibration due to vibrations of the accelerator lever or wire cable. (Secure the accelerator lever and wire cable to the same member, for example). Ensure the fluctuation in output voltage of the accelerator sensor due to vibrations falls within a range of 1.6 mVp-p or less.

(3) To protect against noise

In order to prevent voltage fluctuation, watch out for the following:

- Ensure the cable length between the E-ECU and the accelerator sensor does not exceed 5 m.
- Do not lay the cable near noise sources such as large power devices. If it is inevitable to install the cable near noise sources, use a twisted or shielded cable.
- Ensure the fluctuation in output voltage falls within a range of 50 mVp-p or less.

(4) Others

• Do not use sensors that have suffered drop impact or visible damage.

Table 14-30 Accelerator sensor specifications

Rated voltage	5 VDC 0.01 V
Part Number	129938-77800
Total resistance (sensor alone)	5 ± 1.5kΩ
Working temperature range (sensor alone)	-30°C ~ 110°C
Storage temperature range (sensor alone)	-40°C ~ 130°C

MAIN RELAY

The main relay provides power to the E-ECU, rack actuator, EGR valve etc. It contains a diode that prevents contact operation in case of reverse connection of the excitation coil. See **Fig. 14-4** for electrical connection of the starting aid relay.

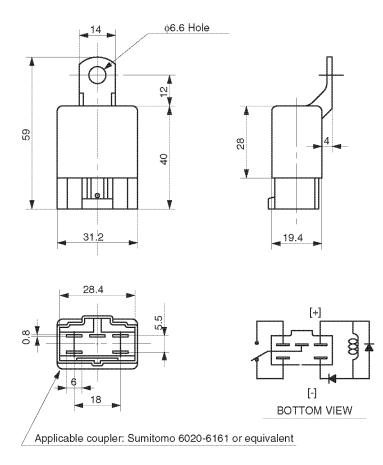


Fig. 14-68 CA relay

Part Number	198461-52950
Coil rated voltage	12 VDC
Rated excitation current	150mA
Contact type	c-contact
Contact rated voltage	12 VDC
Contact rated current	20 A continuous/100a-0.1s

Table 14-31 CA relay specifications

RACK ACTUATOR RELAY

The rack actuator relay provides power to the rack actuator. The standard sub relay is the same as the main relay. It also contains a diode that prevents contact operation in case of reverse connection of the excitation coil. But this diode is not necessarily required for the rack actuator relay. See **Fig. 14-4** for electrical connection of the starting aid relay.

SUB RELAY

The sub relay provides power to the trouble monitor lamp on the panel or external switches. The standard sub relay is the same as the main relay. It contains a diode that prevents contact operation in case of reverse connection of the excitation coil. See **Fig. 14-4** for electrical connection of the starting aid relay.

STARTER RELAY

The starter relay controls power to terminal S of the starter. See **Fig. 14-4** for electrical connection of the starting aid relay.

This starter relay is applicable to 12 VDC/2.3 kW starters (129900-77010, 129910-77022) and 12 VDC/3.0 kW starter (129940-77010). Contact Yanmar for confirmation on application for the other starters.

As ISO relays have no bracket, a metal bracket compatible with the mating connector (Yazaki 7223-6146-30) is available. See **Fig. 14-70**.

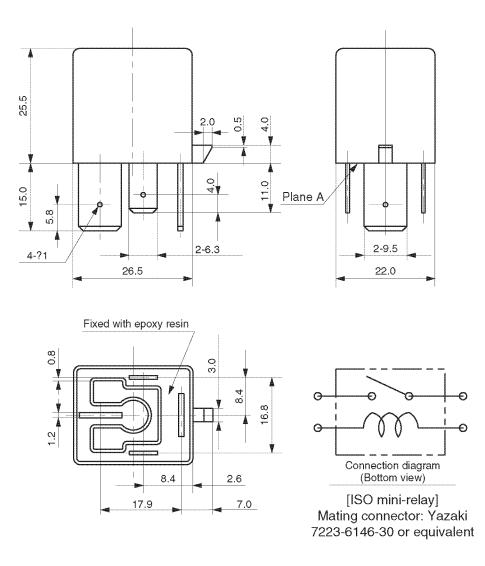
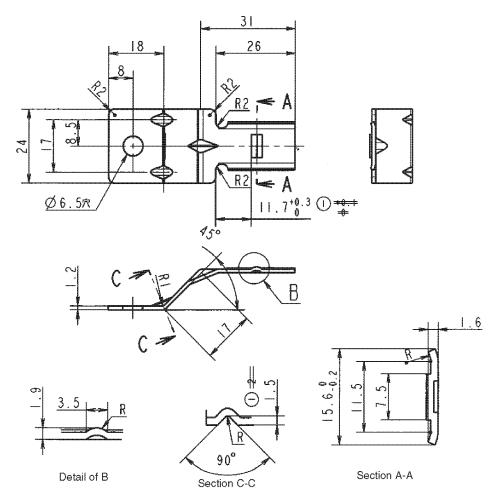
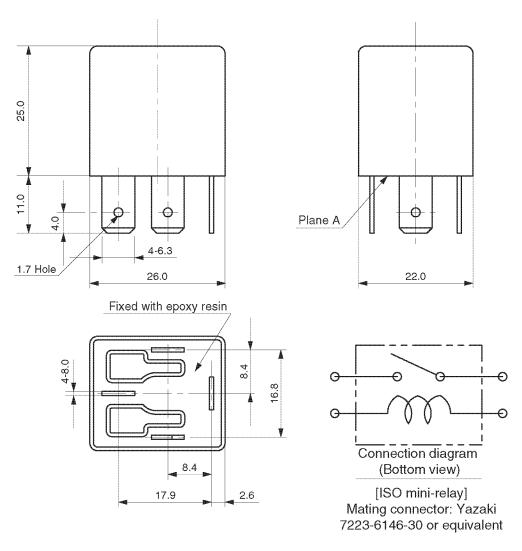


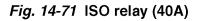
Fig. 14-69 ISO relay (70A)

Part Number	129927-77920
Coil rated voltage	12 VDC
Rated excitation current	117mA
Contact type	a-contact
Contact rated voltage	12 VDC
Contact rated current	70A
Operation delay time	15ms Max.
Recovery delay time	15ms Max.

Table 14-32 Specifications of ISO relay (70A)




Fig. 14-70 Bracket for ISO relay (129927-77910)



STARTING AID RELAY

The starting aid relay controls power to the air heater or glow plug. See **Fig. 14-4** for electrical connection of the starting aid relay. Three types of starting aid relays are available depending on the load capacity.

For 400 W air heater (glow plug)

•	• • • •
Part Number	129927-77930
Coil rated voltage	12 VDC
Rated excitation current	117mA
Contact type	a-contact
Contact rated voltage	12 VDC
Contact rated current	40A-continuous

Table 14-33 Specifications of ISO relay (40A)

As ISO relays have no bracket, a metal bracket compatible with the mating connector (Yazaki 7223-6146-30) is available. See **Fig. 14-70**.

For 500/800 W air heater

The relay for 500/800 W air heater is the same as the starter relay (129927-77920).

For 1000 W air heater

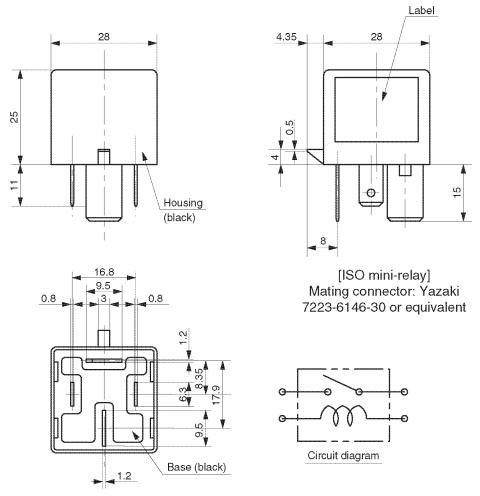


Fig. 14-72 ISO relay (90A)

Table 14-34	Specifications	of ISO relay (90A)
-------------	----------------	--------------------

Part Number	129927	7-77900						
Coil rated voltage	12 VDC							
Rated excitation current	200mA							
Contact type	a-contact							
Contact rated voltage	12 VDC	24 VDC						
Contact rated current	Resistive load: 90A for 4 minutes	Resistive load: 55A for 4 minutes Inductive load: 19A for 30 seconds						

THE ECO-GOVERNOR CHECKLIST

No.	I/O	Design	Result Installation Remarks
Con	trol system design and check		
1	Is alternator's charging capacity enough? Besides starting aid, E-ECU, Eco-governor (pump, CSD), EGR valve, E-ECU lamp, and E-ECU relay require 4 - 5A consumption current for the engine control.	OK/NG (A)	-
2	Is the E-ECU's connector installed facing downward? Avoid the installation method that makes water trapped inside coupler in ECU side or water trapped in coupler in harness side ? it may cause the connector terminal to rust.	OK/NG (deg)	OK/NG (deg)
3	Is the E-ECU installed in a location that is well ventilated and not subject to direct sunlight? it will result in malfunction by high temperature and discoloration by sunlight.	OK/NG	OK/NG
4	Is the E-ECU installed in a location that is not subject to steam or high-pressure water for cleaning? It will result in connection malfunction and make connector terminal to rust.	OK/NG	OK/NG
5	When the salt damage is thought, is the salt damage prevention cover installed in the E-ECU? When the aluminum part of the E-ECU becomes rusty, it will result in malfunc- tion such as flaking off molding.	OK/NG	OK/NG
6	Is the engine trouble indication means (the trouble monitor lamp, etc.) located so as to be easily visible to the operator. The engine performance is not assured at the trouble conditions (flash of the trouble monitor lamp, etc.).	OK/NG	OK/NG
7	Is the connector for the engine diagnosis tool located so as to be easily maintained? The connector for the engine diagnosis tool is essential for the E-ECU's maintenance.	OK/NG	OK/NG
8	Is the E-ECU located where the regulatory environmental conditions are satisfied? (See the installation assessment report for environmental requirements).	-	OK/NG
9	Is the accelerator sensor located where the regulatory environmental conditions are satisfied? (See the installation assessment report for environmental requirements). Never install the Yanmar genuine accelerator sensor (129938-77800) to engine or fuel injection pump body.	-	OK/NG
10	Are the engine type and manufacturing number matching the engine nameplate and E-ECU label? The engine performance is not assured except the regulated combination.	-	OK/NG
11	Is the trouble monitor lamp flashing after the 2 seconds illumination at the time of turning on the key switch? (When the other engine trouble indication means besides the trouble monitor lamp are utilize, is there the trouble indication by that means?) The engine performance is not assured at the trouble conditions (flash of the trouble monitor lamp, etc.).	-	OK/NG
12	Is the engine diagnosis tool in operation?	-	OK/NG
13	Is the E-ECU power voltage at the time of getting over cranking increase to more than 6.0 V by measuring between the VB terminal (E48) and the GND ter- minal (E45)? Especially, the evaluation at cold start and battery degradation is requested.	-	OK/NG (V)

			Result	
No.	I/O	Design	Installation	Remarks
14	 In the engine run conditions, low idling, high idling, rated load, middle load, check the following. Check is conducted by using the engine diagnosis tool. Engine speed fluctuation: the difference between maximum and minimum value of the engine speed in 10s. Rack deviation: the difference in average value of target rack position and actual rack position in 10s. Rack deviation: the difference in average value as well as maximum and minimum and minimum value of target rack position and actual rack position in 10s. Rack deviation: the difference in average value as well as maximum and minimum value of target rack position and actual rack position in 10s. (Report the result to Yanmar. The judgment is made by Yanmar). 	-	Speed fluctuation = (min ⁻¹) Rack deviation = (AD) Rack fluctuation =	
			(AD)	
Elec	trical component design and check			
15	Is the E-ECU's lamp load such as the trouble monitor lamp lower than 12 V/3.4 W?	OK/NG (W)	-	
16	Is the minimum working current of switches directly connecting to the E-ECU not exceeding 10 mA? The contact input current of the E-ECU is 10mA at the rated voltage of 12 V. Do not use the switches that require more contact current.	OK/NG (mA)	-	
17	Is the Yanmar genuine coolant temperature sensor used for the E-ECU? Also, is the load besides the E-ECU connected to the E-ECU's TW terminal (E25)?	OK/NG	-	
18	When the oil pressure switch (such as 119761-39450) is connected to the E- ECU's APP-IP2 terminal (E14), is resistance or lamp connected to enable the contact circuit of the oil pressure switch to become more than 100mA? An instantaneous power interruption of 1 ms or longer of the E-ECU power supply may cause trouble including changing the engine speed and hindering the engine from starting.	OK/NG (mA)	-	
19	Is the alternator'sIG terminal independent from the circuit of the E-ECU's IGNSW terminal (E7) and the E-ECU's RACK-RLY terminal (E33) from the rack actuator relay? In some alternators, the generated current flows in reverse from the IG termi- nal.In this case, the engine may not stop even the key switch is turned off.When the circuit cannot be made independent, install diode in the IG terminal to avoid the current to flow in reverse from the IG terminal. When the Yanmar genuine alternator is used, this check isn't required.	OK/NG	-	
20	The key switch: the E-ECU power supply current not open between the ON and Start positions ñ is this kind of key switch used? Having more than 10ms momentary power failure at the time of returning the key switch from the Start to ON positions may cause trouble including changing the engine speed and hindering the engine from starting.Be noted that the above-mentioned trouble tends to occur easily to the key switch at cold temperature.	OK/NG	OK/NG (ms)	
21	When using the CAN terminal resistor inside the ECU, are E30 and E39 con- nected with a jumper as short as possible? When using the CAN terminal resistor inside the ECU, are E30 and E39 con- nected with a jumper as short as possible?	Short/ Open	-	
22	Are the E-ECU terminals loads other than intended or specified connected?	OK/NG	-	
Wiri	ng harness design		· · ·	
23	Is the E-ECU's GND terminal (E45, E47) earthed one point as closely as possible to the battery minus terminal?	OK/NG	OK/NG	
24	Is the main relay fuse's power supply side circuit directly branched from the bat- tery plus terminal? If the main relay's power supply circuit is branched from the starter B terminal and other large current device, it will be difficult to maintain the E-ECU power supply voltage of more than 6.0 V due to the voltage drop.	OK/NG	-	

NT :	10		Result	
No.	I/O	Design	Installation	Remarks
25	Is the capacity of main relay fuse 10A and connected besides the E-ECU, rack actuator relay, and EGR valve? The main relay circuit (E-ECU, rack actuator relay, EGR valve) is an important function.Have an independent fuse circuit from the other electrical devices.	OK/NG (A)	-	
26	Is the main relay power supply circuit connected with the E-ECU's power supply self-holding feature? Is the main relay's connection in accordance with the referential electrical connection diagram?	OK/NG	-	
27	Is branching of the E-ECU, rack actuator relay, and EGR valve made as closely as possible to the E-ECU's VB terminal (E48)? (within 220mm from the VB terminal is recommended).	OK/NG (mm)	-	
28	Is the rack actuator relay connected with contact off (rack actuator power supply interruption) by the key switch? Is the rack actuator relay's connection in accordance with the referential electri- cal connection diagram? Even if some trouble is occurred in the main relay and power supply self-holding feature, the engine can be stopped by shutting off the rack actuator's power supply by the key switch.	OK/NG	-	
29	Is the connection enable the starter motor start prevention by starter relay? Is the starter relay's connection in accordance with the referential electrical con- nection diagram? During the rack self-diagnosis at the E-ECU's power on, the starter movement must be prevented.	OK/NG	-	
30	Is the key switch's start position signal connected to the E-ECU's STARTSW terminal? Is the engine start signal (E8) connected in accordance with the referential elec- trical connection diagram? In the E-ECU, the engine start signal (E8) must be entered for injection to start even when the starter is working.Also, be noted that when the starter start isn't checked by the speed sensor (E18, E19) even with the STARTSW terminal (E8) entered in the E-ECU, the speed sensor failure is detected.	OK/NG	-	
31	Is the Yanmar genuine relay (198461-52950) used for the main relay and sub relay, or diode for the protection against reverse connection installed? Diode is required to protect the E-ECU from the reverse connection of battery cable.	OK/NG	-	
32	Is the cable length from battery to main relay fuse less than 4m? The numerical value is the length that confirms the engine performance by Yanmar.	OK/NG (m)	-	
33	Is the total cable length from the main relay fuse to the E-ECU's VB terminal (E48), GND terminal (E45) to battery less than 5 m? The numerical value is the length that confirms the engine performance by Yanmar.	OK/NG (m)	-	
34	Is the total cable length from the main relay fuse to the main relay, from the main relay to the rack actuator relay, from the rack actuator relay to the rack actuator, from the rack actuator to the E-ECU's RACSOL terminal (E42), from the E-ECU's GND-P terminal (E47) to battery less than 10 m? The numerical value is the length that confirms the engine performance by Yanmar.	OK/NG (m)	-	
35	Is a twisted-pair cable used for the speed sensor?	OK/NG	-	
36	Is a shield + twisted-pair cable used for the CAN communication (E39, E49) connection?	OK/NG	-	
37	Is an appropriate fuse used to meet the load's requested current and the electric cableís allowable current? When design is inappropriate, fuse may often interrupted and cause the har- ness fire.	OK/NG	-	

No.	VQ		Result	
NO.	10	Design	Installation	Remarks
38	Is the design allow to branch the circuit that requests a large current of more than 10 A (starter and starting aid, etc.) and a small current of a few A (E-ECU, fuel feed pump, etc.) from the same fuse circuit? Such a design may cause malfunction including widening the cable road of the small current circuit when combined with the large current circuit fuse capac- ity.Group the fuse circuit by function and requested electrical current.	OK/NG	-	
39	Are electric cables whose heat resistance is appropriate to surrounding thermal conditions used?. Heat resistant temperature of higher than 100°C is recommended for the harness surrounding the engine.	OK/NG (°C)	-	
Wiri	ng harness installation			
40	Is the harness cramped to appropriate structures so as to prevent vibrations? Vibration may cause the inside of electrical cable to be disconnected, and short the cable.	-	OK/NG	
41	Is the harness cramp strained? The disconnection is caused.	-	OK/NG	
42	Is the harness installed in the location where it's not pinched or touching the edge part? The disconnection and short are caused.	-	OK/NG	
43	Is there infiltration of water from the non-waterproofed connector terminal and joints? When water is trapped, it may cause corrosion.The water proof processing is recommended, if it's a worrying factor.	-	OK/NG	

ECU APPLICATION MENU

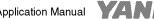
HO Unit Base of pairs Packbox Practice December of pairs Consist of pairs <thconsistof pairs<="" th=""> <thconsist of="" pairs<="" th=""></thconsist></thconsistof>
Display Control setting part Contrel setting part Control setting part </td
1 Engrapped [min] -
2 Low Hilling speed Imin. ⁴ - -
5 Managed forque speed min1 1 Initial speed A speed 1500 1500 1500 1500 2 Application interface setting put in the standard CAN 2. Reserve 0
S Limit of speed conditions Low Low Low 1 Timited speed 1500 150
1 Interfed speed A speed 1500 1500 1500 1500 1500 1500 1 Application inferface setting particle setting 0
Di Application interface setting part Image: Constraint of the setting of a constraint of the set of th
1 Application interface outline setting 0. Standard contact 0
Image: Series in put Description Second of landing setting of accelerator sensor Image: Second of landing setting of accelerator sensor Image: Second of landing setting of accelerator sensor Image: Second of landing setting setting of accelerator sensor Image: Second of landing setting setting of accelerator sensor Image: Second of landing setting setent setex second setting setting setting setting setting settin
Besize Besize Image: Control function setting Setting of accelerator sensor trut Image: Control function setting 2 ECU Control function setting 0 1 1 1 1 1 1 0 Image: Control function setting 2 ECU Control function setting 0 No accelerator sensor trut 1 1 1 1 1 0 Image: Control function func
2 ECC Control function setting Image: Control function setting of accelerator sensor Image: Control function sentor sensor Image: Control function sentor sentor sentor 2 Low Idling voltage of APS V Image: Control function sentor sentor 0.7 0.7 0.7 0.7 1 Image: Control function sentor 3.0 3.0 3.0 3.0 3.0 3.0 2 Low Idling voltage of REAN V Image: Control function sentor 1 1 1 1 1 1 1 1 1 1 1 1 1
Accelerator sensor input Image: Construct of the construction of the constructio
1 Sotting of accelerator sensor 1
1. APS terminal 2. APS terminal 1 1 1
side is prioritized) 3: CAN communication + APS terminal (CAN communication + CAN communication + APS in IPS terminal (CAN communication + APS in IPS terminal + CAN communication + APS terminal + CAN communication + APS terminal + CAN communication + CAN context + CAN communication + CAN context +
Bit ScAN communication APS terminal (CAN communication is prioritized) Image: Scan communication is approximately ap
Image:
cation is prioritized) S: CAN communication is prioritized) 0.7 0.7 0.7 0.7 0.7 2 Low Idling voltage of APS V 0.7 0.7 0.7 0.7 0.7 3 High Idling voltage of APS V 0.7 0.7 0.7 0.7 0.7 4 Low Idling voltage of APS V 0.7
S: CAN communication + APS in IPS terminal (CAN communication is prioritized) 0.7
Image: space of APS V Image: APS Image: APS <thimage: aps<="" th=""> Image: APS Image: A</thimage:>
Image: Control of the second state of the s
3 High Idling voltage of APS V terminal 3.0
Imminal Imminal <t< td=""></t<>
4 Low Idling voltage of REAN V 0.7 0.7 0.7 0.7 0.7 5 High Idling voltage of REAN V 3.0
Image: Section input 0 Amage: Section input 0 Amage: Section input 0 Amage: Section input 1
5 High Idling voltage of REAN terminal V 3.0 3.0 3.0 3.0 3.0 7 Droop selection input 0: Always isochroous control 1: by APP-IP1 or CAN input 1
terminal
1: by APP-IP1 or CAN input 0 0 0 0 8 isochroous control at low idling 0: Disabled 0 0 0 0 9 Reverse Droop selection 0: Aways reverse droop disabled 1 1 1 1 1 11 Power supply self-holding feature 0: Disabled (without failure detection) 1
Image: spectra bit ways droop control Image: spectra bit ways droop control Image: spectra bit ways reverse droop disabled Image: spectra bit ways reverse droop enabled Image: spectra b
8 Isochroous control at low idling 0: Disabled 0 0 0 0 0 9 Reverse Droop selection 0: Always reverse droop disabled 1 <t< td=""></t<>
Image: second selection 1: Enabled Image: second selection 0: Always reverse droop disabled 1
9 Reverse Droop selection 0: Always reverse droop disabled 1
1: by APP-IP5 or CAN input 2: Always reverse droop enabled1111111 Power supply self-holding feature 0: Disabled (without faiture detection) 1: Control by GNSW terminal input 2: Control by CAN communication11<
Image: sequence of the sequenc
11 Power supply self-holding feature 0: Disabled (without failure detection) 1
2: Control by CAN communication 1 1 1 1 1 12 Starter permission motor start prevention function 0: Disabled 1
12 Starter permission motor start prevention function 0: Disabled 1 <t< td=""></t<>
vention function1: Enabled - NO-Relay 2: Enabled - NC-Relay: Reseve(Essential)13 External switch control function0: Disabled 1: Enabled0000014 Starter duration of energization con- trol function0: Disabled 1: Enabled0000015 Starting aid relay failure detection function0: Disabled 1: Enabled11111116 Starting aid function: Simultaneous energization0: Disabled 1: Enabled111111117 Starting aid function: simultaneous energization0: Disabled 1: Enabled111
2: Enabled - NC-Relay: Reseve 0 0 0 0 0 13 External switch control function 0: Disabled 0 0 0 0 0 14 Starter duration of energization con- trol function 0: Disabled 0 0 0 0 0 0 15 Starting aid relay failure detection function 0: Disabled 1 1 1 1 1 1 16 Starting aid function: Simultaneous energization 0: Disabled 1
13 External switch control function0: Disabled 1: Enabled00000014 Starter duration of energization con- trol function0: Disabled 1: Enabled00000015 Starting aid relay failure detection function0: Disabled 1: Enabled11111116 Starting aid function: ON-glow0: Disabled 1: Enabled (Disabling is possible by CAN communication command)11111117 Starting aid function: simultaneous energization0: Disabled 1: Enabled (Disabling is possible by CAN communication
Image: speed selection setting1: EnabledI: Enabled
14 Starter duration of energization con- trol function0: Disabled 1: Enabled0000015 Starting aid relay failure detection function0: Disabled 1: Enabled11111116 Starting aid function: ON-glow energization0: Disabled 0: Disabled 1: Enabled (Disabling is possible by CAN communication command)111111117 Starting aid function: simultaneous energization0: Disabled 1: Enabled (Disabling is possible by CAN communication command)1111111118 Starting aid function: after heating 0: Disabled 1: Enabled (Disabling is possible by CAN communication command)000000019 Speed selection setting 1: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch000000
15 Starting aid relay failure detection function0: Disabled 1: Enabled11111116 Starting aid function: ON-glow energization0: Disabled 1: Enabled (Disabling is possible by CAN communication command)1111111117 Starting aid function: simultaneous energization0: Disabled 1: Enabled (Disabling is possible by CAN communication command)1111111118 Starting aid function: after heating energization0: Disabled 1: Enabled (Disabling is possible by CAN communication command)00000018 Starting aid function: after heating energization0: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch000000
function1: EnabledImage: Constant speed control, APP-IP6 = momentary switch1Image: Constant speed control, APP-IP6 = momentary switch11<
16 Starting aid function: ON-glow0: Disabled 1: Enabled (Disabling is possible by CAN communication command)1111117 Starting aid function: simultaneous energization0: Disabled 1: Enabled (Disabling is possible by CAN communication command)111111118 Starting aid function: after heating or mand)0: Disabled 1: Enabled (Disabling is possible by CAN communication command)0000018 Starting aid function: after heating 1: Enabled (Disabling is possible by CAN communication command)0: Disabled 1: Enabled (Disabling is possible by CAN communication command)0000019 Speed selection setting 1: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch00000
1: Enabled (Disabling is possible by CAN communication command) 1 <t< td=""></t<>
command) command) 17 Starting aid function: simultaneous energization 0: Disabled 1: Enabled (Disabling is possible by CAN communication command) 1 1 1 1 1 1 18 Starting aid function: after heating normand) 0: Disabled 1: Enabled (Disabling is possible by CAN communication command) 0 0 0 0 0 0 19 Speed selection setting 0: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch 0 0 0 0 0
17 Starting aid function: simultaneous energization 0: Disabled 1: Enabled (Disabling is possible by CAN communication command) 1 1 1 1 1 1 1 18 Starting aid function: after heating 19 Speed selection setting 0: Disabled 0: Disabled (Disabling is possible by CAN communication command) 0 0 0 0 0 0 19 Speed selection setting 0: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch 0 0 0 0 0
energization 1: Enabled (Disabling is possible by CAN communication command) (Essential) Image: Command co
18 Starting aid function: after heating 0: Disabled 0
1: Enabled (Disabling is possible by CAN communication command) (1: Recommended) 19 Speed selection setting 0: Constant speed control, APP-IP6 = toggle switch 1: Constant speed control, APP-IP6 = momentary switch 0 0 0 0
command) command 19 Speed selection setting 0: Constant speed control, APP-IP6 = toggle switch 0 0 0 0 1: Constant speed control, APP-IP6 = momentary switch 1: Constant speed control, APP-IP6 = momentary switch 0 0 0 0
19 Speed selection setting 0: Constant speed control, APP-IP6 = toggle switch 0
1: Constant speed control, APP-IP6 = momentary switch
2: deceleration control, APP-IP6 = toggle switch
3: deceleration control, APP-IP6 = momentary switch
4: Reserve
5: Auto deceleration control, APP-IP6 = toggle switch
20 Auto deceleration waiting time 4 4 4
Constant speed control 1800 1800 1800 1800

									~			
I/O	Unit						Base Engine	Backhoe	Tractor	Loader	Generator	Customer's specifications
2 22 Constant Speed 2	min ⁻¹						1500	1500	1500	1500	1500	
Deceleration control	1						1500	1500	1500	1500	1500	
23 Deceleration start speed 24 Deceleration1	min ⁻¹						1500	1500	1500	1500	1500	
24 Deceleration1 25 Deceleration2	%						85 70	85 70	85 70	85 70	85 70	
27 Idling speed up	/0	0: Disat	led				1	1	1	1	0	
		1: Enab					(Essential)	•			Ĵ	
28 Blue and white smoke suppres		0: Disab					0	0	0	0	0	
(high idling speed limitation in	cold	1: Enab	led				(1: Recommended)					
conditions) 37 Coolant temperature alarm se	ttina	0: Disat	oled				1	1	1	1	1	
	ung	1: Enab						•				
38 ECU overheat alarm setting		0: Disat					0	0	0	0	0	
		1: Enab	led									
ECU terminal setting												
1 Logic setting of APP-IP1 termi	inal			ch (High is 1			1	1	1	1	0	
2 Input setting of APP-IP1 termi	nal	1: input	IOF INC SWITE	ch (Low is 1) Starter	1		1	1	1	1	1	
function	nai		Droop	permission	D.				'	'		
		Setting	selection	, motor start prevention	Reserve	Reserve						
		0	Non	Non	-	-						
		1	APP-IP1	CAN	-	-						
		2	CAN	APP-IP1	_	-						
		3	CAN	APP-IP1/	_	_						
				CAN	-	-						
		4	CAN	CAN	-	-						
3 Logic setting of APP-IP7 termi	inal			ch (Low is 1)			0	0	0	0	0	
4 Input setting of APP-IP7 termi	nal			ch (High is 1) Engine)	Foot pedal	1	1	1	1	1	
function	nai	Setting	Rmax 1	stop2	Reserve	switch-NC		•				
		0	Non	Non	-	Non						
		1	APP-IP7	CAN	-	Non						
		2	CAN	APP-IP7	-	Non						
		3	CAN	CAN		Non						
		4		CAN		APP-IP7						
			CAN									
		5	CAN	CAN ch (Low is 1)	-	Non						
5 Logic setting of APP-IP2 termi				ch (High is 1			0	0	0	0	0	
6 Input setting of APP-IP2 termi function	nal	Setting	Rmax 2	Oil pressure switch	Reserve	Foot pedal switch-NO	1	1	1	1	2	
		0	Non	Non	-	Non						
		1	APP-IP2	CAN	-	Non						
		2	CAN	APP-IP2	-	Non						
		3	CAN	CAN	-	Non						
		4	CAN	CAN	_	APP-IP2						
		5										
7 Logic setting of APP-IP3 termi	inal		CAN for NO swit	CAN ch (Low is 1)	-	Non	0	0	0	0	0	
	nial			ch (Low is 1) ch (High is 1				0				
8 Input setting of APP-IP3 termi	nal	Setting	Speed	Charge	, Reserve	Reserve	1	1	1	1	1	
function			Selection	failure								
		0	Non	Non	-	-						
		1	APP-IP3	Non	-	-						
		2	CAN	APP-IP3	-	-						
		3	CAN	Non	-	-						
		4	CAN	Non	-	-						
9 Logic setting of APP-IP4 termi	inal			ch (Low is 1)		I	0	0	0	0	0	
		1: Input	for NC swite	ch (High is 1)							

100 Unit Section Base of tractor Denotes the function Denotes the function Control tractor Control tractor Control tractor 3 10 lipped setting of APP-IPS lumination Section Reserve Neares									Standard	1 machine		
Simulation Speed function Speed Planta Plasere Flasere (1) Plasere (1) Plasere (1) I	I/O Unit						Base	Backhoo	1	1	Gonorator	Customer's
tunction standing selection2 releasive releasive is releasive in the selection releasive releasive is releasive in the selection releasive is releasive is rele				1	T	r						specifications
Image: setting of APP-IPS terminal O Non ·		Setting		Reserve	Reserve	Reserve	1	1	1	1	1	
Image: setting of APP-IPS terminal	Tuncuon	0		-	-	_				+		
Image: setting of APP-IPS terminal Image: setting of APP-IPS terminal unction Image: setting of APP-IPS terminal <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		-				-			-			
I I				-	-	-					+	
11 Logic setting of APP-IPS terminal trunction Input for ICS witch (Hgh IS 1) 0 0 0 0 0 12 Input for ICS witch (Hgh IS 1) 1<		3	CAN	-	-	-						
Image: Setting of APP-JPS terminal tunction Imput for NC switch (High is 1) Image: Setting of APP-JPS terminal tunction Image: Set in the set interminal tunction Image: Se				-		-						
12 Image: Setting of APP-IPS terminal function Setting of APP-IPS terminal setting of APP-IPS terminal in the setting of APP-IPS terminal intercepting intercepting of APP-IPS terminal intercepting of APP-IPS terminal intercepting of APP-IPS terminal intercepting of APP-IPS terminal intercepting interedinter secting interedinter intercepting intereset int	11 Logic setting of APP-IP5 terminal						0	0	0	0	0	
function Setting 0 Droop Non Non - </td <td></td> <td>1: Input</td> <td></td> <td>ch (High is 1</td> <td>)</td> <td>1</td> <td></td> <td><u> </u></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td>		1: Input		ch (High is 1)	1		<u> </u>		<u> </u>	<u> </u>	
V Selection Selecion Selection Selecti		Sotting		Air cleaner	Boconio	Boconio	1	1	1	1	1	
Image: setting of APP-IPS terminal inclusion for the setting of APP-IPS terminal inclusion inclusion for the setting of APP-IPS terminal inclusion for the setting inclusion for the setting of APP-IPS terminal inclusion inclusion for the setting of APP-IPS terminal inclusion inclusion for the setting inclusion for the setting of APP-IPS terminal inclusion inclusion for the setting of APP-OP2 terminal inclusion inclusion term for the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the setting of APP-OP2 terminal inclusion inclusion terms or the set of the	Tunction	Setting		sensor	Reserve	neserve						
I APP-IPS Non -		0		Non	-	-					+	
Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function of APP-IP6 terminal function Image: setting of APP-IP6 terminal function APP-IP6 terminal function of APP-IP6 terminal function of APP-IP		-										
4 CAN Non - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td>						-					+	
S CAN Non - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>					-	-			-		-	
13 Logic setting of APP-IP6 terminal function 0: mput for NO switch (Low is 1) 0 0 0 0 0 14 input setting of APP-IP6 terminal function Setting Selecting Selection Speed Selection Olly water separator Reserve separator Reserve 1 <td< td=""><td></td><td>4</td><td>CAN</td><td>Non</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		4	CAN	Non	-	-						
Image: Section of APP-IPG terminal function Section of APP-IPG		5	CAN	Non	-	-						
14 Input setting of APP-IP6 terminal function Setting Setting 0 Sepect Setting 0 Oily water sparator (not) Reserve sparator (not) I 1 </td <td>13 Logic setting of APP-IP6 terminal</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	13 Logic setting of APP-IP6 terminal						0	0	0	0	0	
function Setting Selection enable separator Reserve separator Reserve separator <td></td> <td>1: Input</td> <td>for NC swite</td> <td>ch (High is 1</td> <td>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1: Input	for NC swite	ch (High is 1)							
Lunction Selecting enable (0) Selecting (n) Selecting (n) Selecting (n) Heserve (n) Heserve (n)(n) Heserve (n) <			Speed	Oily water			1	1	1	1		
Image: state of the second s	function	Setting			Reserve	Reserve						
Image: state in the state is a state is a state is a state in the state is a state state is a state is				·								
Image: Product of the second		-			-	-		 		<u> </u>		
Image: set in the set					-	-				<u> </u>	+	
Image: setting of SHUDNS terminal 4 CAN Non -										<u> </u>	+	
15 Logic setting of SHUDNS terminal 0: Input for NC switch (High is 1) 0 0 0 0 0 16 Setting of APP-OP1 terminal function 0: Stater relay 0 0 0 0 0 0 17 Setting of APP-OP2 terminal function 0: Reserve 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td><u> </u></td> <td></td> <td></td>										<u> </u>		
Imput for NC switch (Low is 1) Imput f	15 Logic setting of SHUDNS terminal	· ·					0	0	0	0	0	
16 Setting of APP-OP1 terminal function 0: 1: Middle-speed lamp (YN track specifications) 0 0 0 0 0 17 Setting of APP-OP2 terminal function 0: Reserve 3							_	_				
17 Setting of APP-OP2 terminal function 0: Reserve 3	16 Setting of APP-OP1 terminal function						0	0	0	0	0	
Image: Second matrix and the speed sensor failure detection permission is a coolarit temperature alarm lamp output (iliuminated during the speed sensor failure detection) is a coolarit temperature alarm lamp output 1 1 1 1 1 1 0 18 Input setting of APS terminal function is a coolarit temperature alarm lamp output 0 0 1 1 1 1 1 1 0 18 Input setting of APS terminal function is a cool without accelerator sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is a concerted in the speed sensor failure detection is connected in the speed sensor failure detection is concerted in the speed initiation is a concerted in the speed initiation is a concerted in the speed initiation is a concerted in the speed initi				np (YN track	specificatio	ns)	(Essential)					
Image: Provide the speed selection permission of during the speed selection permission of 3: Coolant temperature alarm lamp output Image: Provide the speed selection permission of 3: Coolant temperature alarm lamp output Image: Provide the speed selection permission of 3: Coolant temperature alarm lamp output Image: Provide the speed selection permission of 3: Coolant temperature alarm lamp output Image: Provide the speed selection permission of 3: Coolant temperature alarm lamp output Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission of 3: Coolant temperature start Image: Provide the speed selection permission selectio	17 Setting of APP-OP2 terminal function						3	3	3	3	3	
Image: A speed selection permission) 3: Coolant temperature alarm lamp output Image: Coolant temperature alarm lamp output Image: Coolant temperature alarm lamp output 18 Input setting of APS terminal function 0: Disabled (without accelerator sensor failure detection) 1 1 1 1 1 0 18 Input setting of APS terminal function 0: Disabled (without accelerator sensor failure detection) 1 1 1 1 1 0 19 Input setting of REAN terminal function 0: Disabled (Without accelerator sensor failure detection) 0 1 1												
Image: section of APS terminal function 3: Coolant temperature alarm lamp output Image: section of APS terminal function 0: Disabled (without accelerator sensor failure detection) 1			-			minated						
18 Input setting of APS terminal function 0: Disabled (without accelerator sensor failure detection) 1 1 1 1 1 1 1 0 18 Input setting of APS terminal function 2: SAE Foot pedal (NO and NC switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 1 1 1 1 1 1 0 0 19 Input setting of REAN terminal function 0: Disabled (without accelerator sensor failure detection) 0 1 1 1 <td></td> <td></td> <td>• ·</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			• ·		,							
Image: series of the series	18 Input setting of APS terminal function					re detection)	1	1	1	1	0	
4 2: SAE Foot pedal (NO and NC switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 4: SAE Foot pedal (NC switch synchronized) 0 0 0 0 19 Input setting of REAN terminal function 0: Disabled (Without accelerator sensor failure detection) 1: Analog input 2: SAE Foot pedal (NO switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 4: SAE Foot pedal (NO switch synchronized) 5: Atmosphere pressure sensor 0 0 0 0 0 20 Setting of RENRPM terminal 1 0: Backup speed sensor disabled 1: Backup speed sensor disabled 1: Backup speed sensor enabled (P terminal alternator is connected) 0 0 0 0 0 4 Operation in failure detection 1: Coolant temperature alarm 0: No limitation in operation 1: Speed limitation A 2: Speed limitation A 3: Output limitation 4: Speed limitation A 4: Speed				accontrator	oonoon lana							
Image: Provide the synchronized in		2: SAE	Foot pedal (NO and NC	switch sync	hronized)						
19 Input setting of REAN terminal function 0: Disabled (without accelerator sensor failure detection) 0 10 10		3: SAE Foot pedal (NO switch synchronized)										
function 1: Analog input 2: SAE Foot pedal (NO and NC switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 4: SAE Foot pedal (NC switch) 5: Atmosphere pressure sensor Image: Constraint of the synchronized of the synchronis (the synchronized of the synchronized of the synchr												
2: SAE Foot pedal (NO and NC switch synchronized) 3: SAE Foot pedal (NO switch synchronized) 4: SAE Foot pedal (NC switch) 5: Atmosphere pressure sensor 0			``	accelerator	sensor failu	re detection)	0	0	0	0	0	
3: SAE Foot pedal (NO switch synchronized) 4: SAE Foot pedal (NC switch) 5: Atmosphere pressure sensor 0 <	function				owitch owno	hronizod)						
4: SAE Foot pedal (NC switch) 5: Atmosphere pressure sensor 0 <td></td> <td></td> <td>• •</td> <td></td> <td>-</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			• •		-	,						
20 Setting of RENRPM terminal 0: Backup speed sensor disabled 0<					synomized	•)						
20 Setting of RENRPM terminal 0: Backup speed sensor disabled 0<			• •									
Image: Second	20 Setting of RENRPM terminal						0	0	0	0	0	
4 Operation in failure detection 0 0 0 0 0 0 3 1 Coolant temperature alarm 0: No limitation in operation 0 0 0 0 0 3 2 Speed limitation A 2: Speed limitation A 3: Output limitation 4: Speed limitation A 2: Speed limitation B 3: Output limitation 4: Speed limitation A 4: Speed limitation B 4: Speed limitation B <td></td> <td>1: Back</td> <td>up speed se</td> <td></td> <td></td> <td>alternator is</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1: Back	up speed se			alternator is						
1 Coolant temperature alarm 0: No limitation in operation 0 0 0 0 0 3 1 Speed limitation A 2: Speed limitation B 3: Output limitation 3: Output limitation 4: Speed limitation A + output limitation 5: Speed limitation B + output limitation 6: Engine stop 110 110 100 100 100		conn	ected)					ļ				
1: Speed limitation A 2: Speed limitation B 3: Output limitation B 3: Output limitation 3: Output limitation A 4: Speed limitation B 6: Engine stop 1: 0 1: 0 1: 0 1: 0 2 Coolant temperature start °C 1: 0 1: 0 1: 0 1: 0 1: 0 1: 0												
2: Speed limitation B 3: Output limitation 3: Output limitation 4: Speed limitation A + output limitation 5: Speed limitation B + output limitation 5: Speed limitation B + output limitation 6: Engine stop 110 100 100	1 Coolant temperature alarm	1: Speed limitation A 2: Speed limitation B					0	0	0	0	3	
3: Output limitation 3: Output limitation 4: Speed limitation A + output limitation 5: Speed limitation B + output limitation 5: Speed limitation B + output limitation 6: Engine stop 2: Coolant temperature start °C												
4: Speed limitation A + output limitation 5: Speed limitation B + output limitation 6: Engine stop 2 Coolant temperature start °C												
2 Coolant temperature start °C 5: Speed limitation B + output limitation 6: Engine stop 110 110 100 100				A + output lii	mitation							
6: Engine stop 110 110 100 100 2 Coolant temperature start °C 110 110 100 100												
		6: Engir	ne stop					Ì				
							110	110	100	100	100	
	alarm	1						i	1	1	1	
alarm	3 Coolant temperature complete °C						105	105	105	105	105	

1/0 L	nit	Base	.	Standard			Customer's
		Engine	Backhoe	Tractor	Loader	Generator	specificatio
4 Operation at accelerator sensor failure	0: No limitation in operation	1	1	1	1	1	
	1: Speed limitation A						
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop						
6 ECU overheat alarm	0: No limitation in operation	0	0	0	0	0	
	1: Speed limitation A	Ŭ	Ŭ	Ŭ	Ű	Ű	
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop	105	105	105	105	105	
	C C	105 100	105 100	105	105 100	105 100	
8 ECU overheat complete alarm 9 Oil pressure low alarm	0: No limitation in operation	0	100	100	0	100	
	· ·	0	0	0		6	
	1: Speed limitation A						
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop						
11 Operation in air cleaner blockage	0: No limitation in operation	0	0	0	0	0	
	1: Speed limitation A						
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop						
12 Oily water separator alarm	0: No limitation in operation	0	0	0	0	0	
	1: Speed limitation A						
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop						
13 Backup speed sensor activation	0: No limitation in operation	2	2	2	2	2	
	1: Speed limitation A						
	2: Speed limitation B						
	3: Output limitation						
	4: Speed limitation A + output limitation						
	5: Speed limitation B + output limitation						
	6: Engine stop						
14 Error occurrence time selection	0: Engine stop accumulation time	0	0	0	0	0	
	1: Accumulated E-ECU energization time	Ĭ		-		ļ	
	2: CAN communication reception time						
CAN setting							
1 Communication speed	0: 500Kbps	0	0	0	0	0	
							1

Section 15


ON-VEHICLE COMMUNICATION CAN SPECIFICATION

Page

Scope 15	5-3
Data Link Layer	5-4 5-4 5-5 5-5 5-6 5-6
	16 21
Diagnostic Trouble Codes (DTCs) 15-5	31
REFERENCES 15-	31
Appendix A 15-	32
Appendix B 15-	33
Appendix C 15-4	41
Appendix D 15-4	49

This Page Intentionally Left Blank

SCOPE

This document outlines communication protocols of Y-LINK. CAN interface components of Y-LINK system are the serial communication links SAE J1939 and ISO 15765.

Y-LINK allows the following functionality via these communication links.

- (a) E-ECU transmits engine data and active DTCs (Diagnostic Trouble Code) information at regular intervals and previously active DTCs information on request from the monitor equipment via J1939 data link.
- (b) Y-LINK allows sharing engine data with electronic monitor displays and vehicle management information system via J1939 data link.
- (c) E-ECU can receive the operation messages from the vehicle control unit via J1939 data link.
- (d) E-ECU transmits and performs diagnostic procedures from TESTER via ISO 15765 data link.
- (e) Y-LINK allows transmitting customer requested change to the E-ECU from the external equipment via ISO 15765 data link.

This document dose not includes communication protocols of ISO 15765.

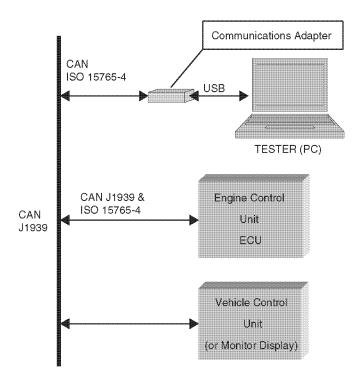


Fig. 15-1 CAN-BUS Diagram

COMMUNICATION PROTOCOLS

The following table shows a comparison between J1939 and ISO15765 in OSI Basic Reference Model. The On Vehicle column (Y-LINK) indicates the communication methods between the E-ECU and the vehicle control unit.

Applicability	09171	7 layer	Diag. on CAN	Vehicle Y-LINK		
Аррисарину	031	<i>i</i> layel	ISO 15765	J1939	On Vehicle	Diagnostics
Seven layer according to ISO/IEC 7498	Physica	ıl (layer 1)	ISO11898, ISO15765-4	J1939-13 (ISO11898)	ISO11898	ISO11898
	Data link (layer 2)		ISO11898, ISO15765-4	J1939-21	J1939-21 • Single frame • Multi-packet BAM • Request/Acknowledge • Proprietary B	ISO11898, ISO15765-4
	Network (layer 3)		ISO15765-2, ISO15765-4	J1939-31	-	ISO15765-2, ISO15765-4
and	Transport (layer 4)		-	-	-	-
ISO/IEC10731	Session (layer 5)		ISO15765-4	-	-	ISO15765-4
	Presentation (layer 6)		-	-	-	-
		Diagnostics	ISO15031-5	SAE J1939-73	SAE J1939-73(DM1~3)	ISO 14230-3
	Application	Implement	-	-	-	ISO 15765-3
	(layer 7)	Drivetrain	-	SAE J1939-71	SAE J1939-71	-
		Management	-	SAE J1939-81	-	-

Table 15-1 The OSI Seven Layer Model of Y-LINK

Data Link Layer

The data link layer is based on SAE J1939-21 Revised April 2001.

Message/Frame Format

"CAN 2.0B" Extended Frame Format Nominal bit rate: 250kbps (500kbps is option)

Priority (P)

Priority bits in PDU are used to optimize message latency for transmission onto the bus only. They must be globally masked off by receiver (ignored). --- 5.2.1 J1939-21

Network Layer

Addressing

29bit CAN normal fixed addressing

Address mapping (SA)

E-ECU can receive the message from other ECU with a given any source address. It is necessary to prevent duplication of source addresses. Reference SAE J1939 Appendix B, Tables B2 through B9, for source address assignments.

Table 15-2	Physical a	ddresses o	of ECU a	nd other	electronic	equipment
------------	------------	------------	----------	----------	------------	-----------

F	Physical CAN identifier	Description
	OOH	Physical CAN identifier of E-ECU
	01H	Reserved
Fc	or example	
	17 (11H)	Physical CAN identifier of Cruise Control Equipment
	39 (27H)	Management Computer #1
	255 (0FFH)	Global (All-Any Node)

Communication Methods

- Single frame message : data length =< 8bytes
- Multi-packet Broadcast message : data length > 8bytes (Multi-packet RTS/CTS session is under development.)
- Multi-packet Broadcast message is used to send DTCs (Diagnostic Trouble Code) and component ID etc.

Table 15-3 indicates which service item is required which set of Request/Response procedure.

No.	Item	Description	Data length	Request PGN 59904	Response	TP Used
1	J1939-71 Application Layer Send/Receive Message	Single frame message	≤8bytes	None	DA Global	NA
2	Active Diagnostic Trouble Code	Multi-packet message Global Destination	>8bytes	None	DA Global	BAM
3	Previously Active Diagnostic Trouble Code	On request Global, Multi-packet message Global Destination	>8bytes	DA Global	DA Global	BAM
		On request Specific, Multi-packet message Destination Specific	ZODYIES	DA Specific	DA Specific	RTS/CTS
4	Diagnostic Data Clear/Reset of Previously Active DTCs	On request, Acknowledgement	≤8bytes	DA Global	DA Global	NA
		On request Specific, Acknowledgement	≥obytes	DA Specific	DA Global	NA

Table 10-0 mequest and mesponse mequirements	Table 15-3	Request and Response Requirements
--	------------	-----------------------------------

*.TP=Transport Protocol, BAM=Broadcast Announce Message

Note: Specific destination request session is under development.

Notes to **Table 15-3**-General rules of operation for determining whether to send a PGN to a global or specific destination: --- 5.4.2 J1939-21

- 1. If the Request is sent to a global address, then the response is sent to a global address.
 - (a) NOTE: A NACK is not permitted as a response to a global request.
- 2. If the Request is sent to a specific address, then the response is sent to a specific address.
 - (a) NOTE: A NACK is required if the PGN is not supported.
 - (b) If the data length is more than 8 bytes, the Transport Protocol RTS/CTS must be used for the response to a specific address.
 - (c) Exceptions:
 - i) PDU2 format PGNs with 8 bytes or less can only be sent to a global destination because there is no destination address field in the PDU2 Format.
 - ii) The Address Claim PGN is sent to the global destination address even though the request for it may have been to a specific destination address (see J1939-81).(N/A)
 - iii) The Acknowledgment PGN response uses a global destination address even though the PGN that causes Acknowledgment was sent to a specific destination address.

Physical Layer

General

The physical layer and physical signaling of the external test equipment shall be in accordance with ISO 11898-1 and ISO 11898-2, with the following restriction.

Baud rate

Nominal bit rate: 250kbps (500kbps is option)

CAN bit timing

Sample Point = 75% tsync = 1tp, TSEG1 = (7+4)tp, TSEG2 = 4tp

RECEIVE and SEND MESSAGE CAN ID SUMMARY

(See Appendix A)

MESSAGE FORMAT

J1939-71 Application Layer

(See Appendix B)

pgn0 - Torque/Speed Control #1 - TSC1 -

Transmission Repetition	Rate:	when active; 10 ms to engine	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		0	
PDU Specific:		DA	
Default Priority:		3	
Parameter Group Number	er:	0 (0x000000)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1.1	2 bits	Override Control Mode	695
1.3	2 bits	Requested Speed Control Conditions <n a=""></n>	696
1.5	2 bits	Override Control Mode Priority <n a=""></n>	897
2-3	2 bytes	Requested Speed/Speed Limit	898
4	1 byte	Requested Torque/Torque Limit <n a=""></n>	518

pgn61443 - Electronic Engine Controller #2 - EEC2 -

Transmission Repetition	Rate:	50 ms	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		240	
PDU Specific:		3	
Default Priority:		3	
Parameter Group Number	er:	61443(0x00F003)	
Bit Start Position/Bytes	Length	SPN Description	SPN
1.1	2 bits	Accelerator Pedal Low Idle Switch <n a=""></n>	558
1.3	2 bits	Accelerator Pedal Kickdown Switch <n a=""></n>	559
1.5	2 bits	Road Speed Limit Status <n a=""></n>	1437
2	1 byte	Accelerator Pedal Position	91
3	1 byte	Percent Load At Current Speed	92
4	1 byte	Remote Accelerator <n a=""></n>	974

pgn61444 - Electronic Engine Controller #1 - EEC1 -

Transmission Repetition	Rate:	engine speed dependent	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		240	
PDU Specific:		4	
Default Priority:		3	
Parameter Group Number	er:	61444(0x00F004)	
Bit Start Position/Bytes	Length	SPN Description	SPN
1.1	4 bits	Engine Torque Mode <n a=""></n>	899
2	1 byte	Driver's Demand Engine - Percent Torque <n a=""></n>	512
3	1 byte	Actual Engine - Percent Torque <n a=""></n>	513
4-5	2 bytes	Engine Speed	190
6	1 byte	Source Address of Controlling Device for Engine Control <n a=""></n>	1483
7.1	4 bits	Engine Starter Mode	1675

pgn65188 - Engine Temperature #2 - ET2 -

Transmission Repetitio	n Rate:	1s	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		164	
Default Priority:		6	
Parameter Group Num	ber:	65188(0x00FEA4)	
Bit Start Position /Byte	s Length	SPN Description	SPN
1-2	2 bytes	Engine Oil Temperature 2 <n a=""></n>	1135
3-4	2 bytes	Engine ECU Temperature	1136
5-6	2 bytes	Engine Differential Pressure <n a=""></n>	411
7-8	2 bytes	Engine EGR Temperature <n a=""></n>	412

pgn65247 - Electronic Engine Controller #3 - EEC3 -

Transmission Repetition	Rate:	250 msec	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		223	
Default Priority:		6	
Parameter Group Number	er:	65247(0x00FEDF)	
Bit Start Position/Bytes	Length	SPN Description	SPN
1	1 byte	Nominal Friction - Percent Torque <n a=""></n>	514
2-3	2 bytes	Engine's Desired Operating Speed	515
4	1 byte	Engine's Desired Operating Speed Asymmetry Adjustment <n a=""></n>	519

pgn65253 - Engine Hours, Revolutions - HOURS -

Transmission Repetition	Rate:	On request	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		229	
Default Priority:		6	
Parameter Group Numbe	er:	65253 (0x00FEE5)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1-4	4 bytes	Total Engine Hours	247
5-8	4 bytes	Total Engine Revolutions <n a=""></n>	249

pgn65255 - Vehicle Hours - VH -

Transmission Repetition Rate:		1000 ms	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		231	
Default Priority:		6	
Parameter Group Number:		65255(0x00FEE7)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1-4	4 bytes	Total Vehicle Hours	246
5-8	4 bytes	Total Power Takeoff Hours <n a=""></n>	248

pgn65259 - Component Identification - CI -

1.0			
Transmission Repetition	Rate:	On request	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		235	
Default Priority:		6	
Parameter Group Numbe	er:	65262 (0x00FEEB)	
Bit Start Position/Bytes Length		SPN Description	SPN
1-5	5 bytes	Make (ASCII *5)	586
6-25	20 bytes	Engine Model Number (ASCII *20)	587
26	1 byte	Delimiter "*"	
27-46	20 bytes	Engine Serial Number (ASCII *20)	588
47	1 byte	Delimiter "*"	
48-61	14 bytes	ECU Model Number (ASCII *14)	233
62	1 byte	Delimiter "*"	

pgn65260 - Vehicle Identification - VI -

Transmission Repetition Rate:		On request	
Data Length:		Variable bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		236	
Default Priority:		6	
Parameter Group Number:		65260 (0x00FEEC)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1-32	32 bytes	Vehicle Identification Number	237
33	1 byte	Delimiter "*"	

pgn65262 - Engine Temperature #1 - ET1 -

Transmission Repetition Rate:		1000 ms	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		238	
Default Priority:		6	
Parameter Group Number: Bit Start Position/Bytes Length		65262(0x00FEEE)	
		SPN Description	SPN
1	1 byte	Engine Coolant Temperature	110
2	1 byte	Fuel Temperature <n a=""></n>	174
3-4	2 bytes	Engine Oil Temperature 1 <n a=""></n>	175
5-6	2 bytes	Turbo Oil Temperature <n a=""></n>	176
7	1 byte	Engine Intercooler Temperature <n a=""></n>	52
8	1 byte	Engine Intercooler Thermostat Opening <n a=""></n>	1134

pgn65269 - Ambient Conditions - AMB -

Transmission Repetition Rate:		1000 ms	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		245	
Default Priority:		6	
Parameter Group Number: Bit Start Position/Bytes Length		65269(0x00FEF5)	
		SPN Description	SPN
1	1 byte	Barometric Pressure	108
2-3	2 bytes	Cab Interior Temperature <n a=""></n>	170
4-5	2 bytes	Ambient Air Temperature <n a=""></n>	171
6	1 byte	Air Inlet Temperature <n a=""></n>	172
7-8	2 bytes	Road Surface Temperature <n a=""></n>	79

pgn65271 - Vehicle Electrical Power - VEP -

Transmission Repetition Rate:		1000 ms	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		254	
PDU Specific:		247	
Default Priority:		6	
Parameter Group Number:		65271(0x00FEF7)	
Bit Start Position/Bytes	Length	SPN Description	SPN
1	1 byte	Net Battery Current <n a=""></n>	114
3-4	2 bytes	Alternator Potential (Voltage) <n a=""></n>	167
5-6	2 bytes	Electrical Potential (Voltage) <n a=""></n>	168
7-8	2 bytes	Battery Potential (Voltage), Switched	158

pgn56320 - Anti-theft Status - ATS -

Transmission Repetition Rate:		This message is transmitted in response to an Anti-Theft Request message. This message is also sent when the component abnormal power interruption. In this situation the Anti-Theft Status Report is sent without the Anti-Theft Request.	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		220	
PDU Specific:		DA	
Default Priority:		7	
Parameter Group Number:		56320 (0x00DC00)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1.1	2 bits	Anti-theft Encryption Seed Present Indicator	1194
1.3	2 bits	Anti-theft Password Valid Indicator	1195
1.5	2 bits	Anti-theft Component Status States	1196
1.7	2 bits	Anti-theft Modify Password States	1197
2-8	7 bytes	Anti-theft Random Number	1198

NOTE:See Figures PGN56320_D for examples of Anti-theft message transfers. Bit 1 is the right most bit in each byte.

pgn56576 - Anti-theft Request - ATR -

Transmission Repetition Rate:		Transmission of this message is interrupt driven. This message is also transmitted upon power-up of the interfacing	
		device this message.	
Data Length:		8 bytes	
Data Page:		0	
PDU Format:		221	
PDU Specific:		DA	
Default Priority:		7	
Parameter Group Number:		56576 (0x00DD00)	
Bit Start Position /Bytes	Length	SPN Description	SPN
1.2	2 bits	Anti-theft Encryption Indicator States	1199
1.4	2 bits	Anti-theft Desired Exit Mode States	1200
1.6	3 bits	Anti-theft Command States	1201
2-8	7 bytes	Anti-theft Password Representation	1202

NOTE:See Figure PGN56320 for examples of Anti-theft message transfers. Bit 1 is the right most bit in each byte. For further details the reader is referred to our Development Dept.<R,1,1>

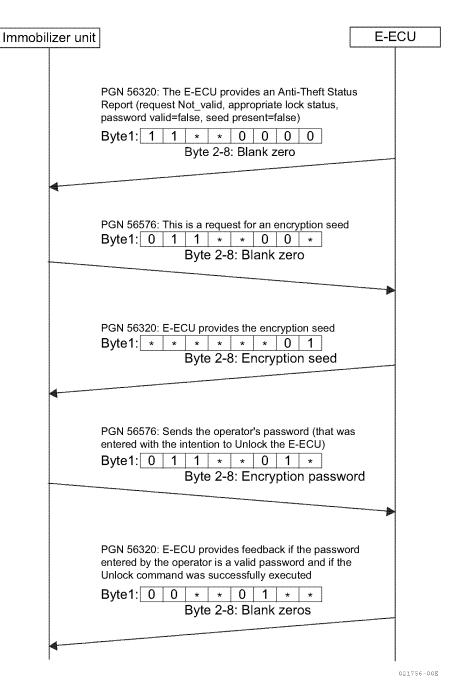


Fig. 15-2 PGN56320 - Operator desires to unlock the E-ECU<R.1.1>

J1939-21 Data Link Layer

(See Appendix B)

Acknowledgment

Definition: The Ackno devices.	wledgmen	t PG is used to provide a handshake mechanism between transmitting and receiving
Transmission repetition rate:		Upon reception of a Parameter Group Number that requires this form of
·		acknowledgment.
Data length:		8 bytes
Data Page:		0
PDU Format:		232
PDU Specific:		Destination address ¹ = Global (255)
Default priority:		6
Parameter Group Nu	mber:	59392 (0x00E800)
	neters use	d by this Message Type:
Control byte:	0 to 3	See definitions below
	4 to 255	Reserved for assignment by SAE
Group Function Value	e 0-250	Definition is specific to the individual PGN, when applicable. Most often it is located
		as the first byte in the data field of the applicable Group Function PG.
		Follows conventions defined in J1939-71
Positive Acknowledgr	ment: Cont	rol byte = 0
Byte:	1	Control byte = 0, Positive Acknowledgment (ACK)
	2	Group Function Value (If applicable) <n a=""> 0xFF</n>
	3-5	Reserved for assignment by SAE, these bytes should be filled with 0xFF
	6	Parameter Group Number of requested information (8 LSB of parameter group num-
	_	ber, bit 8 most significant)
	7	Parameter Group Number of requested information (2nd byte of parameter group
0		number, bit 8 most significant)
	8	Parameter Group Number of requested information (8 MSBs of parameter group
		number, bit 8 most significant)
Negative Acknowledgment: Co		
Byte:	1 2	Control byte = 1, Negative Acknowledgment (NACK) Group Function Value (if applicable) <n a="">0xFF</n>
	∠ 3-5	Reserved for assignment by SAE, these bytes should be filled with 0xFF
	3-5 6-8	Parameter Group Number of requested information (see above)
Access Denied: Cont		
Byte:	1	Control byte = 2, Access Denied (PGN supported but security denied access)
Dyte.	2	Group Function Value (if applicable) <n a="">0xFF</n>
	3-5	Reserved for assignment by SAE, these bytes should be filled with 0xFF
	6-8	Parameter Group Number of requested information (see above)
Cannot Respond: Control byte =		
Byte:	1	Control byte = 3, Cannot Respond (PGN supported but ECU is busy and cannot
_ ,	-	respond now. Re-request the data at a later time.)
	2	Group Function Value (if applicable) <n a=""> 0xFF</n>
	3-5	Reserved for assignment by SAE, these bytes should be filled with 0xFF
	6-8	Parameter Group Number of requested information (see above)

Request

Definition:	Used to request a Parameter Group from a network device or devices.
Transmission repetition rate:	Per user requirements, generally recommended that requests occur no more than 2 or
	3 times per second.
Data length:	3 bytes (The CAN frame for this PG shall set the DLC to 3.)
Data page:	0
PDU Format:	234
PDU specific field:	Destination Address (global or specific)
Default priority:	6
Parameter Group Number:	59904 (0x00EA00)
Byte: 1,2,3	Parameter Group Number being requested

Transport Protocol.Data Transfer (TP.DT)

Definition:	Used for the transfer of data associated with Parameter Groups that have more than 8 bytes of data
Transmission repetition rate	· Per the Parameter Group to be transferred
Data length:	8 bytes
Data Page:	0
PDU Format:	235
PDU specified field:	Destination address
	(Global (DA = 255) for TP.CM.BAM data transfers)
	(Global not allowed for RTS/CTS data transfers)
Default priority:	7 *
Parameter Group Number:	60160 (0x00EB00)
Data ranges for parameters	used by this Group Function:
Sequence Number:	1 to 255 (1 byte)
Byte: 1	Sequence Number
2-8	Packetized Data (7 bytes). Note the last packet of a multi-packet Parameter Group may require less than 8 data bytes. The extra bytes should be filled with 0xFF

* This priority is set to be equal to the priority of single packet transfer.

Transport Protocol.Connection Management (TP.CM)

Definition:	Used for the transfer of Parameter Groups that have 9 bytes or more of data.
Transmission repetition rate:	Per the Parameter Group Number to be transferred
Data length:	8 bytes
Data Page:	0
PDU Format:	236
PDU Specific:	Destination Address
Default priority:	7*
Parameter Group Number:	60416 (0x00EC00)
Data ranges for parameters used by th	nis Group Function:
Control byte:	0-15, 18, 20-31, 33-254 are Reserved for SAE Assignment
Total Message Size, number of bytes:	9 to 1785 (2 bytes), zero to 8 and 1786 to 65535 not allowed
Total Number of Packets:	2 to 255 (1 byte), zero not allowed
Maximum Number of Packets:	2 to 255 (1byte), zero through 1 are not allowed
Number of Packets that can be sent:	0 to 255 (1 byte)
Next Packet Number to be sent:	1 to 255 (1 byte), zero not allowed
Sequence Number:	1 to 255 (1 byte), zero not allowed

* This priority is set to be equal to the priority of single packet transfer.

Connection Mode Request to Send (TP.CM_RTS): Destination Specific

- Byte:
- 1 Control byte = 16, Destination Specific Request_To_Send (RTS)
- 2,3 Total message size, number of bytes
- 4 Total number of packets
- 5 Maximum number of packets that can be sent in response to one CTS. 0xFF indicates that no limit exists for the originator.
- 6-8 Parameter Group Number of the packeted message
 Byte 6 Parameter Group Number of requested information (8 LSB of parameter group number, bit 8 most significant) (R)
 Byte 7 Parameter Group Number of requested information (2nd byte of parameter group number, bit 8 most significant) (R)
 Byte 8 Parameter Group Number of requested information (8 MSBs of parameter group number, bit 8 most significant) (R)

Connection Mode Clear to Send (TP.CM_CTS): Destination Specific

Byte:

- 1 Control byte = 17, Destination Specific Clear_To_Send
 - (CTS)
 - 2 Number of packets that can be sent. This value shall be no larger than the value in byte 5 of the RTS message.
 - 3 Next packet number to be sent
 - 4-5 Reserved for assignment by SAE, these bytes should be filled with 0xFF
 - 6-8 Parameter Group Number of the packeted message

End of Message Acknowledgment (TP.CM_EndOfMsgACK): Destination Specific

Byte:

- 1 Control byte = 19, End_of_Message Acknowledge
 - 2,3 Total message size, number of bytes
 - 4 Total number of packets
 - 5 Reserved for assignment by SAE, this byte should be filled with 0xFF
 - 6-8 Parameter Group Number of the packeted message

Connection Abort (TP.Conn_Abort): Destination Specific

Byte:

- 1 Control byte = 255, Connection Abort
- 2 Connection Abort reason
- 3-5 Reserved for assignment by SAE, these bytes should be filled with 0xFF
- 6-8 Parameter Group Number of the packeted message

Broadcast Announce Message (TP.CM_BAM): Global Destination

Byte:

- 1 Control byte = 32, Broadcast Announce Message
 - 2,3 Total message size, number of bytes
 - 4 Total number of packets
 - 5 Reserved for assignment by SAE, this byte should be filled with 0xFF
 - 6-8 Parameter Group Number of the packeted message

J1939-73 Diagnostic Layer

(See Appendix B)

ACTIVE DIAGNOSTIC TROUBLE CODES (DM1)

Transmission Rate Data Length: Data page: PDU Format: PDU Specific: Default Priority:	ə:	update rate of c longer, and the state change. If DM1 message it to intermittent fa one state change inactive twice w one message ic sion identifying existing (lamp s Note that this P	only once per second the n becomes inactive, a D i a different DTC changes is transmitted to reflect th aults that have a very high ge per DTC per second k vithin a 1 second interval, dentifying the DTC becon it being inactive. This me status are not zeros). arameter Group will requ	er a DTC becomes an act reafter. If a fault has bee M1 message shall be tra s state within the 1 secor is new DTC. To prevent a n frequency, it is recomme be transmitted. Thus a D ^T such as shown in Exam hing active, and one at the essage is sent only when ire using the "multi-packet more than one active DT	n active for 1 second or nsmitted to reflect this ad update period, a new a high message rate due ended that no more than TC that becomes active/ ple Case 1, would have e next periodic transmis- n there is an active DTC et Transport" Parameter
Parameter Group	Number:	65226 (0x00FE	ECA)		
Bit Start Position /Bytes	Length	,	,		
1.1	2 bits	Protect Lamp (I	PL) ,00=Off,01=On		
1.3	2 bits	Amber Warning	Lamp Status (AWL), 00	=Off,01=On	
1.5	2 bits	Red Stop Lamp	Status (RSL),00=Off,01	=On	
1.7	2 bits	Malfunction Ind	licator Lamp Status (MIL) ,00=Off,01=On	
2.1	2 bits		AE assignment Lamp St		
2.3	2 bits		AE assignment Lamp St		
2.5	2 bits		AE assignment Lamp St		
2.7	2 bits		AE assignment Lamp St		
3	1byte		gnificant bits of SPN		
-		(most significar	•		
4	1byte	SPN, second b			
•	noyto	(most significar			
5.6	3bits	SPN, 3 most sig			
0.0	00113	(most significar			
5.1	5bits	FMI			
5.1	JUIIS	(most significar	at at bit 5)		
6.1	7bits	Occurrence Co			
6.8	1bit	SPN Conversio			
0.8	IDIL	SPIN Conversio	n wethod		
Version 4.			D	ГС	
Recommended		Byte 3	Byte 4	Byte 5	Byte 6
Version	8 least s	significant bits of	second byte of SPN	3 most significant bits of	

SPN SPN and the FMI (bit 8 most significant) (bit 8 most significant) (bit 8 SPN msb and bit 5 FMI msb) SPN СМ OC FMI J1939 Frame Format 8 1 8 7 6 5 3 2 1 8 7 4 3 2 1 5 4 3 2

EXAMPLE1 : The following illustrates the message format for when there is more than one diagnostic trouble code.

Given:

a=lamp status (LS) b=SPN c=FMI d=CM and OC (Version.4 CM=0)

Message form will be as follows: a,b,c,d,b,c,d,b,c,d,b,c,d....etc. In this example, the transport protocol of SAE J1939-21 will have to be used to send the information because it requires more than 8 data bytes. Actually any time there is more than one fault the services of the transport protocol will have to be used.

EXAMPLE2 : The following illustrates the message format for when a request of the DM1 is made and there are zero active faults.

Byte1 is Zero. Bytes 3 through 6 are all zeros.

Given:

bits 1- bits 3-	4 = 00
0110 0	• ••
bits 7-	8 = 00
bits 1-	2=11
bits 3-	4 = 11
bits 5-	6=11
bits 7-	8=11
SPN	=0
FMI	=0
OC	=0
СМ	=0
	=255
	=255
	bits 3 bits 5 bits 7 bits 1 bits 3 bits 3 bits 5 bits 7 SPN FMI OC

EXAMPLE3 : Three cases are enumerated as follows to define the transmission rate requirements (Figure 1.)

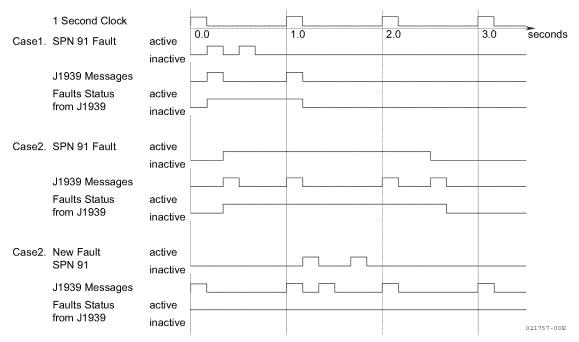


Fig. 15-3 Defining the Transmission Rate Requirements

Case 1 illustrates that not every transition of a fault (active to inactive or inactive to active) results in a SAE J1939 message being sent. In this case, there are no other faults active when the example SPN 91 fault occurs. The SPN 91 fault is the Accelerator Pedal Position parameter which has an update faster than once a second.

The "SAE J1939 Message" (DM1 message) will be sent every 1 second while this fault is active. The first SAE J1939 message is sent when the "SPN 91 fault" becomes active on the first occurrence and not when it goes inactive for the first occurrence or active/inactive for the second occurrence. The inactive state is sent once at the next normal 1-second update (T=1 second). The "SAE J1939 Message" (DM1) is required to be sent at the 1 second interval even though the fault is no longer active and the actual DM1 message will contain no active faults. This is done as the action to show the fault went away. The way this is done for this specific case (where there are no longer any active faults) is as shown in the preceding Example 2. If there were other active faults they would have been sent in this message.

If the second SPN 91 would have been a different SPN it would have been sent prior to the 1 second in a DM1 sent in between normal 1 second updates. The 1 second interval message would not contain this new SPN or SPN 91 assuming they both transitioned on and off before the 1 second message. Therefore, the 1 second DM1 message would still contain no faults.

- **Case 2** illustrates that the transition states can occur between the normal 1 second intervals. Therefore, a "SAE J1939 Message" is sent in between time equals 0 and time equals 1 to indicate that the SPN 91 fault has gone active. It is sent per the normal 1 second update at the 1 and 2 second points. It is sent at the time between 2 and 3 second to convey the transition to the inactive state. To do this the "J1939 Message" (DM1) is sent as shown in the preceding Example 2.
- **Case 3** shows the situation where there are already active faults in existence when SPN 91 becomes active.

Note that the transition of SPN 91 to active state is sent between the 1 and 2 second points. The message contains all active faults, not just the new one. The transition to the inactive state is sent during the normal 2second update. This message would contain all active faults and since SPN 91 went inactive it would not be in this message.

PREVIOUSLY ACTIVE DIAGNOSTIC TROUBLE CODES (DM2)

Transmission Rate	e:	On request using PGN 59904 See SAE J1939-21 A NACK is required if PG is not supported (see SAE J1939-21 PGN 59392)
Data Length:		Variable
Data page:		0
PDU Format:		254
PDU Specific:		203
Default Priority:		6
Parameter Group	Number:	65227 (0x00FECB)
1.1	2 bits	Protect Lamp (PL),00=Off,01=On
1.3	2 bits	Amber Warning Lamp Status (AWL), 00=Off,01=On
1.5	2 bits	Red Stop Lamp Status (RSL),00=Off,01=On
1.7	2 bits	Malfunction Indicator Lamp Status (MIL) ,00=Off,01=On
2.1	2 bits	Reserved for SAE assignment Lamp Status <n a=""> 0xFF</n>
2.3	2 bits	Reserved for SAE assignment Lamp Status <n a=""></n>
2.5	2 bits	Reserved for SAE assignment Lamp Status <n a=""></n>
2.7	2 bits	Reserved for SAE assignment Lamp Status <n a=""></n>
3	1byte	SPN, 8 least significant bits of SPN
		(most significant at bit 8)
4	1byte	SPN, second byte of SPN
		(most significant at bit 8)
5.6	3bits	SPN, 3 most significant bits
		(most significant at bit 8)
5.1	5bits	FMI
		(most significant at bit 5)
6.1	7bits	Occurrence Count
6.8	1bit	SPN Conversion Method

EXAMPLE 1: The following illustrates the message format for when there is more than one diagnostic trouble code.

Given:

a=lamp status (LS) is the same as active DTC.

b=SPN

c=FMI

d=CM and OC

Message form will be as follows: a,b,c,d,b,c,d,b,c,d,b,c,d....etc. In this example, the transport protocol of SAE J1939-21 will have to be used to send the information because it requires more than 8 data bytes. Actually any time there is more than one fault the services of the transport protocol will have to be used.

EXAMPLE 2: The following illustrates the message format for when a request of the DM2 is made and there are zero previously active faults. The currently defined lamps (Malfunction Indicator Lamp, Red Stop Lamp, Amber Warning Lamp, and Protect Lamp) should reflect the present state of the transmitting electronic component. In this example, the amber lamp is identified as being on.

Bytes 3 through 6 are all zeros.

Given:

Byte 1 bits 1-2 = 00 bits 3-4 = 01 bits 5-6 = 00

	bits 7-	8 = 00
Byte 2	bits 1-	2 = 11
	bits 3-	4 = 11
	bits 5-	6 = 11
	bits 7-	8 = 11
Byte 3-6	SPN	=0
	FMI	=0
	OC	=0
	СМ	=0
Byte7		=255
Byte8		=255

DIAGNOSTIC DATA CLEAR/RESET OF PREVIOUSLY ACTIVE DTCS (DM3)

Transmission Rate:	On request using PGN 59904 See SAE J1939-21 A NACK is required if PG is not supported (see SAE J1939-21 PGN 59392)
Data Length:	0
Data page:	0
PDU Format:	254
PDU Specific:	204
Default Priority:	6
Parameter Group Number:	65228 (0x00FECC)

Note : If system voltage is below normal operational range for EEPROM Writing, E-ECU will respond with a NACK.

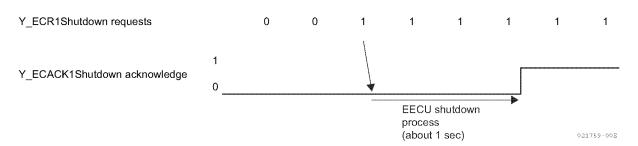
YANMAR Proprietary PGN

(See Appendix C)

CAN Communication Functionality

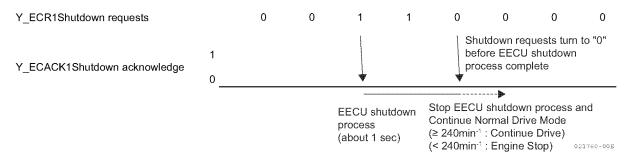
Shutdown

Shutdown request signal


Description	PGN Number	SA	Priority	Transmission update period	Byte	Bit	Signal name	Direc tion	EECU	note								
Y_ECR1	>R1 65282 NA	65282 NA N	5282 NA NA 10ms 2	2	3-4	Shutdown requests	V=>E	available	0:No shutdown request (normal state) 1:Shutdown request (EECU begins the shutdown processing.)									
							PTO Switch		Not available									
							Parkingbrake switch		Not available									
					2	7-8	Power supply/ Key position		available	0,1:Auto preheat/ afterheat is disabled 2:Auto preheat/after- heat is enabled 3:The starter is permitted.								
										Accelerator pedal low idle switch		Not available						
							Water separa- tor drain switch status		Not available									
					4	1-8	Accelerator pedal position		available	0-100%								
							Vehicle speed		Not available									
															Trim ramp		Not available	
						Control or trim state		Not available										
						Control or trim mode	N	Not available										
							Control or trim data		Not available									

Shutdown acknowledgement signal

Description	PGN Number	SA	Priority	Transmission update period	Byte	Bit	Signal name	Direc tion	EECU	note
Y_ECACK1	65292	0	3	100ms	2	4-5	Preheat func- tion acknowledge (State of pre- heat energizing)	E=>V	available	0:Not active (Preheat OFF) 1:Active (Preheat ON) 2:Error indicator (Airheat Relay Error) 3:NA ("preheat" only, not include "afterheat" and "air heat at cranking")
					2	8	Shutdown acknowledge		available	0:Power off not allowed 1:Power off allowed (Finished shutdown)

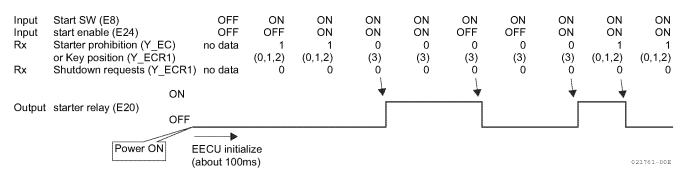

Shutdown process

1) Normal process

Shutdown acknowledgement turn to "1", only when EECU received shutdown requests and has finished shutdown process.

2) In case of cancellation of shutdown request on the shutdown process

IF engine is stopped by failure (ex. Over speed condition), shutdown acknowledgement not turn to "1".



Start Lock

Starter prohibition request signal

Description	PGN Number	SA	Priority	Transmission updateperiod	Byte	Bit	Signal name	Direc tion	EECU	note
Y_ECR1	65282	NA	NA	10ms	2	3-4	Shutdown requests	V=>E	available	0:No shutdown request (normal state) 1:Shutdown request (EECU begins the shutdown processing.)
							PTO Switch		Not available	
							Parkingbrake switch		Not available	
					2	7-8	Power supply/ Key position		available	0,1:Auto preheat/ afterheat is disabled 2:Auto preheat/after- heat is enabled 3:The starter is permitted.
							Accelerator pedal low idle switch		Not available	
							Water separa- tor drain switch status		Not available	
					4	1-8	Accelerator pedal position		available	0-100%
							Vehicle speed		Not available	
							Trim ramp		Not available	
							Control or trim state		Not available	
							Control or trim mode		Not available	
							Control or trim data		Not available	
Y_EC	65308	NA	NA	100ms	1	5	Starter prohibition	V=>E	available	0:Permission 1:Prohibition

Cranking Condition

Even after cranking, if Start enable becomes OFF or Shutdown request comes from VECU, EECU stop engine.

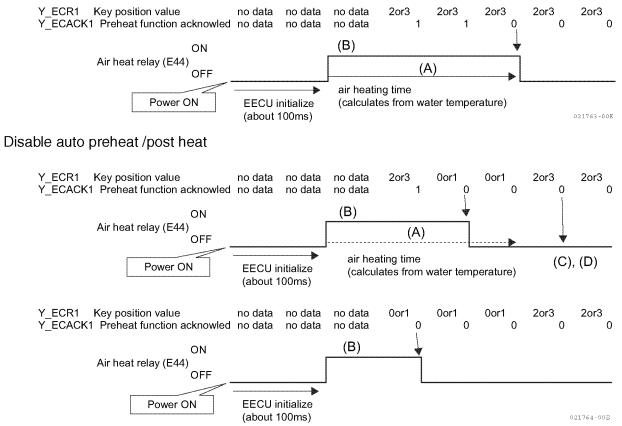
				(*2)	(*2)	
Y_ECR1		E8	E24	Y_EC (standard)	Y_ECR1 (option)	E20
Shutdown requests	Engine Speed	Start SW	Start enable	starter prohibition	Key Position	Starter relay
			OFF	0	3	OFF
		OFF		1	0,1,2	OFF
		OIT	ON	0	3	OFF
	< (*1) min⁻¹			1	0,1,2	OFF
0	<(1)11111		OFF	0	3	OFF
		ON		1	0,1,2	OFF
		ON	ON	0	3	ON
				1	0,1,2	OFF
	=> (*1) min ⁻¹	-	-	-	-	OFF
1	-	-	-	-	-	OFF

*1 : starter prohibition Engine speed (determined by map value:normal value 675 min⁻¹)

*2 : Whether Y_ECR1 is used or Y_EC is used is set beforehand.

Air-Heat function

Preheat/afterheat enable/disable signal


Description	PGN Number	SA	Priority	Transmission updateperiod	Byte	Bit	Signal name	Direc tion	EECU	note
Y_ECR1	65282	NA	NA	10ms	2	3-4	Shutdown requests	V=>E	available	0:No shutdown request (normal state) 1:Shutdown request (EECU begins the shutdown processing.)
							PTO Switch		Not available	
							Parkingbrake switch		Not available	
					2	7-8	Power supply/ Key position		available	0,1:Auto preheat/ afterheat is disabled 2:Auto preheat/after- heat is enabled 3:The starter is permitted.
							Accelerator pedal low idle switch		Not available	
							Water separa- tor drain switch status		Not available	
					4	1-8	Accelerator pedal position		available	0-100%
							Vehicle speed		Not available	
							Trim ramp		Not available	
							Control or trim state		Not available	
							Control or trim mode		Not available	
							Control or trim data		Not available	

Preheat/afterheat acknowledgement signal

Description	PGN Number	SA	Priority	Transmission update period		Bit	Signal name	Direc tion	EECU	note
Y_ECACK1	65292	0	3	100ms	2	4-5	Preheat func- tion acknowledge (State of pre- heat energizing)	E=>V	available	0:Not active (Preheat OFF) 1:Active (Preheat ON) 2:Error indicator (Airheat Relay Error) 3:NA ("preheat" only, not include "afterheat" and "air heat at cranking")
					2	8	Shutdown acknowledge		available	0:Power off not allowed 1:Power off allowed (Finished shutdown)

Air-heat function

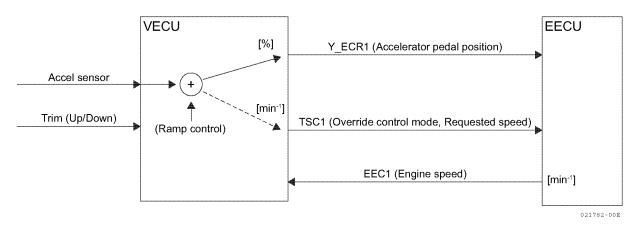
1) Auto preheat /post heat

Note:

2)

- (A) EECU calculates air-heating time from the water temperature, and controls air heater relay automatically.
- (B) EECU automatically starts preheating after boot up process.
- (C) Once VECU disables to preheat, auto post heat (include at cranking time) is disabled too.
- (D) Once VECU disables to preheat, EECU doesn't start preheating even if VECU set enable bit in Y_ECR1 later. This condition is only canceled by power-on reset of EECU.

Engine Speed control


Speed control signal

Description	PGN Number	SA	Priority	Transmission update period	Byte	Bit	Signal name	Direc tion	EECU	note
Y_ECR1	Y_ECR1 65282 NA	NA	NA	10ms	2	3-4	Shutdown requests	V=>E	available	0:No shutdown request (normal state) 1:Shutdown request (EECU begins the shutdown processing.)
							PTO Switch		Not available	
							Parkingbrake switch		Not available	
					2	7-8	Power supply/ Key position		available	0,1:Auto preheat/ afterheat is disabled 2:Auto preheat/after- heat is enabled 3:The starter is permitted.
		Accelerator pedal low idle switchWater separa- tor drain switch status41-8Accelerator pedal position		Not available						
						tor drain		Not available		
					4	1-8	Accelerator pedal position		available	0-100%
							Vehicle speed		Not available	
							Trim ramp		Not available	
							Control or trim state		Not available	
							Control or trim mode		Not available	
							Control or trim data		Not available	
TSC1	0	NA	3	10ms	1	1-2	Override Con- trol Mode	V=>E	available	0:Override disable 1:Speed control 2,3:N/A (Override disable)
					2-3	1-16	Requested Speed	V=>E	available	A value of 0xFExx is sent as 'Error indica- tor' (At 0xFExx, EECU does the CAN (TSC1) error operation.)

Engine speed information signal

Description	PGN Number	SA	Priority	Transmission update period	I Kvto	Bit	Signal name	Direc tion	EECU	note
EEC1	61444	0	3	20ms	4-5	1-16	Engine Speed	E=>V		A value of 0xFExx is sent as 'Error indica- tor' ex.at rotation speed sensor error

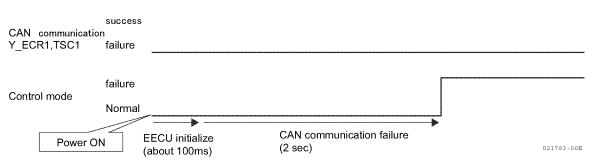
Engine Speed control diagram

EECU controls the engine speed based on the value of "Accelerator pedal position" of Y_ECR1.

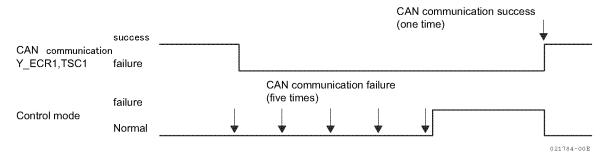
IF "Override control mode" equals to "Speed control mode", EECU controls the engine speed based on the value of "Requested speed" of TSC1.

Note:

Exceptional conditions as below:


- Idle speed up
- Max/min speed limit
- Engine speed transition period
- EGR valve failure etc.

CAN communication failure


Detect CAN communication malfunction

1) At system start

When EECU cannot receive necessary information via CAN-BUS for two seconds* after power-on start, it considers that the CAN communication failure occurred.

2) After system start normally

When EECU cannot receive necessary information via CAN-BUS five times continuously, it is considers that the CAN communication failure occurred. (ex. period of five times: TSC1:10 x 5 ms, Y_ECR1:10 x 5 ms)

When EECU can receive necessary information via CAN-BUS for one time, it considers that the CAN communication has done normally.

Start lock at CAN communication failure mode

When EECU cannot receive Y_ECR1 or Starter Prohibition (65308) via CAN-BUS for two seconds* after power-on start, EECU will allow to start engine according to discrete input signals.

Y_ECR1		E8	E24	Y_EC (standard)	Y_ECR1 (option)	E20
Shutdown requests	Engine Speed	Start SW	Start enable	starter prohibition	Key Position	Starter relay
			OFF	-	-	OFF
		OFF		-	-	OFF
		OFF	ON	-	-	OFF
	< (*1) min ⁻¹			-	-	OFF
-	< (1) 11111		OFF	-	-	OFF
		ON		-	-	OFF
		ON	ON	-	-	ON
				-	-	ON
	=> (*1) min ⁻¹	-	-	-	-	OFF
-	-	-	-	-	-	OFF

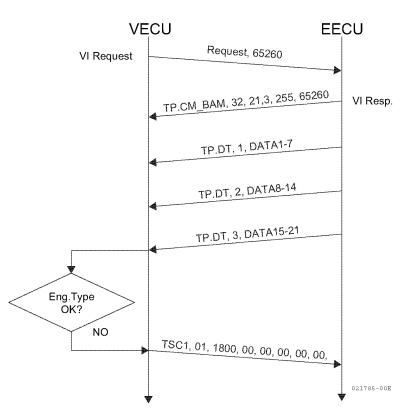
*1:starter prohibition Engine speed (determined by map value:normal value 675 min⁻¹)

Engine speed control at CAN communication failure mode

If TSC1 or Y_ECR1 communication failure occurs, EECU will select a speed control mode as bellow table.

TS	C1		Y_ECR1		Speed control	CAN
Communication	Override	Data	Communication	Data		CAN
	Enable	OK	-	-	Requested speed	Need only TSC1
	Enable	N/A			Constant Speed (ex.1800 min ⁻¹)	Need only TSC1
ОК			ок	OK	APS position	Need TSC1 and Y_ECR1
	Disable	-		N/A	Constant Speed (ex.1800min ⁻¹)	
			NG	-		CAN Error
			ок	OK		CAN Error
NG	-	-	OK	N/A		CAN Error
			NG	-		CAN Error

EECU shutdown at CAN communication failure condition


At CAN communication failure condition EECU doesn't execute the shutdown process, so log-data cannot be written in EEPROM (ex. Engine run time). There is a possibility that the new log-data is broken at power OFF, when EECU is writing the log-data in EEPROM temporarily.

There is no influence on driving the engine even if the new log-data has been broken.

Component ID Check

When EECU is replaced, it has no way to check the actual engine type. Therefore we recommend that VECU should check Component_ID of EECU. IF Component_ID is different from original one, VECU should turn to the derate_mode.

VECU can get vehicle manufacture specific component ID by VI Request, if VI has already written in EEPROM.

DIAGNOSTIC TROUBLE CODES (DTCS)

Listing of DTCs on E-ECU

(See Appendix D)

REFERENCES

J1939/21 Data Link Layer

J1939/71 Vehicle Application Layer.

J1939/73 Application Layer - Diagnostics.

ISO 15765-1.3:2001	[Road vehicles - Diagnostics on CAN - Part 1: General information]
ISO 15765-2.4:2002	[Road vehicles - Diagnostics on CAN - Part 2: Network layer services]
ISO 15765-3.5:2002	[Road vehicles - Diagnostics on CAN - Part 3: implementation of diagnostic services]
ISO 15765-4.3:2001	[Road vehicles - Diagnostics on CAN - Part 4: Requirement for emission-related systems]
Appendix A	: RECEIVE and SEND MESSAGE CAN ID SUMMARY
Appendix B	: MESSAGE FORMAT(J1939-71,-73,-21)
Appendix C	: MESSAGE FORMAT (YANMAR Proprietary PGN)
Appendix D	: 2G-ECO Governor Controller DTC Table

APPENDIX A

PGN	ID	Description	P (3bit)	R (1bit)	DP (1bit)	PF (8bit)	PS (GE/DA) (8bit)	SA (8bit)	With period (ms)	Data Length (byte)	Acronym	R/S	Note
55808	18DAF****	Reserved for 15765 (Physical Addressed)	6	0	0	218	DA	SA	100ms	Variable	KWP2	R/S	Diagnostics on CAN (Physical Addressed)
56064	18DB****	Reserved for 15765 (Functional Addressed)	6	0	0	219	DA	SA	100ms	Variable	KWP1	R/S	Diagnostics on CAN (Functional Addressed)
0	0C0000**	Torque speed control	3	0	0	0	0	SA	10ms	8	TSC1	R	Override control mode, Requested speed
56320	1CDC0000	Anti-theft Status	7	0	0	0	DA	0	On request	8	ATS	S	Anti-theft Status
56576	1CDD00**	Anti-theft Request	7	0	0	0	DA	SA	As Needed	8	ATR	R	Anti-theft Request
61443	0CF00300	Electronic Engine Controller #2	3	0	0	240	3	0	50ms	8	EEC2	S	Accelerator pedal position, Load at current speed
61444	0CF00400	Electronic Engine Controller #1	3	0	0	240	4	0	20ms	8	EEC1	s	Actual engine %torque, Engine speed
65188	0CFEA400	Engine Temperature #2	3	0	0	254	164	0	1000ms	8	ET2	S	ECU temperature, EGR temperature
65247	0CFEDF00	Electronic Engine Controller #3	3	0	0	254	223	0	250ms	8	EEC3	s	Nominal friction %torque, Engine's desired speed
65253	18FEE500	Engine Hours, Revolutions	6	0	0	254	229	0	On request	8	HOURS	s	Total engine hours, Total engine revolution
65255	18FEE700	Vehicle Hours	6	0	0	254	231	SA	1000ms	8	VH	R	Total vehicle hours
65259	18FEEB00	Component Identification	6	0	0	254	235	0	On request	48	CI	s	ECU number, Engine serial num- ber, Engine type,
65260		Vehicle Identification	6	0	0	254	236	0	On request		VI	S	Vehicle Identification number
65262		Engine Temperature #1	6	0	0	254	238	0	1000ms	8	ET1	S	Engine coolant temperature, fuel, oil,
65269		Ambient conditions	6	0	0	254	245	0	1000ms	8	AMB		Barometric pressure
65271		Vehicle Electrical Power	6	0	0	254	247	0	1000ms	8	VEP		Electrical potential
65282		Engine control request 1	3	0	0	255	2	SA	10ms	8	Y_ECR1	R	Engine control request 1
		Engine control Acknowledge 1	3	0	0	255	12	0	100ms	8	Y_ECACK1		Engine control Acknowledge 1
65297	18FF1100	State of digital In/Out	6	0	0	255	17	0	100ms	8	Y_I/OS	S	Digital ports status
65298		Rack position control	6	0	0	255	18	0	20ms	8	Y_RPC	s	Actual rack position, Request rack position. Iset_raw
65300		Output Request	6	0	0	255	20	SA	On request	8	Y_OPR	R	Active Control Request
65301		Output Acknowledge	6	0	0	255	21	0	On request	8	Y_OPA	S	Active Control Answer
65302		Over load alarm command	6	0	0	255	22	0	On request	8	Y_OLS	R	Yanmar special PGN
65303	0CFF1/00	Engine load	3	0	0	255	23	0	20ms	8	Y_LF	S	Engine percent load
65306	18FF1A00	Analog input	6	0	0	255	26	0	100ms	8	Y_AIN1	S	AD value (CW temp, Rack position, Accel sensor, Reserved analog) AD value (Reserved temp, Intake
65307	18FF1B00	Analog input2	6	0	0	255	27	0	100ms	8	Y_AIN2	S	temp, EGR temp) Droop/Isochronous, Reverse
65308		Governor functions	6	0	0	255	28	SA	100ms	8	Y_EC	R	droop, Starter prevention
65309	0CFF1D**	Engine stop command	3	0	0	255	29	SA	On request	8	Y_STP	R	Engine stop
65310	18FF1E**	Speed selection functions	6	0	0	255	30	SA	10ms	8	Y_RSS	R	Constant speed, Constant deceleration
		Engine control factor	6	0	0	255	31	0	20ms	8	Y_SRF	s	Engine stop factor, Starter pre- vention factor
65315	18FF2300	Lamp control	6	0	0	255	35	0	100ms	8	Y_TRS_S	S	Yanmar special PGN
65317	18FF2500	Diagnostic Trouble Code	6	0	0	0	37	0	On request	Variable	Y_TRS_DT C	S	Yanmar special PGN
65318		Engine speed specifications	6	0	0	255	38	0	250ms	8	Y_SRSI	S	Lo-idle speed, Hi-idle speed, Available max speed
65319	18FF2700	Engine control status	6	0	0	255	39	0	100ms	8	Y_ESI	S	Engine state information
59392	18E8FF00	Acknowledge/Negative Acknowledge	6	0	0	232	255	0	On request	8	Ack/Nack	s	Global Response
59904	18EAFF**	Request	6	0	0	234	255	SA	As Needed	3		R	Global Request
60160	1CEBFF00	TRANSPORT PROTOCOL- DATA TRANSFER	7*	0	0	235	255	0	As Required	8	TP.DT	s	
60416	1CECFF00	TRANSPORT PROTOCOL- CONNECTION MANAGEMENT	7*	0	0	236	255	0	As Required	8	TP.CM	s	Broadcast Announce Message Only
61184	18EF****	PROPRIETARY A (Develop- ment Tool)	6	0	0	239	DA	SA					Yanmar Proprietary
65226	18FECA00	Active Diagnostic Trouble Code	6	0	0	254	202	0	1000ms	Variable	DM1	s	Multi-packet Broadcast message
65227	18FECB00	Previously Active Diagnostic Trouble Code	6	0	0	254	203	0	On request	Variable	DM2	s	Multi-packet Broadcast message
65228		Diagnostic Data Clear/Reset of Previously Active DTCs				254	204		On request		DM3		Positive response = ACK

* This priority is set to be equal to the priority of single packet transfer.

APPENDIX B

PC	ΞN		onym										
()	TS	SC1										
R/S	Byte		Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
	1	1	2	Override Control Mode								695	
R				Override Disabled	00								"Accelerator pedal position" is enabled
R				Speed Control	01								"Requested Speed" is enabled
N/A				Torque Control	10								Ignored (Hold previous state)
N/A				Speed/Torque Limit	11								Ignored (Hold previous state)
N/A	1	3	2	Requested Speed Control Condition								696	Not available
N/A				Not available	11								
	1	5	2	Override Control Mode Priority								897	Not available
N/A				Highest	00								
N/A				High	01								
N/A				Medium	10								
N/A				Low	11								
N/A	1	7	2	not defined									
R	2	1	16	Requested Speed / Speed Limit		U16	0.125	0	0	8031.875	min ⁻¹	898	The instruction engine speed from vehicle ECU. This function is enabled when "setup accel sensor flag" of the Application menu set to CAN. When receive more than "FE00h" then engine speed is according to accel sensor error operation. CAN Bus state >Initial state : According to accel sensor error operation >Error state : According to accel sensor error operation Error state is retrieved automatically."
R				Error Indicator	FE**								
R				Not available	FF**								
N/A	4	1	8	Requested Torque / Torque Limit		U8	1	-125	-125	125	%	518	Not available
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
N/A	5	1	32	Not defined									

P	ЗN	Acro	nym										
61	443	EE	C2										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	2	Accelerator Pedal Low Idle Switch								558	Not available
N/A				Accelerator pedal not in low idle condition	00								
N/A				Accelerator pedal in low idle condition	01								
N/A				Error Indicator	10								
S				Not available	11								
N/A	1	3	2	Accelerator Pedal Kickdown Switch								559	Not available
N/A				Kickdown passive	00								
N/A				Kickdown active	01								
N/A				Error Indicator	10								
s				Not available	11								
N/A	1	5	2	Road Speed Limit Status								1437	Not available
N/A				Active	00								
N/A				Not active	01								
N/A				Error Indicator	10								
S				Not available	11								
N/A	1	7	2	not defined									
S	2	1	8	Accelerator Pedal Position		U8	0.4	0	0	100	%	91	Droop mode hi-idle speed is 100%.
S				Error Indicator	FE								
s				Not available	FF								
s	3	1	8	Percent Load At Current Speed		U8	1	0	0	100	%	92	
s				Error Indicator	FE								When the load ratio cannot be calculated.
N/A				Not available	FF								
N/A	4	1	8	Remote Accelerator		U8	0.4	0	0	100	%	974	Not available
N/A				Error Indicator	FE								
s				Not available	FF								
N/A	5	1	32	Not defined									

PC			onym										
614			C1							<u> </u>			
R/S N/A	Byte 1	Bit 1		Description Engine/Retarder Torque Mode	States	Туре	Res.	Offset	Min	Max	Unit	SPN 899	Note Not available
N/A			-	Low idle governor/no request (default mode)	0000							000	
N/A				Accelerator pedal	0001								
N/A				Cruise control	0010								
N/A				PTO governor-N/A	0011								
N/A				Road speed governor	0100								
N/A				ASR control-N/A	0101								
N/A				Transmission control	0110								
N/A				ABS control-N/A	0111								
N/A				Torque limiting	1000								
N/A				High speed governor	1001								
N/A				Braking system-N/A	1010								
N/A				Remote Accelerator	1011								
N/A				not defined	1100								
N/A				not defined	1101								
N/A				Other	1110								
S				Not available	1111							1	
N/A	1	5	4	not defined									
N/A	2	1	8	Driver's Demand Engine - Percent Torque		U8	1	-125	-125	125	%	512	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
N/A	3	1	8	Actual Engine - Percent Torque		U8	1	-125	-125	125	%	513	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
s	4	1	16	Engine Speed		U16	0.125	0	0	8031.875	min ⁻¹	190	
s				Error Indicator	FE**								
N/A				Not available	FF**								
N/A	6	1		Source Address of Controlling Device for Engine Control		U8	1	0	0	253		1483	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
	7	1	4	Engine Starter Mode								1675	
S				start not requested	0000								Available
S				starter active, gear not engaged	0001								Available
S				starter active, gear engaged	0010								Available
S				start finished	0011								Available
N/A				starter inhibited due to engine already running	0100								
N/A				starter inhibited due to engine not ready for start	0101								
N/A				starter inhibited due to driveline engaged	0110								
N/A				starter inhibited due to active immobilizer	0111								
N/A				starter inhibited due to starter over- temp	1000								
N/A				reserved	1001								
N/A				reserved	1010								
N/A				reserved	1011								
N/A				reserved	1100								
s				starter inhibited - reason unknown	1101								Detail is shown in PGN65311(Y_SRF).
N/A				error	1110								
N/A				Not available	1111								
N/A	7	5	4	Not defined									
N/A	8	1	8	Not defined									

PC	ЭN	Acro	nym										
65	188	E	Г2										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	16	Engine Oil Temperature 2		U16	0.031	-273	-273	1735	deg C	1135	Not available
N/A				Error Indicator	FE**								
S				Not available	FF**								
s	3	1	16	Engine ECU Temperature		U16	0.031	-273	-273	1735	deg C	1136	
S				Error Indicator	FE**								
N/A				Not available	FF**								
N/A	5	1	16	Engine EGR Differential Pressure								411	Not available
N/A				Error Indicator	FE**								
S				Not available	FF**								
N/A	7	1	16	Engine EGR Temperature		U16	0.031	-273	-273	1735	deg C	412	Not available
N/A				Error Indicator	FE**								
S				Not available	FF**								

PC	ΞN	Acro	nym										
652	247	EE	СЗ	-									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	8	Nominal Friction - Percent Torque		U8	1	-125	-125	125	%	514	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
S	2	1	16	Engine's Desired Operating Speed		U16	0.125	0	0	8031.875	min ⁻¹	515	
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
N/A	4	1		Engine's Desired Operating Speed		U8	1	0	0	250		519	Not available
				Asymmetry Adjustment									
N/A				Error Indicator	FE								
S				Not available	FF								
N/A	5	1	32	Not defined									

PC 65;	GN 252		onym URS										
	Byte		Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	32	Total Engine Hours		U32	0.05	0	0	210,554,061	hr	247	Total engine running hours
N/A				Error Indicator	FE**	****							
N/A				Not available	FF**	****							
N/A	5	1	32	Total Engine Revolutions		U32	1,000	0	0	4,211,081,215,000	r	249	Not available
N/A				Error Indicator	FE**	****							
S				Not available	FF**	****							

P	GN	Acro	nym										
65	255	V	Н										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
R	1	1	32	Total Vehicle Hours		U32	0.05	0	0	210,554,061	hr	246	CAN Bus state
													>Initial state : 0
													>Error state : keep last state
N/A				Error Indicator	FE*	****							Ignored
N/A				Not available	FF*	****							Ignored
N/A	5	1	32	Total Power Takeoff Hours		U32	0.05	0	0	210,554,061	hr	248	
N/A				Error Indicator	FE*	*****							
N/A				Not available	FF*	****							

PGN		Acronym											
65259		CI											
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	40	Make "YDECO"	ASCII							586	
S	6	1	160	Engine Model Number (ASCII *20)	ASCII						587	Engine model name	
s	26	1	8	Delimiter "*"	ASCII								
S	27	1	48	Engine Serial Number (ASCII *6)	ASCII							588	Engine serial number
S	33	1	8	Delimiter "*"	ASCII								
s	34	1	112	ECU Number(ASCII *14)	ASCII							233	ECU ASSY part number
S	48	1	8	Delimiter "*"	ASCII								

P	GN	Acro	nym										
65	260	١	/1										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	256	Vehicle Identification Number (ASCII)		ASCII						237	Engine model name (engine decal)
S	33	1	8	Delimiter "*"		ASCII							

PC	ЗN	Acro	onym										
65	262	E	T1										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Engine Coolant Temperature		U8	1	-40	-40	210	deg C	110	
S				Error Indicator	FE								
N/A				Not available	FF								
N/A	2	1	8	Fuel Temperature		U8	1	-40	-40	210	deg C	174	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
N/A	3	1	16	Engine Oil Temperature		U16	0.031	-273	-273	1735	deg C	175	Not available
N/A				Error Indicator	FE00								
S				Not available	FF00								
N/A	5	1	16	Turbo Oil Temperature		U16	0.031	-273	-273	1735	deg C	176	Not available
N/A				Error Indicator	FE00								
S				Not available	FF00								
N/A	7	1	8	Engine intercooler temperature		U8	1	-40	-40	210	deg C	52	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
N/A	8	1	8	Engine intercooler Thermostat		U8	0.4	0	0	100	%	1134	Not available
				Opening									
N/A				Error Indicator	FE								
S				Not available	FF								

PC	ΞN	Acro	nym										
65	269	A١	ЛB										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Barometric Pressure		U8	0.5	0	0	125	kPa	108	Reserved
S				Error Indicator	FE								
S				Not available	FF								
N/A	2	1	16	Cab Interior Temperature		U16	0.031	-273	-273	1735	deg C	170	Not available
N/A				Error Indicator	FE00								
S				Not available	FF00								
N/A	4	1	16	Ambient Air Temperature		U16	0.031	-273	-273	1735	deg C	171	Not available
N/A				Error Indicator	FE00								
S				Not available	FF00								
N/A	6	1	8	Air Inlet Temperature		U8	1	-40	-40	210	deg C	172	Not available
N/A				Error Indicator	FE								
S				Not available	FF								
N/A	7	1	16	Road Surface Temperature		U16	0.031	-273	-273	1735	deg C	79	Not available
N/A				Error Indicator	FE00								
S				Not available	FF00								

PC	ЗN	Acro	nym										
652	271	VE	ΞP	-									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	8	Net Battery Current		U8	1	-125	-125	125	А	114	Not available
N/A				Error Indicator	FE								
s				Not available	FF								
N/A	2			Not defined									
N/A	3	1	16	Alternator Potential (Voltage)		U16	0.05	0	0	3212.75	٧	167	Not available
N/A				Error Indicator	FE00								
s				Not available	FF00								
N/A	5	1	16	Electrical Potential (Voltage)		U16	0.05	0	0	3212.75	٧	168	Not available
N/A				Error Indicator	FE00								
s				Not available	FF00								
S	7	1	16	Battery Potential (Voltage), Switched		U16	0.05	0	0	3212.75	٧	158	ECU Voltage
N/A				Error Indicator	FE00								
N/A				Not available	FF00								

PO	ΞN	Acro	nym										
652	226	D	M1										
	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	2	Protect Lamp Status								987	a
S				Lamp Off	00								Machine failure
N/A				Lamp On	01								
S	1	3	2	Amber Warning Lamp Status								624	The trouble without engine stop
S				Lamp Off	00								
S				Lamp On	01								
S	1	5	2	Red Stop Lamp Status								623	The trouble with engine stop
S				Lamp Off	00								
S				Lamp On	01								
S	1	7	2	Malfunction Indicator Lamp Status								1213	The trouble influenced on exhaust gas without engine stop
S				Lamp Off	00								
s				Lamp On	01								
N/A	2			Reserved									
S	3	1	8	SPN, 8 least significant bits of SPN		U19	1	0	0	524286		1214	b
s	4	1	8	SPN, 8 second byte of SPN									Version 4 Format
S	5	6	3	SPN, 3 most significant bits									
S	5	1	5	FMI		U5	1	0	0	30		1215	C
N/A				Not available	3F								
S	6	1	7	Occurrence count		U7	1	0	0	126		1216	d
N/A				Not available	7F								
s	6	8	1	Conversion Method	0							1706	
s	7	1	8	Not defined(Set to 0FFH) : Single									b
				Frame/SPN-H : Multi-packet									
S	8	1	8	Not defined(Set to 0FFH) : Single									
				Frame/SPN-M : Multi-packet									
S	9			(SPN-L)+(FMI) : Multi-packet									c
S	10			(OC)									d
s	11			(SPN-H)									b
S	12			(SPN-M)									
S	13			(SPN-L)+(FMI)									c
S	14			(OC)									d

PC	ΞN	Acro	nym										
652	227	D	M2										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	2	Protect Lamp Status								987	a
S				Lamp Off	00								
S				Lamp On	01								
S	1	3	2	Amber Warning Lamp Status								624	
S				Lamp Off	00								
S				Lamp On	01								
S	1	5	2	Red Stop Lamp Status								623	
S				Lamp Off	00								
S				Lamp On	01								
S	1	7	2	Malfunction Indicator Lamp Status								1213	
S				Lamp Off	00								
S				Lamp On	01								
N/A	2			Reserved									
S	3	1	8	SPN, 8 least significant bits of SPN		U19	1	0	0	524286		1214	b
S	4	1	8	SPN, 8 second byte of SPN									Version 4 Format
S	5	6	3	SPN, 3 most significant bits									
S	5	1	5	FMI		U5	1	0	0	30		1215	с
N/A				Not available	ЗF								
S	6	1	7	Occurrence count		U7	1	0	0	126		1216	d
N/A				Not available	7F								
S	6	8	1	Conversion Method	0							1706	Version 4 Format
S	7	1		Not defined (Set to 0FFH) : Single Frame/SPN-H : Multi-packet									b
S	8	1		Not defined (Set to 0FFH) : Single Frame/SPN-M : Multi-packet									
s	9			(SPN-L)+(FMI) : Multi-packet									с
s	10			(OC)									d
S	11			(SPN-H)									b
s	12			(SPN-M)									
S	13			(SPN-L)+(FMI)									c
s	14			(OC)									d

	GN 904	Acro Rea	nym										
	Byte			Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
R	1	1	8	Least Significant Byte of PGN			1	0	0	131071		2540	
R	2	1	8	Byre 2 of PGN									
R	3	1	8	Most Significant Byte of PGN									

PC	GN	Acro	nym										
593	392	Ack/	Nack	-									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
	1	1	8	Control Byte			1	0	1	3		2541	
S				0: Positive Acknowledgment									
S				1: Negative Acknowledgment									
S				2: Access Denied (PGN supported but security access denied)									
S				3: Busy (PGN supported but ECU is busy and cannot respond now)									
N/A	2	1	8	Group Function					255	255		2542	
N/A	3	1	8	Not defined									
N/A	4	1	8	Not defined									
N/A	5	1	8	Not defined									
S	6	1	8	Least Significant Byte of PGN of Requested Information		U24	1	0	0	131071		2543	
S	7	1		Middle Byte 2 of PGN of Requested Information									
S	8	1		Most Significant Byte of PGN of Requested information									

P0 60	ЭN 160		onym _DT										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Sequence Number		U8	1	0	1	255			
S	2	1	16	Packetized Data (7 bytes)									Note the last packet of a multipacket Parame- ter Group may require less than 8 data bytes. The extra bytes should be filled with 0xFF

P	GN	Acro	nym										
60	416	TP_ B/	CM_ \M										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Control Byte - set to 32 for CM_BAM		U8	1	32	32	32		2556	
S	2	1	16	Total Message Size, number of byte		U16	1	0	9	1785		2567	
S	4	1	8	Total number of packets		U8	1	0	2	255		2568	
S	5	1	8	Not Defined									
S	6	1	8	Least Significant Byte of PGN		U24	1	0	0	131071		2569	
S	7	1	8	Byre 2 of PGN									
S	8	1	8	Most Significant Byte of PGN									

P	GN	Acro	nym	Planning									
56	320	A	TS	(Not available)									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1		Anti-theft Encryption Seed Present Indicator								1194	
S				Random number is not present	00								
S				Random number is present	01								Seed send
S	1	3	2	Anti-theft Password Valid Indicator								1195	
S				Password is not a validated password	00								
S				Password is a validated password	01								Unlock
s	1	5	2	Anti-theft Component Status States								1196	
S				Unlocked	00								
S				Locked	01								
s				Blocked	10								
S				Not defined	11								
S	1	7	2	Anti-theft Modify Password States								1197	
S				Ok	00								Unlock
S				Full_of_Password	01								
S				Empty_of_Password	10								
S				Not_valid	11								
S	2	1	56	Anti-theft Random Number								1198	
S				MSB									Seed number
S				:									
				:									
				LSB									

P	ЗN	Acro	nym	Planning									
56	576	A	ΓR	(Not available)									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
R	1	1	1	Not defined									
R	1	2	2	Anti-theft Encryption Indicator States								1199	
R				Encryption_Seed_Request	00								Seed request
R				Encrypted_Code_present	01								Password send
R				Not defined	10								
R				Not_Available	11								
R	1	4	2	Anti-theft Desired Exit Mode States								1200	
R				Lock_Upon_Operator_Request	00								
R				Lock_When_Key_Off	01								
R				Not defined	10								
R				Not_Available	11								
R	1	6	3	Anti-theft Component Status States								1201	
R				Add_Password	000								
R				Delete_Password	001								
R				Change_Password	010								
R				Lock_or_Unlock	011								Seed request,
R				Check_Status	100								
R				Login	101								
R				Not defined	110								
R				Not defined	111								
R	2	1	56	Anti-theft Password Representation								1202	
R				MSB									Password number
R													
R				:									
R				LSB									

APPENDIX C

P	ΞN	Acro	onym										
	282	-	CR1	1									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	8	not defined									
N/A	2	1	2	not defined									
	2	3	2	Shutdown requests									
R				No shutdown request	00								normal state
R				Shutdown request	01								Engine ECU begins the shutdown processing.
N/A				Error Indicator	10								Ignored
N/A				Not available	11								Ignored
N/A	2	5	2	not defined									
	2	7	2	Power supply/Key position									
R				Ignition key in off-position	00								Auto preheat/afterheat is disabled. / The starter is not permitted.
R				Ignition key in normal driving position	01								Auto preheat/afterheat is disabled. / The starter is not permitted.
R				Ignition key in preheat-position	10								Auto preheat/afterheat is enabled. /The starter is not permitted.
R				Ignition key in crank-position	11								The starter is permitted.
N/A	3	1	8	not defined									
R	4	1	8	Accelerator pedal position		U8	0.4	0	0	100	%		Percent ratio of accelerator pedal position Engine speed is increased low-idle speed to high-idle speed with pedal position. Low-idle is 0%, and high-idle is 100%. (Same as analog accelerator sensor.) This function is enabled when "setup accel sensor flag" of the Application menu set to CAN. This parameter is available when "Override Control Mode" of TSC1 is disabled. When receive more than "FEh" then engine control is according to accel sensor error operation. CAN Bus state >Initial state : According to accel sensor error operation >Error state : According to accel sensor error operation Error state is retrieved automatically.
R				Error Indicator	FE								
R				Not available	FF								
N/A	5	1	32	not defined									

PC	2NI	Aoro	nym										
			nym										
652	292	Y_EC	ACK1										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
N/A	1	1	8	not defined									
N/A	2	1	3	not defined									
	2	4	2	Preheat function acknowledge									State of preheat energizing ("preheat" only, not include "afterheat" and "airheat at cranking")
S				Not active (Preheat OFF)	00								
S				Active(Preheat ON)	01								
S				Error indicator (Airheat Relay Error)	10								
N/A				Not available	11								
N/A		6	2	not defined									
	2	8	1	Power down enable									
S				Power off not allowed	0								
S				Power off allowed (Finished shutdown)	1								
N/A	3	1	48	not defined									

P	GN	Acro	nym										
65	297	Y_I	/OS										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
	1	1	3	Digital input 1 status									External switch OFF (open)=0 / ON (close)=1
S		1	1	STARTSW(E8) Port	XX1								
S		2	1	SHUDNSW(E15) Port	X1X								
s		3	1	IGNSW(E7) Port	1XX								
N/A		4	5	not defined									
	2	1	7	Digital input 2 status									External switch OFF (open)=0 / ON (close)=1
S		1	1	APP-IP1(E24) Port	XXXXXX1								Droop selection / Starter permission
S		2	1	APP-IP2(E14) Port	XXXXX1X								Rmax2 / Oil pressure switch / Pedal switch NO
s		3	1	APP-IP3(E9) Port	XXXX1XX								Speed1 / Charge alarm
S		4	1	APP-IP4(E17) Port	XXX1XXX								Speed2
S		5	1	APP-IP5(E5) Port	XX1XXXX								Reverse droop / Air cleaner
S		6	1	APP-IP6(E6) Port	X1XXXXX								Speed selection / Water separator
S		7	1	APP-IP7(E13) Port	1XXXXXX								Rmax1 / Stop2 / Pedal switch NC
N/A		8	1	not defined									
	ю	1	8	Digital output 1 status									Output port OFF=0 / ON=1
s		1	1	MAIN-RLY(E34) Port	XXXXXXXX1								
S		2	1	RACK-RLY(E33) Port	XXXXXX1X								
S		3	1	AIRHT-RLY(E44) Port	XXXXX1XX								
S		4	1	CSD-CL(E41) Port	XXXX1XXX								
S		5	1	FAIL-LMP(E12) Port	XXX1XXXX								
S		6	1	PREHT-LMP(E23) Port	XX1XXXXX								
S		7	1	APP-OP1(E20) Port	X1XXXXXX								
S		8	1	APP-OP2(E2) Port	1XXXXXXX								
N/A	4	1	40	not defined									

PC	ЗN	Acro	nym										
652	298	Y_F	RPC	-									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
s	1	1	16	ACTUAL RACK POSITION		U10	1	0	0	1023			
s				Error Indicator	FE**								Rack position sensor error
N/A				Not available	FF**								
S	3	1	16	REQUEST RACK POSITION		U10	1	0	0	1023			Target rack position
s				Error Indicator	FE**								Rack position sensor error
N/A				Not available	FF**								
S	5	1	16	lset_raw		U10	1	0	0	6000			Target rack current
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
s	7	1	16	EGR STEP(actual)		U16	1	0	0	54			EGR step current value
s				Error Indicator	FE**								
S				Not available	FF**								

P	ЗN	Acro	nym										
65	300	Y_C	PR										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Мах	Unit	SPN	Note
R	1	1	8	Command ID Code	4Fh	U8							Fixed Value. ASCII Code of "O" (Ignore other Value)
R	2	1	8	Function ID Code		U8							Select Active Control Object. (This Function is Valid only when Engine Speed=0 and Key switch OFF)
				APP-OP1	00h								Digital output
				Rack Actuator Relay	01h								Digital output
				Air Heat Relay	02h								Digital output
				Request Rack Position	25h								Analog output
				Failure Lamp	33h								Digital output
				Pre-Heat Lamp	34h								Digital output
				EGR Stepping Motor	35h								Analog output
				APP-OP2	36h								Digital output
				CSD Solenoid Valve	37h								Digital output
R	3	1		Port Select Data (Digital output Value)		U8							When "Function ID Code" is Digital output 0=OFF (open) / 1=ON (close) When "Function ID Code" is Analog output 0=0 output / 1=use "Port Output Data"
R	4	1	8	Port Output Data (Analog output Value)		U8	1	0	0	100	%		When "Function ID Code" is Digital output 0 (Fixed Value) When "Function ID Code" is Analog output output Value (0-100%)
N/A	5	1	32	not defined									

PC	GN	Acro	onym										
653	301	Y_0	DPA			_	-						
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Command ID Code	4Fh	U8							Fixed Value. ASCII Code of "O"
S	2	1	8	Function ID Code		U8							Return received Value
s	3	1	8	ECU ID Code	00h	U8							Fixed Value (E-ECU)
s	4	1	8	Port Select Data (Digital output Value)		U8							Return received Value
S	5	1	8	Port Output Data (Analog output Value)		U8							Return received Value
S	6	1	16	Feed Back Data		U16	1	0	0	100	%		When "Function ID Code" is Request Rack Position Return Actual Rack Position (0-100%) When "Function ID Code" is EGR Step- ping Motor Return EGR Valve Opening Value When "Function ID Code" is Digital output 0 (Fixed Value)
S				Error Indicator	FE**								When "Function ID Code" is Request Rack Position Rack Position Sensor Error When "Function ID Code" is EGR Step- ping Motor EGR Stepping Motor Error, dump surge limit
S				Not available	FF**								When "Function ID Code" is EGR Step- ping Motor and Select "No EGR"
s	8	1	8	Process Result		U8							0:Failure (output impossible) / 1:successful

PC	λN	Acro	nym	Yanmar special PGN									
653	302	Y_(DLS										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
R	1	1	16	Amount of speed down at overload detection		U16	0.125	0	0	8031.875	min ⁻¹		
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
R	3	1		Amount of speed down at overload absolution		U16	0.125	0	0	8031.875	min ⁻¹		
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
R	5	1	8	Load ratio at overload detection		U8	1	0	0	101	%		
N/A				Error Indicator	FE								
N/A				Not available	FF								
R	6	1	8	Load ratio at overload absolution		U8	1	0	0	101	%		
N/A				Error Indicator	FE								
N/A				Not available	FF								
R	7	1	8	Over load RPM down ratio (for Tractor)		U8	1	0	0	100	%		
N/A				Error Indicator	FE								
N/A				Not available	FF								
N/A	7	1	16	Not defined									

PC	λN	Acro	nym										
653	303	Y_	LF										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Engine gross load ratio		U8	1	0	0	100	%		
S				Error Indicator	FE								When the load ratio cannot be calculated
N/A				Not available	FF								
S	2	1	8	Engine net load ratio		U8	1	0	0	100	%		Option
S				Error Indicator	FE								When the load ratio cannot be calculated
N/A				Not available	FF								
S	3	1	8	Load ration for UFO control		U8	1	0	0	100	%		Yanmar special function
S				Error Indicator	FE								When the load ratio cannot be calculated
N/A				Not available	FF								
S	4	1	8	Load ratio for load detection		U8	1	0	0	100	%		Yanmar special function
S				Error Indicator	FE								When the load ratio cannot be calculated
N/A				Not available	FF								
S	5	1		Engine net load ratio (Hold at acceleration)		U8	1	0	0	100	%		Yanmar special function
S				Error Indicator	FE								When the load ratio cannot be calculated
N/A				Not available	FF								
S	6	1	2	Overload alarm									Yanmar special function
S				OFF	00								Initial state
S				ON	01								
S				Error Indicator	10								When the load ratio cannot be calculated
S				Not available	11								When it cannot receive 'Y_OLS' command
N/A			6	Not defined									
N/A	7		16	Not defined							1		

PC	ЗN	Acro	nym										
65	306	Y_A	AIN1										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Мах	Unit	SPN	Note
s	1	1	16	Coolant Temperature Sensor Voltage		U16	0	0	0	1,023			TW (E25) Port, Reserved
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
S	3	1	16	Rack Position Sensor Voltage		U16	0	0	0	1,023			RPS (E36) Port
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
s	5	1	16	Accel Position Sensor Voltage		U16	0	0	0	1,023			APS (E35) Port
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
s	7	1	16	Reserve Analog Sensor Voltage		U16	0	0	0	1,023			REAN (E37) Port, Option
N/A				Error Indicator	FE**								
N/A				Not available	FF**								

P	ЗN	Acro	nym										
65	307	Y_A	AIN2										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	16	Reserve Thermistor Sensor Voltage		U16	0	0	0	1,023			RET (E16) Port
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
S	3	1	16	Suction Temperature Sensor Voltage		U16	0	0	0	1,023			TAIR (E26) Port, Reserved
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
S	5	1	16	EGR Temperature Sensor Voltage		U16	0	0	0	1,023			TEGR (E27) Port, Reserved
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
S	7	1	16	Not defined		U16	0	0	0	1,023			
N/A				Error Indicator	FE**								
N/A				Not available	FF**								

PC	ΞN	Acro	onym										
65	308	Y_	EC										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
	1	1	2	Rmax selection									Yanmar special function CAN Bus state >Initial state : 0=OFF >Error state : keep last state
R		1	1	Rmax1	X1								0=OFF / 1=ON, Depend on APP-IP7 function setting
R		2	1	Rmax2	1X								0=OFF / 1=ON, Depend on APP-IP2 function setting
	1	3	2	Governor mode									CAN Bus state >Initial state : 0=OFF >Error state : keep last state
R		3	1	Droop mode	X1								0=OFF (Isochronous) / 1=ON(Droop), Depend on APP-IP1 function setting
R		4	1	Reverse droop mode	1X								0=OFF (Isochronous) / 1=ON (Reverse droop), Depend on APP-IP5 function setting
	1	5	1	Starter prevention									CAN Bus state >Initial state : 1=ON >Error state : 0=OFF
R		5		Starter permission	1								0=OFF(permission) / 1=ON (preven- tion), Depend on APP-IP1 function setting
	1	6	2	Hi-idle limit									Yanmar special function CAN Bus state >Initial state : 0=OFF >Error state : keep last state
R		6		Hi-idle limit	1								0=OFF / 1=ON, Depend on APP-IP5 function setting
R		7		Hi-idle limit speed	1								0=OFF / 1=ON, Depend on APP-IP7 function setting
N/A	1	8	1	Not defined									
N/A	2	1	56	Not defined									

PC	GN	Acro	nym										
653	309	Y_8	STP	*									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
R	1	1	2	Engine Stop command									
R				Engine stop not requested	00								
R				Engine stop	01								
N/A				Error Indicator	10								Ignored
N/A				Not available	11								Ignored
N/A	1	3	6	not defined									
N/A	2	1	56	Not defined									

P	GN	Acro	nym										
65	310	Y_F	RSS										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
	1	1	5	Speed selection function									Constant speed, Constant deceleration CAN Bus state >Initial state : 0=OFF >Error state : keep last state
R		1	1	Speed1	XXXX1								0=OFF / 1=ON, Depend on APP-IP3 function setting
R		2	1	Speed2	XXX1X								0=OFF / 1=ON, Depend on APP-IP4 function setting
R		3	1	Implement(up)	XX1XX								0=OFF / 1=ON, Depend on APP-IP5 function setting, Only Yanmar internal
R		4	1	Implement (down)	X1XXX								0=OFF / 1=ON, Depend on APP-IP6 function setting, Only Yanmar internal
R		5	1	Speed selection enable	1XXXX								0=OFF / 1=ON, Depend on APP-IP6 function setting
N/A		6	3	Not defined									
R	2		16	Speed up function		U16	0.125	0	0	8031.875	min ⁻¹		Yanmar special function CAN Bus state >Initial state : 0=OFF >Error state : keep last state
N/A				Error Indicator	FE**								
N/A				Not available	FF**								
N/A	4	1	40	Not defined									

PC	ΞN	Acro	-										
653		Y_8				1					-		
	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	16	Starter Prevention factor									
s		1	1	Safety relay operation	1								prevention=1, permission=0
S		2	1	Under E-ECU initial operation	1								prevention=1, permission=0
S		3	1	External switch	1								prevention=1, permission=0
S		4	1	Immobilizer	1								prevention=1, permission=0
S		5	1	Starter over time(more than 30s)	1								prevention=1, permission=0
S		6	1	CAN Y_EC status	1								prevention=1, permission=0
s		7	1	Engine stop operation	1								prevention=1, permission=0
s		8	1	Key switch OFF	1								prevention=1, permission=0
S		9	1	Initial rack cheek error	1								prevention=1, permission=0
S		10	1	ECU error	1								prevention=1, permission=0
s		11	1	Engine over speed error	1								prevention=1, permission=0
s		12	1	Diagnostics tool operation	1								prevention=1, permission=0
N/A		13	1	reserved									
													•
N/A		14	1	reserved									0
N/A		15	1	reserved									0
N/A		16	1	reserved									0
S	3	1		Engine stop factor									
S		1	1	Engine stall	1								Engine stall=1, Other=0 When the engine speed become 240min ⁻¹ or less after engine starting once.
S		2	1	Key switch OFF	1								Key switch OFF=1, normal=0 IGNSW (E7) terminal is OFF (When self power control is enabled.)
S		3	1	Engine stop 1 SW	1								Engine stop by SHUDNSW=1, normal=0 Engine stop by SHUDNSW (E15) terminal.
S		4	1	Engine Stop 2 SW	1								Engine stop by APP-IP7 or CAN=1, normal=0 Engine stop by APP-IP7 (E13) terminal or CAN.
s		5	1	Speed sensor error	1								Speed sensor error=1, normal=0 Engine stop by speed sensor error.
S		6	1	Rack actuator or Rack actuator relay error	1								Rack actuator error=1, normal=0 Engine stop by rack actuator error or rack actuator relay error
S		7	1	ECU error(FLASHROM)	1								ECU error (FlashROM)=1, normal=0 Engine stop by FlashROM check sum error.
S		8	1	Engine over speed error	1								Over speed error=1, normal=0 Engine stop by over speed error.
s		9	1	ECU error(Map)	1								ECU error (MAP)=1, normal=0 Incompatibility of map version.
S		10	1	Other engine stop operation	1								Engine stop operation=1, normal=0 Engine stop by operational limitations.
S		11	1	ECU error(EEPROM)	1								ECU error (EEPROM)=1, normal=0 Engine stop by EEPROM check sum error.
S		12	1	reserved									0
N/A		13	1	reserved									0
N/A		14	1	reserved									0
N/A		15	1	reserved									0
N/A		16	1	reserved									0
S	5	1	8	Immobilizer status									
S		1	1	Blocked	1						1		Active=1(default)
s		2	1	Lock or Unlock	1	1					+		Active=1
s		2	1	Unlocked	1	-					+		Active=1
s				Locked									Active=1
		4	1		1						-		
S		5	1	N/A Immobilizer	1								Active=1
N/A		6	3	reserved									
N/A	6	1	24	Not defined									

P	GN	Acro	nym	Yanmar special PGN									
65	315	TR	s_s	*									
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Мах	Unit	SPN	Note
S	1	1	2	ECO-Mode Lamp									
S		1	1	High-speed ON	X1								0 : Lamp OFF / 1 : Lamp ON
S		2	1	Low-speed ON	1X								0 : Lamp OFF / 1 : Lamp ON
N/A	1	3	6	not defined									
N/A	2	1	56	Not defined									

PC	ЭN	Acro	nym	Yanmar special PGN									
653	317	TRS	DTC										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	DTC Number		U8	1	0	1	20			
N/A				Error Indicator	FE								
S				Not available	FF								
S	2	1	8	SPN, 8 least significant bits of SPN		U19	1	0	0	524286		1214	
S	3	1	8	SPN, 8 second byte of SPN									
S	4	6	3	SPN, 3 most significant bits									
S	4	1	5	FMI		U5	1	0	0	30		1215	
N/A				Not available									
S	5	1	7	Occurrence count		U7	1	0	0	126		1216	
N/A				Not available									
S	5	8	1	Conversion Method	0							1706	
S	6	1	24	DTC Occurrence Time		U24	0.05	0	0	832,307	hr		
N/A				Error Indicator	FE****								
S				Not available	FF****								

P	GN	Acro	nym										
65	318	Y_S	RSI										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
s	1	1	16	Low-idle speed		U16	0.125	0	0	8031.875	min ⁻¹	188	depend on engine specification
S	3	1	16	Hi-idle speed (Under droop mode)		U16	0.125	0	0	8031.875	min ⁻¹	532	depend on engine specification
S	5	1		Hi-idle speed (Under isochronous mode)		U16	0.125	0	0	8031.875	min ⁻¹		depend on engine specification
S	7	1	16	Available maximum speed		U16	0.125	0	0	8031.875	min ⁻¹		depend on control operation

P	GN	Acro	nym										
65	319	Y_	ESI										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	Unit	SPN	Note
S	1	1	8	Engine control state		U8							The control state of the engine is
													shown.
													0 : Stand by (INJ_ZERO)
													1 : Engine starting (INJ_START)
													2 : Engine runningl (NJ_REG)
													3 : Engine error (INJ_ERROR)
													4 : Engine stop operation (INJ_STOP)
													5 : Rack initial check (INJ_PRE)
S	2		2	Derate mode									
s		1	1	Engine power derate	X1								Under derate=1, normal=0
S		2	1	Engine speed derate	1X								Under derate=1, normal=0
N/A		3	6	Not defined									
S	3		3	Optional control									
S		1	1	Idling speed up function	XX1								Under Low-idle speed up=1, normal=0
S		2	1	White smoke control function	X1X								Under High-idle speed down=1,
													normal=0
s		3	1	Speed up function	1XX								Under speed up=1, normal=0, Yanmar special function
N/A		4	5	Not defined									
S	4		3	Governor mode									
s		1	1	Isochronous	XX1								Isochronous mode=1
S		2	1	Droop	X1X								Droop mode=1
S		3	1	Reverse droop	1XX								Reverse droop mode=1
N/A		4	5	Not defined									
N/A	5	1	32	Not defined									

APPENDIX D

2G-ECO Governor Controller DTC Table

	DTC	, 39 Form	at	_		J1939 Lai	np Statu	s
Remark	SPN	SPN	FMI	Description	MIL	RSL	AWL	PL
	(Hex)	(DEC)	4	Engine Fuel Rack Position Sensor : Shorted to low source			Х	
	4BA	1210	3	Engine Fuel Rack Position Sensor : Shorted to high source		X (Engine drive)	X (E-ECU start)	
			4	Accelerator Pedal Position Sensor "A" : Shorted to low source			Х	
			3	Accelerator Pedal Position Sensor "A" : Shorted to high source			Х	
			2	Accelerator Pedal Position Sensor "A" : Intermittent fault				
	5B	91	1	Accelerator Pedal Position Sensor "A" : Below normal operational range (SAE J1843)			х	
			0	Accelerator Pedal Position Sensor "A" : Above normal operational range (SAE J1843)			х	
			15	Accelerator Pedal Position Sensor "A" : Not available (SAE J1843)			Х	
			4	Accelerator Pedal Position Sensor "B" : Shorted to low source			X	<u> </u>
			3	Accelerator Pedal Position Sensor "B" : Shorted to high source			X	<u> </u>
			2	Accelerator Pedal Position Sensor "B" : Intermittent fault				<u> </u>
	1D	29	1	Accelerator Pedal Position Sensor "B" : Below normal operational range (SAE J1843)			х	
			0	Accelerator Pedal Position Sensor "B" : Above normal operational range (SAE J1843)			х	
			8	Accelerator Pedal Position Sensor "B" : Communication fault			Х	
			15	Accelerator Pedal Position Sensor "B" : Not available (SAE J1843)			X	
			4	Barometric Pressure Sensor : Shorted to low source	X			
	6C	108	3	Barometric Pressure Sensor : Shorted to high source	Х			
			2	Barometric Pressure Sensor : Intermittent fault				
			4	E-ECU Internal Temperature Sensor : Shorted to low source			Х	
			3	E-ECU Internal Temperature Sensor : Shorted to high source			Х	
	470	1136	2	E-ECU Internal Temperature Sensor : Intermittent fault				
			0	E-ECU Internal Temperature : Too High				X
			4	Engine Coolant Temperature Sensor : Shorted to low source			Х	
	. –		3	Engine Coolant Temperature Sensor : Shorted to high source			Х	
	6E	110	2	Engine Coolant Temperature Sensor : Intermittent fault				
			0	Engine Coolant Temperature : Too High				X
			4	Sensor 5V : Shorted to low source			Х	
	437	1079	3	Sensor 5V : Shorted to high source			Х	
			2	Sensor 5V : Intermittent fault				
	~~	150	1	System Voltage : Too Low				X
	9E	158	0	System Voltage : Too High				X
	436	1078	4	Engine Fuel Injection Pump Speed Sensor : Shorted to low source		X (Both)	X (Ether)	
*	7F8A2	522402	4	Auxiliary Speed Sensor : Shorted to low source				
			4	Engine Fuel Rack Actuator Relay : Circuit fault A		X		
*	75001	50004	3	Engine Fuel Rack Actuator Relay : Circuit fault B		X		
*	7F801	522241	7	(Reserved)				
			2	Engine Fuel Rack Actuator Relay : Intermittent fault				
			4	Air Heater Relay : Circuit fault A	X			
*	7F803	522243	3	Air Heater Relay : Circuit fault B	X			
			2	Air Heater Relay : Intermittent fault				

	DTC				J1939 Lamp Status					
		39 Forma	at	Description		TOOD Eu				
Remark	SPN (Hex)	SPN (DEC)	FMI	Decemption	MIL	RSL	AWL	PL		
			4	Cold Start Device : Circuit fault A	Х					
*	7F802	522242	3	Cold Start Device : Circuit fault B	Х					
			2	Cold Start Device : Intermittent fault						
*	ZEOOR	522251	4	EGR Stepping Motor "A" : Circuit fault A	Х					
	TOUD	522251	3	EGR Stepping Motor "A" : Circuit fault B	Х					
*	75000	522252	4	EGR Stepping Motor "B" : Circuit fault A	Х					
	7 - 000	522252	3	EGR Stepping Motor "B" : Circuit fault B	Х					
*	75000	500050	4	EGR Stepping Motor "C" : Circuit fault A	Х					
	7-800	522253	3	EGR Stepping Motor "C" : Circuit fault B	Х					
*	75005	500054	4	EGR Stepping Motor "D" : Circuit fault A	Х					
	7F80E	522254	3	EGR Stepping Motor "D" : Circuit fault B	Х			1		
		100	4	Oil Pressure Switch : Shorted to low source			X			
	64	100	1	Oil Pressure : Too Low				X		
		107	4	Battery Charge Switch : Shorted to low source			X	1		
	A7	167	1	Charge warning				X		
*	7F84A	522314	0	Engine Coolant Temperature : Abnormal temperature				X		
*	7F853	522323	0	Air Cleaner : Mechanical Malfunction				X		
*	7F859	522329	0	Oily Water Separator : Mechanical Malfunction				X		
	BE	190	0	Engine speed : Over speed Condition		Х		+		
			4	Engine Fuel Rack Actuator : Shorted to low source		Х				
			3	Engine Fuel Rack Actuator : Shorted to high source		Х		+		
	27E	638	7	Engine Fuel Rack Actuator : Mechanical Malfunction		Х		+		
			2	Engine : Malfunction		Х		+		
	27F	639	12	High Speed CAN Communication : Communication fault			Х	+		
			2	E-ECU internal fault : EEPROM Check Sum Error (Data Set 2)		Х		+		
	276	630	12	E-ECU internal fault : EEPROM ReadWrite fault			X			
			12	E-ECU internal fault : FlashROM Check Sum Error (Main Software)		Х		+		
	274	628	2	E-ECU internal fault : FlashROM Check Sum Error (Data Set 1)		Х		+		
			2	E-ECU internal fault : FlashROM Check Sum Error (Data Set 2)		Х		+		
	5CD	1485	4	E-ECU Main Relay : Shorted to low source			X	-		
			12	E-ECU internal fault : Sub-CPU Error A			X	+		
*	7F9E7	522727	12	E-ECU internal fault : Sub-CPU Error B			X	+		
			12	E-ECU internal fault : Sub-CPU Error C			X	+		
*	7F9E8	522728	12	E-ECU internal fault : Engine Map Data Version Error		Х		+		
			12	Immobilizer : CAN Communication fault		-	X	+		
*	7F9EA	522730	8	Immobilizer : Pulse Communication fault			X	+		
	4B2	1202	2	Immobilizer : System fault			X	+		

Remark : Yanmar original DTC

Section 16

P.T.O. SYSTEMS

Page

Direct Coupled P.T.O. Configurations Allowable Torque from Front P.T.O. Cautions for Direct Coupling to Main P.T.O.	16-3
Caution for Side Load	16-7
How To Calculate the Side Load Calculating Required Power for the Generator (PN) Examining Requirements for V-belt and V-pulley Determining "Initial Tension" (F _o) of V-belt Determining "Shaft Load" Determining Overhang of V-pulley Examining Allowable Shaft Load Minimum Adjusting Margin	16-9 16-10 16-16 16-18 16-20 16-20
Allowable Side Load for Main P.T.O IDI Series DI Series	16-26
Allowable Side Load for Front P.T.O. IDI Series DI Series	16-31
Cautions for Hydraulic Pump Drive P.T.O. on the Gear Case Required Power Gear Train	16-36
Allowable Load for Hydraulic Pump Drive P.T.O IDI Series DI Series	16-38

This Page Intentionally Left Blank

To make the most of engine performance, it is necessary to properly design the Power Take-Off System (P.T.O.). Power Take-Off Systems can be divided into the main P.T.O., front P.T.O. and hydraulic pump drive P.T.O.

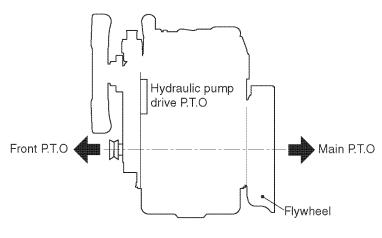


Figure 16-1

DIRECT COUPLED P.T.O. CONFIGURATIONS

Allowable Torque from Front P.T.O.

When you use the main P.T.O. configuration, 100% of the engine output may be obtained at the m flywheel side of the engine. The allowable torque take-off from the front P.T.O. side of the engine is shown in the table below, but the radiator position, etc. must be considered separately.

Allowable torque in front P.T.O. (direct coupling)

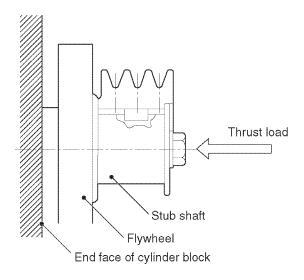
Model	Allowable torque N·m (kgf·m)
2TNV70, 3TNV70	27 (2.8)
3TNV76	30 (3.1)
3TNV82A, 3TNV84, 3TNV88, 3TNV84T	43 (4.4)
4TNV84, 4TNV88, 4TNV84T	57 (5.9)
4TNV94L, 4TNV98, 4TNV98T	(Option) 63 (6.5)

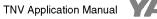
Note: These torque values are continuous torques, and not impact torques.

Allowable Thrust Load

The thrust load which is applied to the flywheel is supported by the thrust bearings installed in the first main bearing of the crankshaft end (flywheel side).

Allowable thrust load must be equal to or below the values shown in the table below considering the allowable contact pressure of the thrust bearings.




Figure 16-2

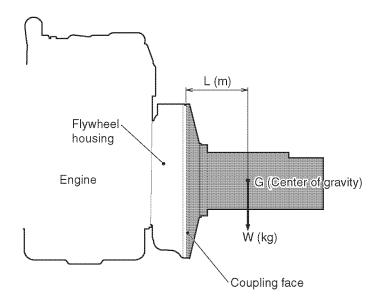
Allowable Thrust Load

Unit: N (kgf)

Engine model name	Static thrust load	Dynamic thrust load
2TNV70, 3TNV70	1568 (160)	784 (80)
3TNV76	1764 (180)	882 (90)
3TNV82A	2352 (240)	1176 (120)
3TNV84, 3TNV88, 3TNV84T	2842 (290)	1372 (140)
4TNV84, 4TNV88, 4TNV84T	2842 (290)	1372 (140)
4TNV94L, 4TNV98, 4TNV98T	3136 (320)	1568 (160)

kg

Cautions for Direct Coupling to Main P.T.O.


Maximum weight and length considerations

If driven machine (such as a hydraulic pump or a generator) is directly coupled to the flywheel housing, you must consider limitations on the weight and length of the driven machine.

The driven machine can be attached to the engine when the value obtained from the following formula is less than the value shown in the Max. column in the following table. Otherwise, a means of supporting the machine must be provided.

 $M = L \times W \times g$

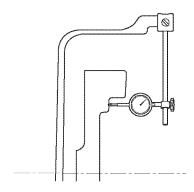
- M : Bending moment at the rear face of flywheel housing N·m
- L : Length from coupling face of flywheel housing to gravity m center of equipment
- W : Mass weight of equipment
- g : Acceleration of gravity 9.81 m/sec²

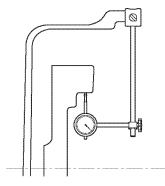
Figure 16-3

Engine model name	Max: Maximum bending moment at the coupling face of flywheel housing (N·m)	Housing type
2TNV70	490	SAE #6
3TNV70		
3TNV76	980	
3TNV82A		
3TNV84(T)		SAE #5
3TNV88	1770	
4TNV84(T)	1770	
4TNV88		
4TNV94L	1960	SAE #4
4TNV98(T)	1900	3AE #4

P.T.O. SYSTEMS

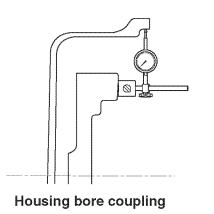
Allowable Runout of Flywheel Housing

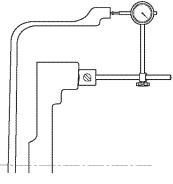

In direct coupled applications, the runout of the coupling face with respect to crankshaft direction is called face runout and the runout of the coupling axis with respect to flywheel axis is called bore runout. When these runout are large, excessive load is applied on the crankshaft and bearing which may cause abnormal abrasion of bearing or breakage of crankshaft.


Housing size	Bore runout (*TIR mm)	Face runout (*TIR mm)
SAE #6	0.18	0.18
SAE #5	0.20	0.20
SAE #4	0.23	0.23
SAE #3	0.25	0.25

Refer once to the table below for the general face and bore runout amount.

* Dial indicator reading


To read face and bore runout with a dial gauge, install a gauge as shown (Figure 16-4). Read the graduation of the dial gauge while slowly rotating the flywheel manually.



Flywheel coupling face runout

Flywheel coupling bore runout

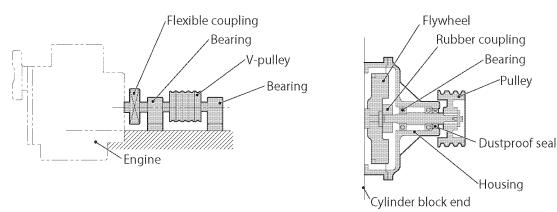

Housing face coupling

Figure 16-4

CAUTION FOR SIDE LOAD

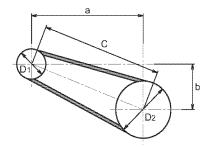
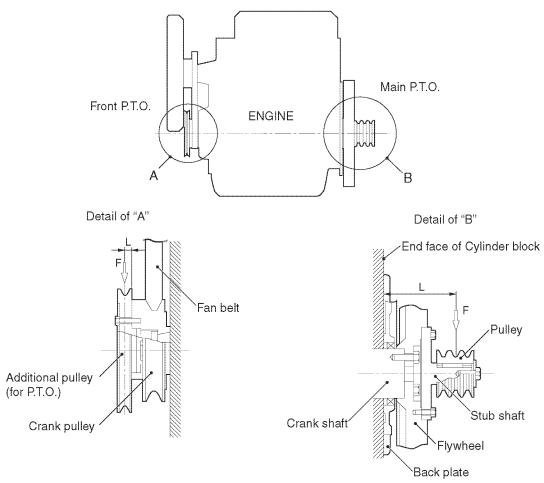
• For heavy side load belt or multiple belt drives, provide external bearing housings. If external bearings are not used, the engine may be damaged due to crankshaft bending or breakage.

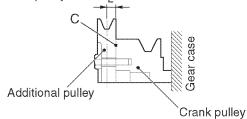
External Bearing Installation Example

- If a side belt drive is required and an external bearing cannot be used because there is no room on the driven machine, see *How To Calculate the Side Load on page 16-9*, *Allowable Side Load for Main P.T.O. on page 16-26* and *Allowable Side Load for Front P.T.O. on page 16-31*. *How To Calculate the Side Load on page 16-9* describes V-belt applications. First calculate the side load for V-belt drive according to the required horsepower and speed. For a side belt drive from the main P.T.O., check that the side load is within the allowable range in Allowable Side Load for Main P.T.O. on page 16-26. For a belt drive from the front P.T.O., check the front load is according to the diagram in *Allowable Side Load for Front P.T.O. on page 16-31*. Belt manufacturers can be consulted for calculation assistance.
- Prepare the following data before starting the analysis:
 - (a) Engine type
 - (b) Required horsepower and speed for driven machine
 - (c) Effective diameter of pulleys (on the engine side and driven machine side: D1, D2)
 - (d) V-pulley overhang (L and l)
 * When two or more belts are used, use the center of the V-pulley.
 - (e) Types and numbers of belts used.
 - (f) Relative positions of engine and driven machine (a, b)
 - (g) Belt center-to-center distance (C)

How to calculate C

$$C = \sqrt{a^2 + b^2}$$


Figure 16-6

How to measure distance L

L is distance from fitting face(c) for additional pulley on the crank pulley to groove center of additional pulley. $$\tt L$$

How to measure distance L

Select a position at the center of 2 grooves farthest and nearest from the cylinder block end.

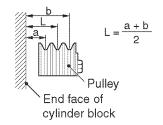


Figure 16-7

HOW TO CALCULATE THE SIDE LOAD

Example

A side belt drive is connected to the front P.T.O. of a 4NTV98 engine to provide power to a 9kW/1500 min⁻¹ generator. Is the side belt load within the range specified for the 4NTV98 engine?

This is the procedure needed to evaluate this situation:

- 1. Determine "required power" for driving this generator.
- 2. Examine V-belt and V-pulley requirements
 - 2-1. Determine the "design power" exerted by V-belt based on the "required power".
 - 2-2. Determine the "type" of V-belt.
 - 2-3. Calculate the length of V-belt to determine the "nominal number".
 - 2-4. Determine the "transmission capacity" of V-belt.
 - 2-5. Determine the "number" of V-belts.
- 3. Determine the "initial tension" of V-belt.
- 4. Determine the "shaft load" of side load.
- 5. Determine the "overhang" of V-pulley.
- 6. Examine whether the "shaft load" and "overhang" of V-pulley are within the allowable limits that are specified in "Allowable Side Load for Front P.T.O." of the pertinent engine.
- 7. If the V-pulley interferes with the radiator while the machine is running, you may need to shift the position of the radiator.

Calculating Required Power for the Generator (PN)

Since the power generation efficiency of this generator is unknown, refer to the data shown in the table, *Generator Capacity and Engine Output on page 19-20*.

According to this table, the generator efficiency (η) at the generator capacity of around 9 kW is approx. 82%. Use the value of η provided by the manufacturer of the generator, if available.

Required power (P_N) = $\frac{\text{Generator capacity}}{\text{Generator efficiency}} = \frac{9 \text{ kW}}{0.82} = 11 \text{ kW}$

Examining Requirements for V-belt and V-pulley

Design Power of V-belt (P_d)

$$\mathsf{P}_{\mathsf{d}} = \mathsf{P}_{\mathsf{N}}(\mathsf{K}_{\mathsf{0}} + \mathsf{K}_{\mathsf{i}})$$

Pd	: Design power	kW
P_{N}	: Required power	kW
K ₀	: Service factor	(See Service factor (K ₀) on page 16-21)
K _i	: Idler correction factor	(See Idler correction factor (K_i) on page 16-22)

If you assume that this generator is operated intermittently for 3 to 5 hours per day, the service factor (K_0) of 1.1 is used (see *Service factor* (K_0) on page 16-21). If the idler is not used, the idler correction factor (K_i) shown in *Idler correction factor* (K_i) on page 16-22 is ignored.

$$P_d = P_N(K_0 + K_i) = 11.0(1.1 + 0)$$

= 12.1kW

Determining Type of V-belt

Select a type of V-belt to be used from (Figure 16-8).

8000 6000 5000 Small pulley revolving speed (min-1) Δ 4000 3000 2000 в 1500 1200 1000 e 800 600 -h 400 300 200 100 2 4 10 20 40 60 80 100 Design power (kW) Figure 16-8

Since the speed of generator for this case is 1500 min⁻¹, if the engine is operated at N = 2250 min⁻¹, the pulley ratio is 0.667. For this case, the engine side pulley is the small pulley. (When the engine is operated at 1500 min⁻¹, the use of the pulley ratio of 1.0 causes no problem if the engine output is larger than the design power of V-belt (P_d). The use of the simple ratio makes the future calculations easier.)

According to the V-belt selection table, the use of one piece of B type belt could be suitable for the case of design power 12.1 kW of small pulley at 2250 min⁻¹. However, for reliability, we decide to use multiple A type belts.

Thus, use A type belts here.

V-belt Selection Table

Calculating Length of V-belt to Determine "Nominal Number"

To obtain the length of V-belt, first use the following formula to calculate the V-belt length (L) that corresponds to the distance between engine and generator shafts (C). Then, use *V-belt length on page 16-22* to select a V-belt that is nearest to the calculated length of L to find the nominal number and record the number. The nominal number selected here is used for the following calculations.

L = 2C + 1.57(d₁ + d₂) +
$$\frac{(d_2 - d_1)^2}{4C}$$

L	: Calculated V-belt length	mm
С	: Distance between shafts	mm

- d_1 : Pitch circle diameter of small V-pulley mm
- d1: Pitch circle diameter of small V-pulleymmd2: Pitch circle diameter of large V-pulleymm

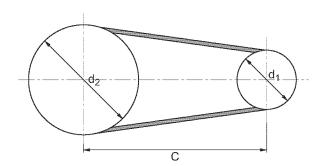


Figure 16-9

To calculate the V-belt length (L), first determine the pitch circle diameters of small and large V-pulleys (d_1 and d_2), and shaft distance (C) first.

Determining pitch circle diameter of small V-pulley (d₁)

When selecting the size (pitch circle diameter: d_1) of engine side V-pulley, the size of PTO mount for the engine crankshaft pulley should be determined carefully. For this example, the generator is driven through the front pulley of a 4TNV98. Based on the Parts Catalog and Product Guide, the part number of the crankshaft pulley that is suited for this application is 129907-21660. The *Yanmar TNV Option Menu* size of the PTO mount for this crankshaft is $pc \phi 78$, and its outer diameter is $\phi 130$. Based on this data, the minimum pitch circle diameter (d_1) of the V-pulley for driving the generator is around 130 mm. In this example, the part with d1 = 140 mm is selected (this includes "allowances").

Determining pitch circle diameter of large V-pulley (d₂)

Since the engine speed of 2250 min⁻¹, generator speed of 1500 min⁻¹, and engine side small pulley pitch circle diameter (d_1) of 140 mm are already given, the generator side large pulley pitch circle diameter (d_2) is given by the following formula:

Large pulley pitch circle
diameter (d₂) =
$$\frac{\text{Engine min}^{-1}}{\text{generator min}^{-1}} \times \frac{\text{small pulley pitch}}{\text{circle diameter (d_1)}}$$

= $\frac{2250}{1500} \times 140$
= 210 mm

P.T.O. SYSTEMS

Determining distance between shafts (C)

The distance between engine crankshaft and generator shaft is determined by arranging their outline drawings to determine whether there is sufficient room for engine operation and maintenance.

For this case, the distance between the shafts (C) is assumed to be 600 mm.

Determining V-belt length based on calculation (L)

The values of the parameters that have been determined above are substituted into the equation that gives the required length of V-belt (L).

L = 2C + 1.57(d₁ + d₂) +
$$\frac{(d_2 - d_1)^2}{4C}$$

= 2 × 600 + 1.57(140 + 210) + $\frac{(210 - 140)^2}{4 \times 600}$

= 1751.5 mm

Determining "nominal number" of V-belt

The V-belt length (L) of 1751.5 mm is a calculated value. Based on it, a commercially available product with length nearest to this value is selected from *V-belt length on page 16-22*.

As a result, the specifications of the required belt are determined as "A" type with nominal number of 69 and belt length of 1753 mm. (For actual design, the shaft distance (C) is obtained by calculating back from the length of the commercial V-belt selected.)

Determining "Transmission Capacity" (P) of V-belt

The transmission capacity of each V-belt is the standard transmission capacity plus additional transmission capacity that is caused by the rotation ratio. The standard transmission capacity of a V-belt is defined as the transmission capacity of the V-belt with a standard length when the contact angle (θ) is 3.14 radians (180 degrees). In this example the standard length V-belt has a length correction factor of 1.00 (*Length correction factor (K_L) on page 16-23*). The rotation ratio is obtained by dividing pitch circle diameter of large V-pulley (d₂) by the same of small V-pulley (d₁), which is equivalent to the rotation ratio = d₂ / d₁. (Note that it is different from pulley ratio.)

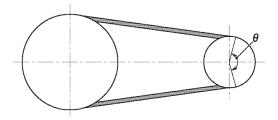


Figure 16-10

The transmission capacity of each V-belt (P) is given by the following formula.

$$P = d_1 \times n[C_1(d_1 \times n)^{-0.09} - \frac{C_2}{d_1} \times C_3(d_1 \times n)^2] + C_2 \times n(1 - \frac{1}{K_1})$$

Р	: Transmission capacity of each V-belt	kW
d ₁	: Pitch circle diameter of small V-pulley	mm
n	: Speed of small V-pulley	(N min ⁻¹) x 10 ⁻³
$C_{1,}C_{2,}C_{3}$: Constants	See Constants (C ₁ , C ₂ , C ₃) on page 16-24
K _r	: Correction factor by rotation ratio	See Correction factor by rotation ratio (K _r) on page 16-25
d ₂ /d ₁	: Rotation ratio	See Correction factor by rotation ratio (K _r) on page 16-25

When the above process has been completed, calculate the transmission capacity of each V-belt (P). For this case, the parameters used for the calculation are determined as follows:

(b)
$$n = 2250 \times 10^{-3}$$

- (c) The values of C₁, C₂ and C₃ are selected from *Constants (C₁, C₂, C₃) on page 16-24*. Since A type belt is used, these are as follows respectively; 3.1149×10^{-2} , 1.0399 and 1.1108×10^{-8} .
- (d) The value of K_r is selected from *Correction factor by rotation ratio* (K_r) *on page 16-25*. For this case, K_r is as follows because the rotation ratio (d_2/d_1) is 210/140 = 1.5.

 $K_r = 1.1036$

$$P = 140 \times 2250 \times 10^{-3} \left[3.1149 \times 10^{-2} (140 \times 2250 \times 10^{-3})^{-0.09} - \frac{1.0399}{140} \times 1.1108 \right]$$
$$10^{-8} (140 \times 2250 \times 10^{-3})^{2} \left[1.0399 \times 2250 \times 10^{-3} \left(1 - \frac{1}{1.1036} \right) \right]$$
$$= 315 \times \left[3.1149 \times 10^{-2} \times 315^{-0.09} - 8.2509 \times 10^{-11} \times 314^{2} \right] + 2.3398 \times 0.0939$$
$$= 315 \times \left[0.0186 - 0.00008 \right] + 0.2197$$
$$= 6.0787 \text{ kW (per each A type V-belt)}$$

P.T.O. SYSTEMS

Determining "the Number of V-belts" (Z)

The number of V-belts for multiple belting (Z) is given by the following formula:

Corrected transmission capacity of V-belt per piece (Pc)

 $P_{c} = P \times K_{L} \times K_{\theta}$

- P_c : Corrected transmission capacity of V-belt per piece kW
- Ρ : Transmission capacity of V-belt per piece
- K_I : Length correction factor (K₁) on page 16-23

 K_{θ} : Contact angle correction factor

See Length correction factor Contact angle correction factor (K_{A}) on page 16-24

kW

Before using Length correction factor (K_1) on page 16-23, complete the following calculation.

$$\frac{(d_2-d_1)}{C}$$

For this example case, the calculation is developed as follows.

- (a) The value of P, 6.0787 kW, was obtained from Determining "Transmission Capacity" (P) of V-belt on page 16-12
- (b) Select the value of K_1 from Length correction factor (K_L) on page 16-23.

From Calculating Length of V-belt to Determine "Nominal Number" on page 16-11, the specifications of the required belt are determined as "A" type with nominal number of 69. Based on the nominal number, the value of K_L selected from Length correction factor (K_L) on page 16-23 is 1.00.

(c) Obtain K_{θ} from Contact angle correction factor (K_{θ}) on page 16-24.

Before using the table, calculate $(d_2 - d_1)/C$.

 $(d_2 - d_1)/C = (210 - 140)/600 = 0.12$

The value of K_{θ} that precisely corresponds to 0.12 cannot be found in the table, and thus, 0.99 is used because 0.12 is nearest to 0.10 that gives the value of 0.99.

As a result, the corrected transmission capacity of each V-belt (P_c) is calculated as described below.

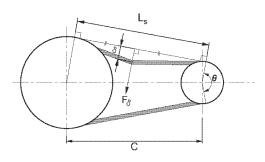
 $P_{c} = P \times K_{I} \times K_{\theta}$ $= 6.0787 \times 1.00 \times 0.99$ = 6.0179 kW

Determining the number of V-belts (Z)

$$Z = \frac{P_d}{P_c}$$

Ζ	: Number of V-belts	
Pd	: Design power	kW
Pc	: Corrected transmission capacity per V-belt	kW

For this example case, the calculation is developed as follows:


- (a) The value of P_d , 12.1 kW, was obtained in *Design Power of V-belt (P_d) on page 16-10*.
- (b) The value of P_c, 6.0179 kW, was obtained in *Corrected transmission capacity of V-belt per piece* (*Pc*) on page 16-14.

$$Z = \frac{P_d}{P_c} = \frac{12.1}{6.0179}$$

= 2.011

From the above values, the number of A type belts (Z) is determined to be 3 pieces.

Determining "Initial Tension" (Fo) of V-belt

The initial tension that is required for transmission of power through the V-belt is calculated by using the following formula:

$$\mathsf{F}_{\mathsf{o}} = 0.9 \bigg[500 \bigg(\frac{2.5 - \mathsf{K}_{\theta}}{\mathsf{K}_{\theta}} \bigg) \frac{\mathsf{P}_{\mathsf{d}}}{\mathsf{Z} \times \mathsf{v}} + \mathsf{m} \times \mathsf{v}^2 \bigg]$$

F _o : Initial tension 1 kgf = 9.80665 N	Ν
${\rm K}_{\theta}~:~{\rm Contact}~{\rm angle}~{\rm correction}~{\rm factor}$	See Contact angle correction factor (K_{θ}) on page 16-24
P _d : Design power	kW
Z : Number of V-belts	
v : V-belt speed	m/s
$v = \frac{\pi \times d_1 \times N}{1000 \times 60}$	
d ₁ : Pitch circle diameter of small V-pulley	mm
N : Speed of small V-pulley	min ⁻¹
m : V-belt mass per unit length	kg/m See Applicable V-belt length limit (allowable difference) on page 16-25

For this example, the calculation is developed as follows.

- (a) The value of K_{θ} , 0.99 pieces, was obtained from *Determining "the Number of V-belts" (Z) on* page 16-14.
- (b) The value of P_d , 12.1 kW, was obtained in *Design Power of V-belt (P_d) on page 16-10*.
- (c) The value of Z, 3 pieces, was obtained in *Determining the number of V-belts (Z) on page 16-15*.

(d) The following parameters that are used for calculating the speed of V-belt (ν) were obtained as follows.

The value of d_1 , 140, was obtained in *Determining pitch circle diameter of small V-pulley* (d_1) on page 16-11.

The value of N, 2250, was obtained in *Determining Type of V-belt on page 16-10*.

$$v = \frac{\pi \times d_1 \times N}{1000 \times 60} = \frac{3.14 \times 140 \times 2250}{1000 \times 60}$$

= 16.5 m/s

(e) The value of m is obtained from *V*-belt mass per unit length and constant (Y) on page 16-25. Since the type "A" belt is used here, the value of m is 0.12.

The above values are used to obtain the initial tension (F_0) of the belt.

$$F_{o} = 0.9 \left[500 \left(\frac{2.5 - K_{\theta}}{K_{\theta}} \right) \frac{Pd}{Z \bullet v} + m \bullet v^{2} \right]$$

= $0.9 \left[500 \left(\frac{2.5 - K_{\theta}}{K_{\theta}} \right) \frac{12.1}{3 \times 16.5} + 0.12 \times 16.5^{2} \right]$
= $0.9 \left[500 \left(\frac{2.5 - 0.99}{0.99} \right) \frac{12.1}{3 \times 16.5} + 0.12 \times 16.5^{2} \right]$
= $0.9 (500 \times 1.525 \times 0.244 \times 32.67)$

= 0.9(186.05 + 32.67)

Determining "Shaft Load"

The shaft load of the belt is calculated by using the following formulas.

Static Shaft Load (F_s)

The tensile force that is applied to the belt if the engine drives a generator, which is called the static shaft load (F_s), is calculated by using the following formula:

$$F_s = 1.5 \left(2Z \times F_0 sin \frac{\theta}{2} \right)$$

F _s : Static shaft load	Ν
Z : Number of V-belts	
F ₀ : Initial tension	Ν
θ : Contact angle of small pulley	degrees See <i>Contact angle correction</i> factor (K_{θ}) on page 16-24

For this example case, the calculation is developed as follows.

- (a) The value of Z, 3, was obtained in *Determining the number of V-belts (Z) on page 16-15*.
- (b) The value of F_o , 197, was obtained from *Determining "Initial Tension"* (F_o) of V-belt on page 16-16.
- (c) The value of θ , 174, is obtained from *Contact angle correction factor* (K_{θ}) on page 16-24. The value of K_{θ} , 0.99, is obtained from *Contact angle correction factor* (K_{θ}) on page 16-24.

$$F_{s} = 1.5 \left(2Z \times F_{0} \sin \frac{\theta}{2} \right) = 1.5 \left(2 \times 3 \times 197 \sin \frac{174}{\theta} \right)$$
$$= 1.5 \left(2 \times 3 \times 197 \times 0.999 \right)$$

= 1771 N (181 kgf)

Dynamic Shaft Load (F_d)

The load that is actually applied to the shaft during loaded operation is called the dynamic shaft load (F_d), which is given by the following formula:

F_{d}	: Dynamic shaft load	Ν
$\mathbf{K}_{\mathbf{\theta}}$: Contact angle correction factor	See Contact angle correction factor ($K_{ heta}$) on page 16-24
P_d	: Design power	kW
ν	: V-belt speed	m/s
θ	: Small V-pulley contact angle	degrees See Contact angle correction factor (K_{θ}) on page 16-24

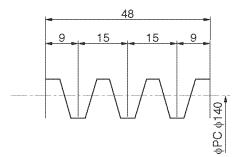
$$\mathsf{F}_{\mathsf{d}} = 9.8 \left(\frac{2.5 - \mathsf{K}_{\theta}}{\mathsf{K}_{\theta}}\right) \times \frac{102 \times \mathsf{P}_{\mathsf{d}}}{\mathsf{v}} \sin\frac{\theta}{2}$$

For this example case, the calculation is developed as follows:

- (a) The value of P_d, 12.1 kW, was obtained in *Design Power of V-belt (P_d) on page 16-10*.
- (b) The value of v, 16.5 m/s, was obtained from Determining "Initial Tension" (F_o) of V-belt on page 16-16.
- (c) The value of θ , 174 is obtained from *Contact angle correction factor* (K_{θ}) on page 16-24. The value of K_{θ} , 0.99, is obtained from *Contact angle correction factor* (K_{θ}) on page 16-24.

$$F_{d} = 9.8 \left(\frac{2.5 - K_{\theta}}{K_{\theta}}\right) \times \frac{102 \times P_{d}}{\nu} \sin \frac{\theta}{2}$$

= $9.8 \left(\frac{2.5 - 0.99}{0.99}\right) \times \frac{102 \times 12.1}{16.5} \sin \frac{174}{2}$
= $9.8 \times 1.525 \times 74.8 \times 0.999$
= 1117 N (114 kgf)


Generally, the dynamic shaft load (F_d) is smaller than the static shaft load (F_s). Therefore, when examining the side load that is applied to an engine, omitting the calculation of the dynamic shaft load (F_d) does not affect the result.

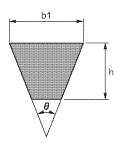
Determining Overhang of V-pulley

The shape of V-pulley that is required can be determined when the belt type, the number of pieces to be used and pitch circle diameter of the pulley are given. The shapes of the V-grooves which are defined by JIS are presented separately in the size table.

For this example, the shape of V-pulley is as follows because 3 each V-belt "A" type, small V-pulleys pitch circle diameter of 140 mm are used. From this shape, the overhang is determined. However, the reference line of the overhang varies among engines.

When examining this factor, be sure to refer to the drawing of pertinent engine shown in Allowable Side Load for Front P.T.O. on page 16-31.

Figure 16-12


Examining Allowable Shaft Load

After the shaft load was calculated in item 4. and overhang was obtained in item 5, examine whether they are within the allowable limits for front PTO of the pertinent engine. Plot the above-mentioned data on a graph of the pertinent engine that is found in *Allowable Side Load for Front P.T.O. on page 16-31* to make sure the values are within the allowable limits. If any of the parameters are over its allowable limit, review the design plan.

For this example, that uses 4NTV98 engine, entering the overhang (L) of 20 mm and shaft load of 181 kgf (this value is used because the static shaft load is largest) into the graph shows that the side load does not cause a problem.

V-belt type	[Belt size]		(mm)
Туре	b1	h	θ rad (°)
A	12.5	9.0	
В	16.5	11.0	0.70
С	22.0	14.0	(40)
D	31.5	19.0	

Service factor	(K_0)
----------------	---------

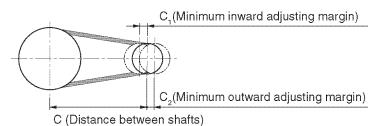
Multiple-cylinder engine			
Example of machine using	Operating hours		
V-belt	Intermittent use for 3 to 5 hours a day	Ordinary use for 8 to 10 hours a day	Continuous use for 16-24 hours a day
Agitator (fluid) Blower (7.5 kW or under) Centrifugal pump/compressor Light load conveyer	1.0	1.1	1.2
Belt conveyer (sand, grain) Dough mixer Blower (over 7.5 kW) Generator Line shaft Laundry machine Machine tool Punch/press/shear Printing press Rotary pump Rotary/vibrating screen	1.1	1.2	1.3
Bucket elevator Exciter Compressor (reciprocating type) Conveyer (bucket/screw) Hammer mill Paper mill/beater Piston pump Roots blower Crusher Woodworking machinery Textile machinery	1.2	1.3	1.4
Crusher Mill (ball/rod) Hoist Rubber processing machinery (roll/calendar/extruder)	1.3	1.4	1.5

Note: Determine the service factor by using the table above as the reference for any driven machine other than those listed in the table.

Note: Add 0.2 to each of the values above when the start / stop operation frequency is high, when maintenance / inspection is not easy, if wear is likely to occur due to contamination with dirt, when used in a hot location or when the belt is likely to be exposed to oil or water.

P.T.O. SYSTEMS

	Idler correction factor (K _i)		
No.	Idler position	Factor	
1	Use from inside of V-belt on loose side	0	
2	Use from outside of V-belt on loose side	0.1	
3	Use from inside of V-belt on tight side	0.1	
4	Use from outside of V-belt on tight side	0.2	


Note: No. 4 is not recommended.

	V-belt	length		(mm)					(mm
Nominal No.	Belt length (L)				Nominal	Belt length (L)			
	Α	В	C	D	No.	Α	В	C	D
20	508	-	-	-	60	1524	1524	1524	-
21	533	-	-	-	61	1549	1549	-	-
22	559	-	-	-	62	1575	1575	1575	-
23	584	-	-	-	63	1600	1600	-	-
24	610	-	-	-	64	1626	1626	-	-
25	635	635	-	-	65	1651	1651	1651	-
26	660	660	-	-	66	1676	1676	-	-
27	686	686	-	-	67	1702	1702	-	-
28	711	711	-	-	68	1727	1727	1727	-
29	737	737	-	-	69	1753	1753	-	-
30	762	762	-	-	70	1778	1778	1778	-
31	787	787	-	-	71	1803	1803	-	-
32	813	813	-	-	72	1829	1829	1829	-
33	838	838	-	-	73	1854	1854	-	-
34	864	864	-	-	74	1880	1880	-	-
35	889	889	-	-	75	1905	1905	1905	-
36	914	914	-	-	76	1930	1930	-	-
37	940	940	-	-	77	1956	1956	-	-
38	965	965	-	-	78	1981	1981	1981	-
39	991	991	-	-	79	2007	2007	-	-
40	1016	1016	-	-	80	2032	2032	2032	-
41	1041	1041	-	-	81	2057	2057	-	-
42	1067	1067	-	-	82	2083	2083	2083	-
43	1092	1092	-	-	83	2108	2108	-	-
44	1118	1118	-	-	84	2134	2134	-	-
45	1143	1143	1143	-	85	2159	2159	2159	-
46	1168	1168	-	-	86	2184	2184	-	-
47	1194	1194	-	-	87	2210	2210	-	-
48	1219	1219	1219	-	88	2235	2235	2235	-
49	1245	1245	-	-	89	2261	2261	-	-
50	1270	1270	1270	-	90	2286	2286	2286	-
51	1295	1295	-	-	91	2311	2311	-	-
52	1321	1321	1321	-	92	2337	2337	2337	-
53	1346	1346	-	-	93	2362	2362	-	-
54	1372	1372	1372	-	94	2338	2338	-	-
55	1397	1397	1397	-	↓	\downarrow	↓	↓	
56	1422	1422	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\downarrow
57	1448	1448	-	-	360	-	-	-	9144
58	1473	1473	1473	-	390	-	-	-	-
59	1499	1499	-	-	420	-	-	-	-

Minimum Adjusting Margin

Obtain the minimum adjusting margin from the table below, considering the V-belt installation and tensioning margin.

Minimum adjusting margin

(mm) Minimum inward adjusting margin (C₁) Minimum outward V-belt nominal No. adjusting margin (C₂) В С D Α 25 38 or below -25 39 to 60 20 40 61 to 90 50 40 91 to 120 65 35 122 to 155 25 75 50 160 to 190 90 200 to 240 40 50 100 250 to 270 115 65 280 to 330 130 -_ 360 to 420 75 160

Length correction factor (K_L)

	Туре				
Nominal No.	Α	B	C	D	
20 to 25	0.80	0.78			
26 to 30	0.81	0.79			
31 to 34	0.84	0.80			
35 to 37	0.87	0.81			
38 to 41	0.88	0.83			
42 to 45	0.90	0.85	0.78		
46 to 50	0.92	0.87	0.79		
51 to 54	0.94	0.89	0.80		
55 to 59	0.96	0.90	0.81		
60 to 67	0.98	0.92	0.82		
68 to 74	1.00	0.95	0.85		
75 to 79	1.02	0.97	0.87		
80 to 84	1.04	0.98	0.89		
85 to 89	1.05	0.99	0.90		
90 to 95	1.06	1.00	0.91		
96 to 104	1.08	1.02	0.92	0.83	
105 to 111	1.10	1.04	0.94	0.84	
112 to 119	1.11	1.05	0.95	0.85	
120 to 127	1.13	1.07	0.97	0.86	
128 to 144	1.14	1.08	0.98	0.87	
145 to 154	1.15	1.11	1.00	0.90	

P.T.O. SYSTEMS

Nominal No.	Туре			
Nominal No.	Α	В	С	D
155 to 169	1.16	1.13	1.02	0.92
170 to 179	1.17	1.15	1.04	0.93
180 to 194	1.18	1.16	1.05	0.94
195 to 209		1.18	1.07	0.96
210 to 239		1.19	1.08	0.98
240 to 269			1.11	1.00
270 to 299			1.14	1.03
300 to 329				1.05
330 to 359				1.07
360 to 389				1.09
390 to 419				
420				

Length correction factor (K₁)

The 1.00 type V-belt is the reference length V-belt.

Contact angle correction factor (K_{\theta})

	•	. 0,
$\frac{d_2 - d_1}{C}$	Contact angle at small V-pulley θ (°)	Contact angle correction factor $\mathbf{K}_{\!\boldsymbol{\theta}}$
0.00	180	1.00
0.10	174	0.99
0.20	169	0.98
0.30	163	0.96
0.40	157	0.94
0.50	151	0.93
0.60	145	0.91
0.70	139	0.89
0.80	133	0.87
0.90	127	0.85
1.00	120	0.82
1.10	113	0.79
1.20	106	0.77
1.30	99	0.74
1.40	91	0.70
1.50	83	0.66

Constants (C₁, C₂, C₃)

Туре	C ₁	C ₂	C ₃
A	3.1149 x 10 ⁻²	1.0399	1.1108 x 10 ⁻⁸
В	5.4974 x 10 ⁻²	2.7266	1.9120 x 10 ⁻⁸
С	1.0205 x 10 ⁻¹	7.5815	3.3961 x 10 ⁻⁸
D	2.1805 x 10 ⁻¹	2.6894 x 10	6.9287 x 10 ⁻⁸

Rotation ratio	K _r
1.00 to 1.01	1.0000
1.02 to 1.04	1.0136
1.05 to 1.08	1.0276
1.09 to 1.12	1.0419
1.13 to 1.18	1.0567
1.19 to 1.24	1.0719
1.25 to 1.34	1.0875
1.35 to 1.51	1.1036
1.52 to 1.99	1.1202
2.0 or above	1.1373

Correction factor by rotation ratio (K_r)

Constant (A)

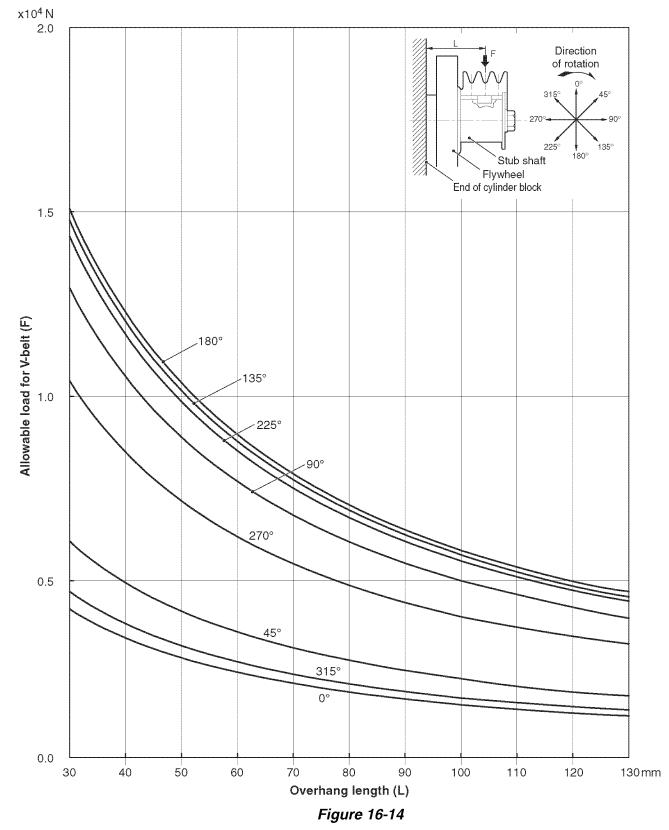
For new belt	For tension adjustment
1.5	1.3

V-belt mass per unit length and constant (Y)

Ī	Туре	М	Α	В	C	D	E
Ī	m (kg/m)	0.06	0.12	0.20	0.36	0.66	1.02
ĺ	Y	10	15	20	30	60	110

V-belt weight per unit length and constant (Y')

Туре	М	Α	В	С	D	E
W (kg/m)	0.06	0.12	0.20	0.36	0.66	1.02
Y'	1.0	1.6	2.0	3.1	6.1	11.2


Applicable V-belt length limit (allowable difference)

Belt length	Applicable limit length (Allowable difference)
150 cm or less	4 mm
150 cm to 230 cm	6 mm

ALLOWABLE SIDE LOAD FOR MAIN P.T.O.

IDI Series

2TNV70, 3TNV70

3TNV76

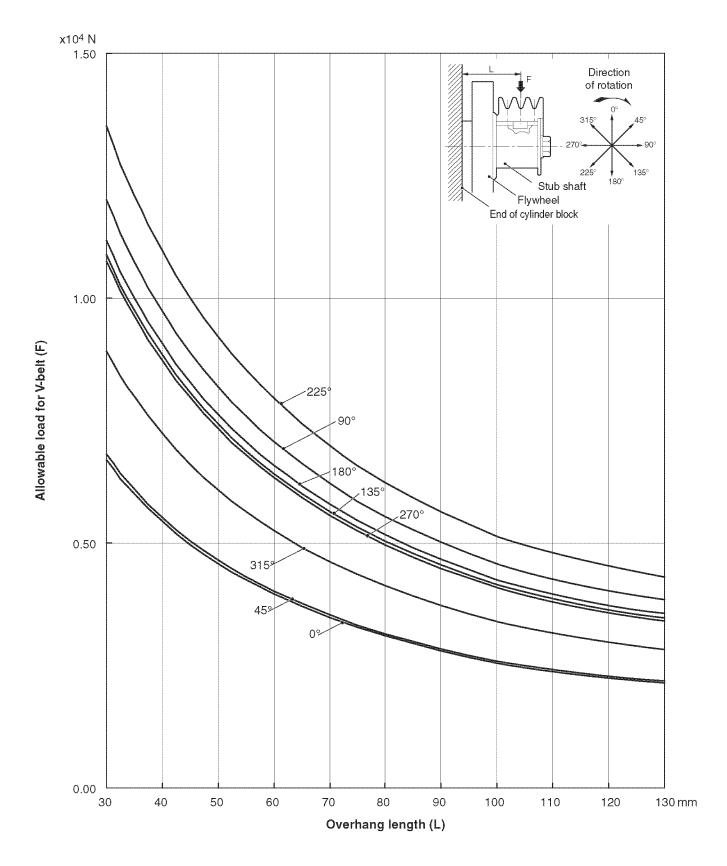
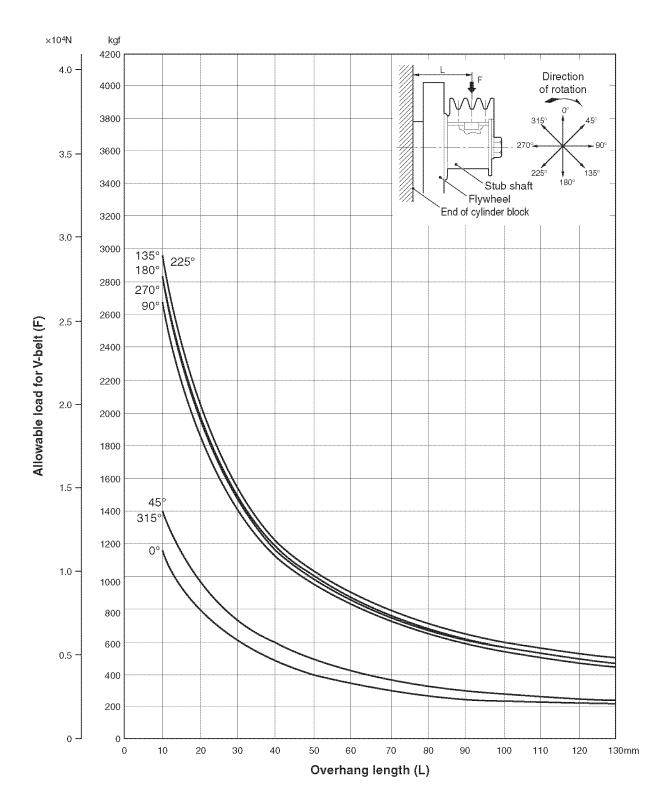
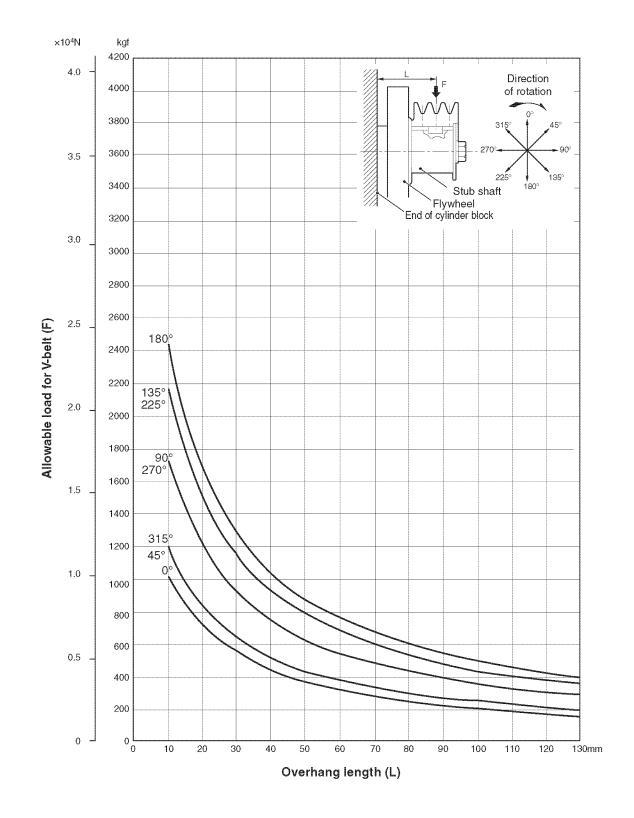



Figure 16-15


P.T.O. SYSTEMS

3TNV82A

DI Series

3TNV84, 3TNV84T, 3TNV88, 4TNV84, 4TNV84T, 4TNV88

Figure 16-17

4TNV94L, 4TNV98, 4TNV98T

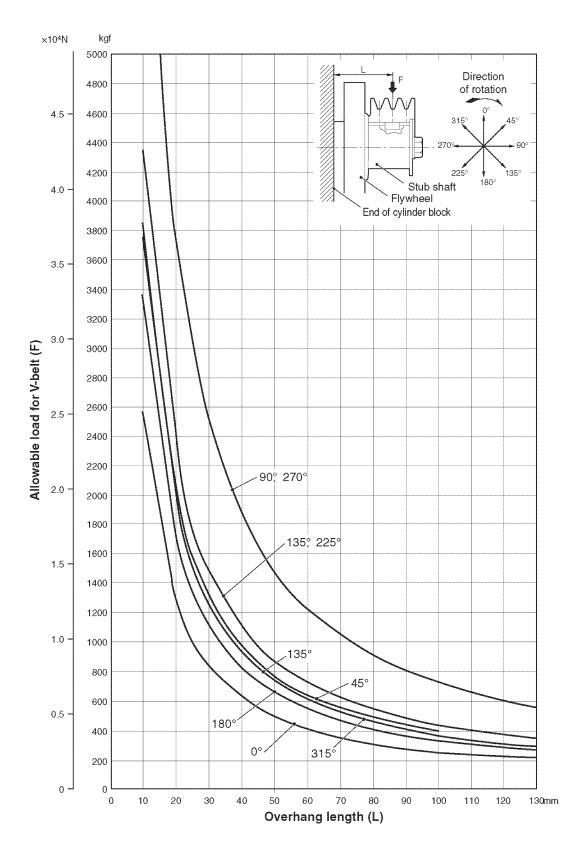


Figure 16-18

ALLOWABLE SIDE LOAD FOR FRONT P.T.O.

IDI Series

2TNV70, 3TNV70

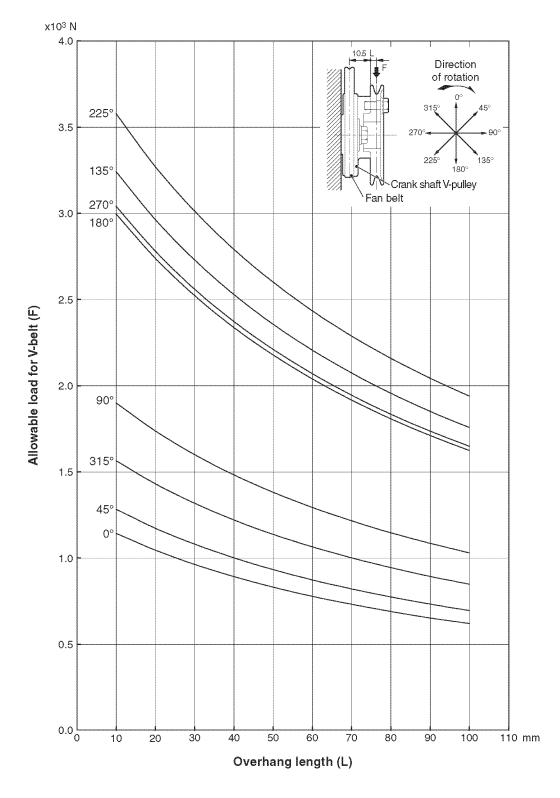
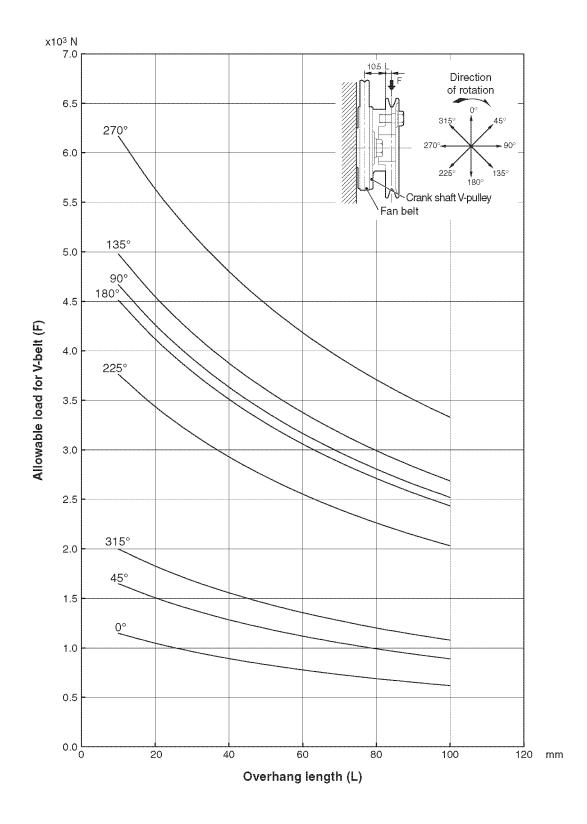
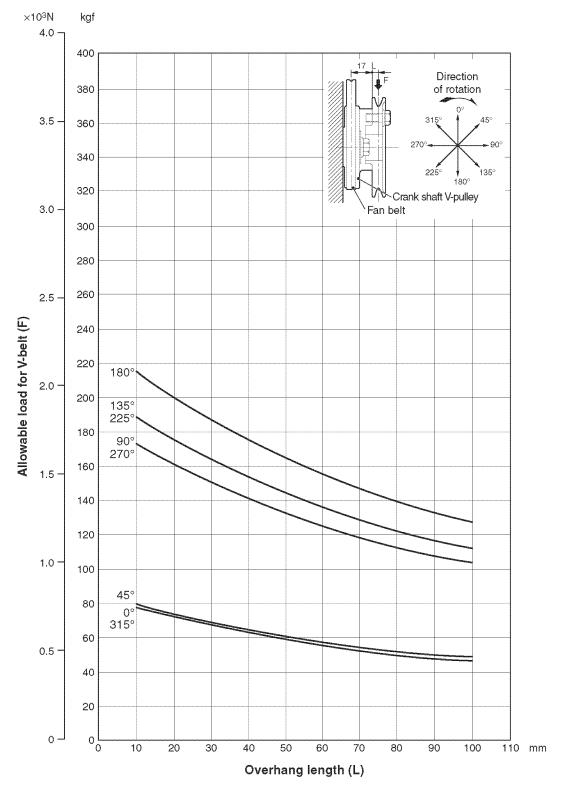
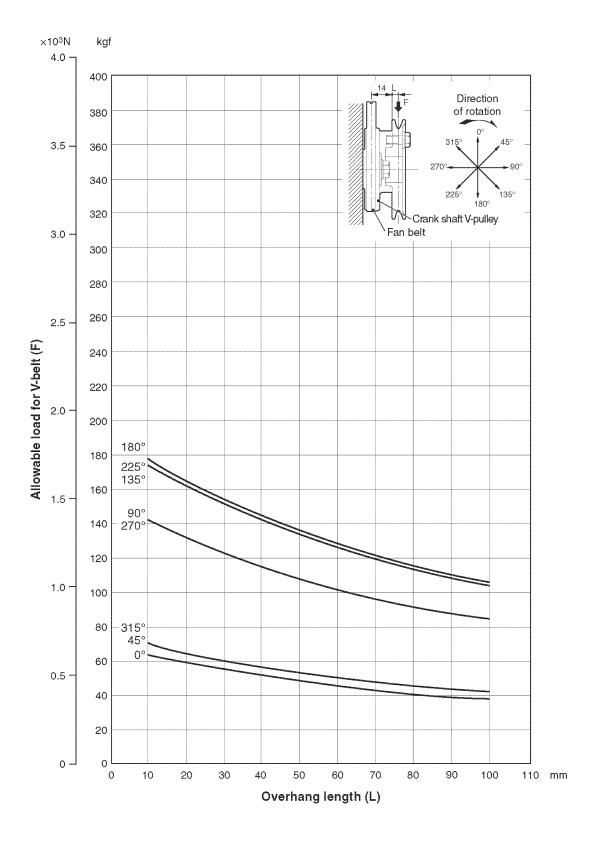



Figure 16-19

P.T.O. SYSTEMS


3TNV76



DI Series

3TNV82A

3TNV84(T), 3TNV88, 4TNV84(T), 4TNV88

4TNV94L, 4TNV98(T)

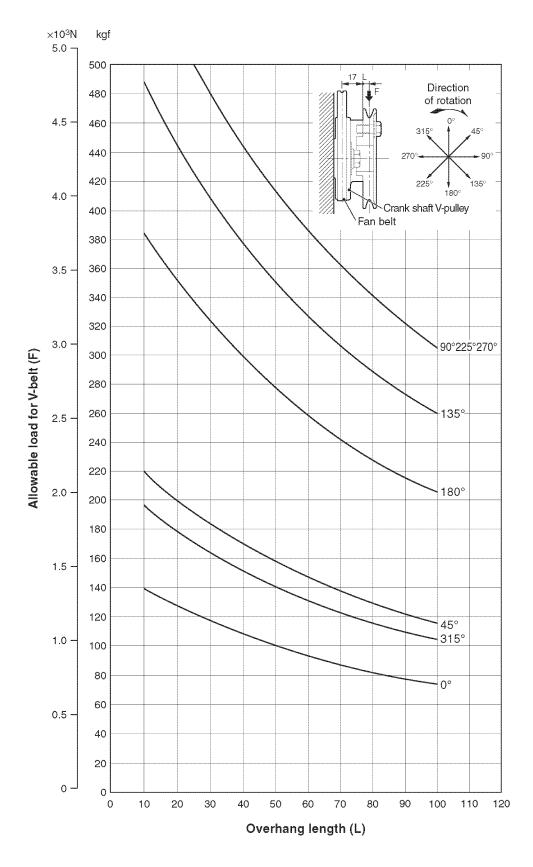


Figure 16-23

P.T.O. SYSTEMS

CAUTIONS FOR HYDRAULIC PUMP DRIVE P.T.O. ON THE GEAR CASE

The hydraulic pump drive P.T.O. is positioned on the exhaust side of the engine gear case. Since the output of the hydraulic pump drive P.T.O. is determined by the strength of the P.T.O. gear on the engine side, select the pump that is within the allowable output range by referring to *Allowable Load for Hydraulic Pump Drive P.T.O. on page 16-38*.

Prepare the following data before you do the calculations:

- Hydraulic pump type and manufacturer
- Pump capacity (Q)
- Pump speed (min⁻¹)
- Delivery pressure (relief pressure) (kPa)
- Hydraulic pump shaft end shape and mounting dimensions on engine side (Refer to the *Yanmar TNV Option Menu* for the mounting dimensions.)

Required Power

The hydraulic pump driving power (required power) is the power required for the engine to drive the hydraulic pump. The required power is calculated with the following equation:

$$kW = \frac{Q \times P \times N}{60 \times \eta} \times 10^{-6} (kW)$$

Where,

kW	:	Required power	(kW)
Q	:	Pump capacity	(cc/rev.)
Р	:	Delivery pressure (relief pressure)	(kPa)
Ν	:	Pump speed	(min ⁻¹)
η	:	Pump efficiency	(Refer to the manufacturer's catalog for the pump efficiency.

If unknown, assume it is 0.9 for the calculation.

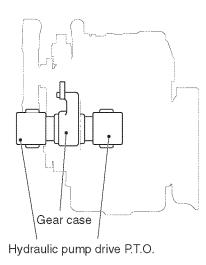
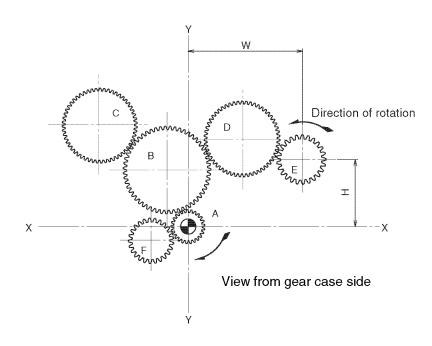


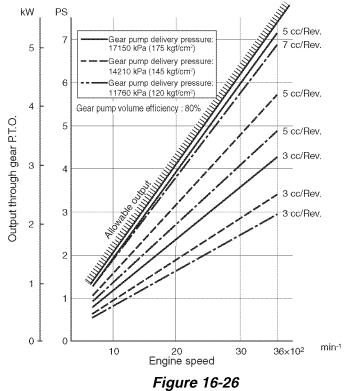
Figure 16-24



Gear Train

	Name		Number of teeth			
Code			2TNV70 3TNV70/76	3TNV82 A /84(T) 4TNV84(T)/88	4TNV94L/98(T)	
A	Crank gear		31	28	32	
В	Idle gear		61	43	50	
С	Fuel pump drive gear		62	56	64	
D	Cam gear		62	56	64	
E	Hydraulic pump drive gear	~	37	31	26	
F	Lubricating oil pump drive gear				29	
Gear ratio: A/E		0.838	0.903	1.231		
Hydrau	lic pump position: W/H (mm)		138/80	162.3/65.979	178.5/107.5	

□: Standard part


✓: Option part

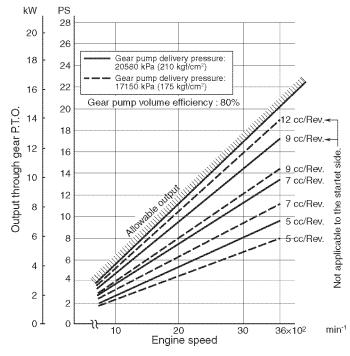
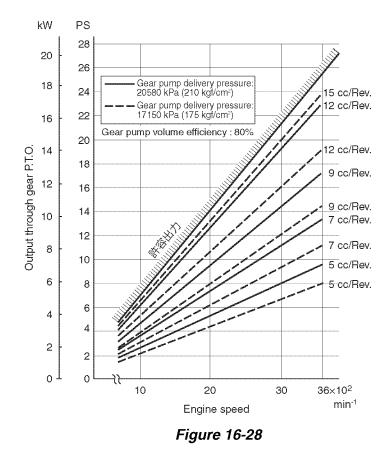
ALLOWABLE LOAD FOR HYDRAULIC PUMP DRIVE P.T.O.

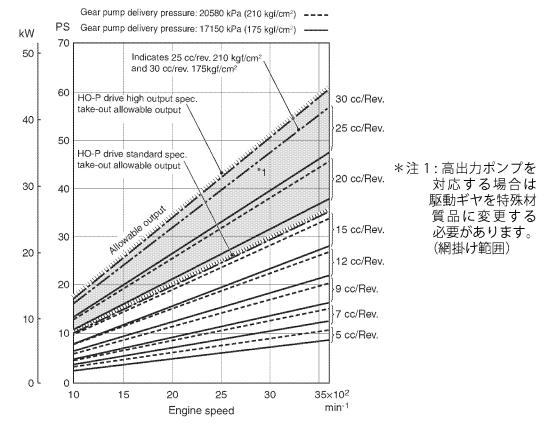
IDI Series

2TNV70, 3TNV70, 3TNV76

DI Series

3TNV82A, 3TNV84(T), 3TNV88


Figure 16-27

4TNV84(T), 4TNV88

4TNV94L, 4TNV98(T)

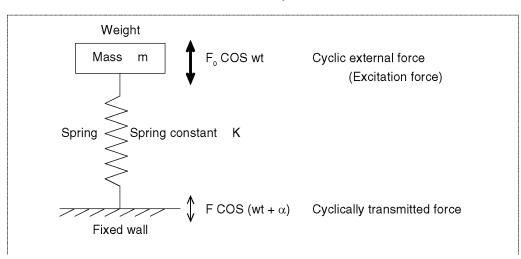
This Page Intentionally Left Blank

Section 17

VIBRATION ISOLATION SYSTEM

Page

Principle of Vibration Isolation Principle of Vibration Isolation and Vibration Transmissibility . Frequency Ratio and Vibration Damping Effect How to Obtain Natural Frequency When Supported With	17-4
Rubber Isolator	17-6
Calculation of Rubber Isolator Selection Procedures of Vibro-isolating Support Examples of Selection Vibration Improvement	17-7 17-7
Vibration Isolation Materials Excitation Force Engine Weight and Center of Gravity Engine Moment of Inertia	17-11 17-12


This Page Intentionally Left Blank

The internal combustion engine generates various types of vibration from its reciprocating parts and rotating parts. The vibration is minimized at the design stage of the engine but perfect elimination is theoretically impossible. Therefore, it is necessary to provide the engine with a vibration isolation system to minimize the vibration transmitted to the driven machine.

The diagram below shows a spring having a spring constant K mounted on a fixed wall on which a weight m is loaded. The total system is called a vibratory system. When the weight is gently pulled up and then released suddenly, it vibrates cyclically. This is called natural vibration, and the period is called natural frequency. On the other hand, when cyclic external force F_0 is applied to this weight periodically, the vibration is called forced vibration and the period is called forced frequency.

Now, if the weight m is fixed to the fixed wall, the excitation force F_0 is directly transmitted to the fixed wall. This may be undesirable for the fixed wall. To prevent this, a spring is provided between the weight m and the fixed wall. Then force F transmitted to the fixed wall can be reduced to less than the excitation force F_0 by appropriate selection of the spring constant K.

Vibration System

Figure 17-1

This spring structure is called the vibration control equipment. Generally, a rubber isolator is used for the spring system. When selecting an actual rubber isolator, use the total mass of the engine and driven machine unit for the weight of mass m, and substitute the fixed wall with the chassis or bench floor for examination. Therefore, the driven machine manufacturer must examine the machine as the vibratory system, while the engine manufacturer must arrange for such vibration isolation materials as unbalanced force and forced frequency data.

The following is an example of the calculation method used to select the rubber isolator. Note that the calculation is solely for estimating the rubber specifications. The final selection of the optimal rubber isolator to be used is made after conducting an testing on a prototype machine using rubber with the specifications obtained from the calculation and those preceding or following them.

PRINCIPLE OF VIBRATION ISOLATION

Principle of Vibration Isolation and Vibration Transmissibility

A rubber isolator is used for two purposes. One is for preventing vibration generated by machine operation from being transferred to the base (Figure 17-2, left side) and the other is for preventing the vibration in the base from being transferred to the machine ((Figure 17-2, right side).

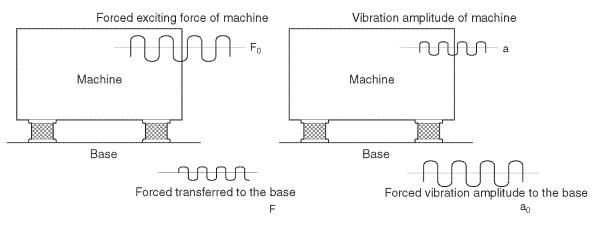


Figure 17-2

When a machine is provided with a vibro-isolating support, assume the excitation force of the machine as F_0 and the force transferred to the base as F. The ratio of transferred vibration is called the transmissibility and is expressed by the following equation:

$$\tau = \frac{F}{F_0} = \frac{a}{a_0} = \left| \frac{1}{1 - \left(\frac{n}{f}\right)^2} \right|$$

- τ : Transmissibility
- F_0 : Forced excitation force of machine
- F : Force transferred to the base
- a_0 : Forced excitation amplitude of the base
- a : Amplitude transferred to the machine
- n : Forced frequency generated from the machine
- f : Natural frequency when vibro-isolating support is provided

The graphic representation of the equation above is the curves of vibration transmissibility shown in **(Figure 17-3)**.

Transmissibility Versus Frequency Ratio Curve

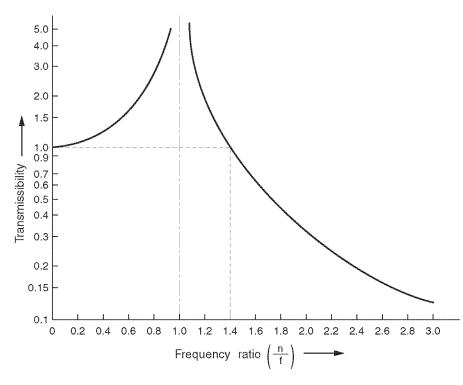


Figure 17-3

Frequency Ratio and Vibration Damping Effect

The vibration transmissibility is determined by the forced frequency (n) of machine and natural frequency (f) with vibro-isolating support.

Frequency ratio	Transmissibility	Vibration isolation effect
$\frac{n}{f} = 1$	$\tau \rightarrow \infty$	Resonance
$\frac{n}{f} = 1.4$	$\tau = 1$	No vibration isolation effect
$\frac{n}{f} > 1.4$	τ < 1	Effective vibration isolation

Normally, select 2 to 3 for n/f.

How to Obtain Natural Frequency When Supported With Rubber Isolator

The natural frequency can be obtained from the following equation using the machine weight and the spring constant of the rubber isolator.

$$f = \frac{1}{2\pi} \sqrt{\frac{K \times g}{W}}$$

f : Natural frequency Hz

- K : Dynamic spring constant of rubber isolator N/cm (1.4 times the catalog value)
- g : Acceleration of gravity

 980 cm/sec^2

W : Load on one piece of rubber isolator

The graphic representation of the equation above is shown in Figure 17-4.

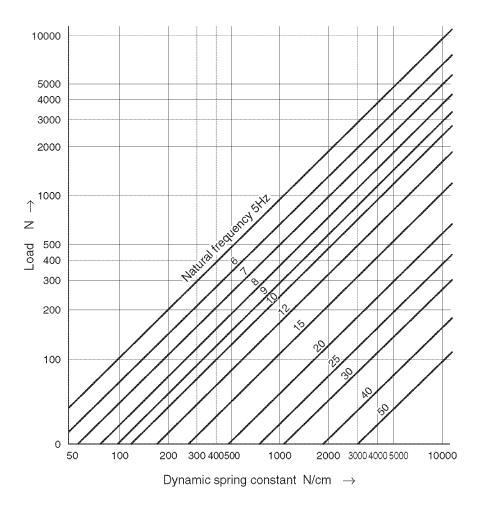
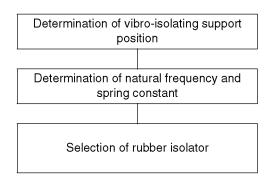



Figure 17-4

CALCULATION OF RUBBER ISOLATOR

Selection Procedures of Vibro-isolating Support

The support points are determined so that the static load of every support point is distributed as equally as possible.

Obtain according to Principle of Vibration Isolation on page 17-4

Select the appropriate type of rubber isolator from the manufacturer's catalog according to the spring constant of the rubber isolator, allowable load and mounting method.

Examples of Selection

Design Specification

Machine	: Refrigerator	
Weight	: Engine	: 1,296 kg
	Refrigerator	: 980 kg
	Coupling and bed	: 800.5 kg
Engine speed	: Normal	: 1,600 min ⁻¹ (≈27 Hz)
	4-cylinder engine	
	*2nd order reciprocating excitation	force (n≈53.3 Hz)
Support point	: 8 points	

Calculation of Static Spring Constant

Support Load

Static load (W) at each support point is obtained from the following equation:

$$W = \frac{3076.5 \times 9.807}{8} \approx 3771 \, \text{N}$$

Determination of Natural Frequency

If a vibration transmissibility in the vicinity of 10% is targeted, n/f = 3 from the curve of vibration transmissibility, and the natural frequency (f) can be obtained from the following equation:

$$f = \frac{n}{3} = \frac{1600 \times 2}{3} = 1067 \text{cpm} \approx (17.8) \text{ Hz}$$

Calculation of Dynamic Spring Constant

Because the static load per point is 3771 N, the dynamic spring constant can be calculated from:

$$f = \frac{1}{2\pi} \sqrt{\frac{K \times g}{W}} Hz$$

$$K = (2\pi f)^2 \times \frac{W}{g}$$

$$= (2 \times 3.14 \times 17.8)^2 \times \frac{3771}{980} = 48083 \text{ N/cm}$$

Calculation of Static Spring Constant

From the following equation for static spring constant:

Static spring constant = $\frac{\text{Dynamic spring constant}}{1.4}$

 $K_s = \frac{K}{1.4} = \frac{48083}{1.4} = 34345 \text{ N/cm}$

Selection of Rubber Isolator

The result of the above calculation:

Static load per support point of rubber isolator	: 3771 N
Static spring constant	: 34345 N/cm

Verification of Vibration Isolation Effect

Suppose that the following rubber vibration isolators are selected as closest to the above result:

Allowable load	: 7845N (800kg)
Static spring constant	: 31381 N/cm (3200 kg/cm)

Then,

• Natural frequency of the support system is obtained from the following equation:

$$f = \frac{1}{2\pi} \sqrt{\frac{K \times g}{W}}$$
$$= \frac{1}{2\pi} \sqrt{\frac{1.4 \times 31381 \times 980}{3771}} = 17.0 \text{ Hz}$$

• The vibration transfer ratio is obtained from the following equation:

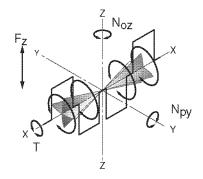
$$\tau = \frac{1}{\left(\frac{n}{f}\right)^2 - 1} \times 100$$
$$= \frac{1}{\left(\frac{53.3}{17}\right)^2 - 1} \times 100 = 11\%$$

Vibration isolation effect

 $100 - \tau = 100 - 11 = 89$

Therefore, the vibration isolation effect is 89%.

Verification by the On-board Installation Test


Verify that the same effect is obtained as calculated from the actual machine test. If the effect is insufficient, conduct further verification with machine tests by using rubber isolator types preceding or following the tested isolator to find the most effective rubber vibration isolator.

Vibration Improvement

As stated in the preceding section, if the test result of the rubber isolator produces a poor vibration isolating effect, conduct tests again using various types of commercially available rubber isolators. The rubber isolator should be selected considering the vibration characteristics of the engine.

The forced frequency and direction of an engine vibration differs with the number of cylinders. The table below indicates the vibration characteristics of an engine. When examining vibration improvement, use this table to find the spring constant of a rubber isolator having the characteristics you need.

Degr	ee and direc	ction of exci	ting force to	be avoided by vibration	n damping sy	stem	
Exciting	Torque	Unbalance force					
force	alternation (lowest				•	Inertia couple force b reciprocating mass	
Number of	order)	1st order	2nd order	1st order	1st order	2nd order	
cylinders	T N∙m	F,	N	N _{oz} N⋅m	N _{py}	N⋅m	
1	1/2 order	0	0				
2	1/2 order		0	0	0		
3	1-1/2 order			0	0	0	
4 (90° crank)	1/2 order				0	0	
4 (180° crank)	2nd order		0				
5	2-1/2 order				0	0	

3rd order

- Т : Rolling
- F₇: Vertical motion
- N_{07} : Yawing
- N_{pv} : Pitching

6

VIBRATION ISOLATION SYSTEM

VIBRATION ISOLATION MATERIALS

If vibration fails to reach the target value as the result of tests using a rubber isolator of the calculated specifications, conduct tests again by using various types of rubber isolator to find a practical solution. In this case, select a rubber isolator by considering the engine vibration characteristics.

Engines differ in the size of unbalance force (excitation force), forced frequency and the direction of vibration with the number of cylinders. These vibration characteristics are outlined in a separate table for reference when trying to improve the vibration characteristics.

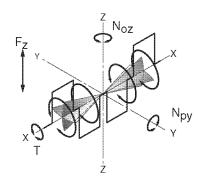
Generally, unbalance force and torque alternation are jointly called excitation force, and the materials concerning it always involve the term "order." This indicates the number of times an excitation force is generated during one rotation of an engine. For example, excitation force of 2nd order refers to the vibration that causes the excitation force to be generated two times during one engine rotation.

Specifically, when an engine is driven at 2600 min⁻¹, the excitation force of 2nd order is generated two times during each engine rotation, or 5200 times a minute. This is called the forced frequency, and is expressed in units of cpm and by the following formula:

 $n = h \times N$

Where,

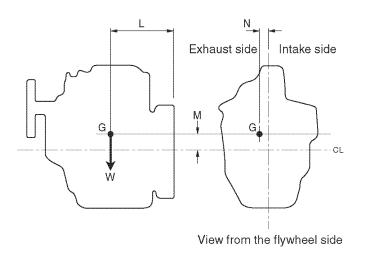
- n : Forced frequency of ecitation force cpm
- h : Order of excitation force
- N : Engine speed rpm


Excitation Force

Engine model	1st order inertia force by reciprocating mass	2nd order inertia force by reciprocating mass	1st order couple force by rotating mass	1st order couple force by reciprocating mass	2nd order couple force by reciprocating mass
	F _z (N) ¹	F _z (N) ²	N _{oz} (N⋅m) ¹	N _{py} (N⋅m) ¹	N _{py} (N⋅m) ²
2TNV70	-	15.034 x 10 ⁻⁵ x N ²	7.022 x 10 ⁻⁶ x N ²	18.368 x 10 ⁻⁶ x N ²	-
3TNV70	-	-	7.747 x 10 ⁻⁶ x N ²	31.833 x 10 ⁻⁶ x N ²	10.425 x 10 ⁻⁶ x N ²
3TNV76	-	-	15.701 x 10 ⁻⁶ x N ²	44.160 x 10 ⁻⁶ x N ²	14.838 x 10 ⁻⁶ x N ²
3TNV82A	-	-	13.406 x 10 ⁻⁶ x N ²	57.467 x 10 ⁻⁶ x N ²	18.927 x 10 ⁻⁶ x N ²
3TNV84(T)	-	-	22.928 x 10 ⁻⁶ x N ²	82.170 x 10 ⁻⁶ x N ²	25.233 x 10 ⁻⁶ x N ²
3TNV88	-	-	22.928 x 10 ⁻⁶ x N ²	89.967 x 10 ⁻⁶ x N ²	29.557 x 10 ⁻⁶ x N ²
4TNV84(T)	-	66.323 x 10 ⁻⁵ x N ²	-	-	-
4TNV88	-	72.609 x 10 ⁻⁵ x N ²	-	-	-
4TNV94L	-	12.474 x 10 ⁻⁴ x N ²	-	-	-
4TNV98(T)	-	13.033 x 10 ⁻⁴ x N ²	-	-	-

امطما

1 With unbalance moment to V-pulley and flywheel

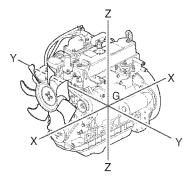

2 Without unbalance moment to V-pulley and flywheel

Torque alternation by gas pressure:

Engine model	Torque alternation T (N·m)					
Engine model	1/2 order	1st order	1-1/2 order	2nd order	3rd order	4th order
2TNV70	-	92.2	-	78.5	50.0	30.4
3TNV70	-	-	134.4	-	75.5	-
3TNV76	-	-	175.5	-	98.1	-
3TNV82A	-	-	221.6	-	117.7	-
3TNV84	-	-	249.1	-	132.4	-
3TNV88	-	-	273.6	-	145.1	-
3TNV84T	-	-	293.2	-	139.3	-
4TNV84	-	-	-	293.2	-	107.9
4TNV88	-	-	-	321.7	-	117.7
4TNV84T	-	-	-	322.6	-	107.9
4TNV94L	-	-	-	449.1	-	164.8
4TNV98	-	-	-	520.7	-	179.5
4TNV98T	-	-	-	700.2	-	162.8

Engine Weight and Center of Gravity

- G : Center of gravity
- L : Distance from flywheel housing end
- M : Distance from crankshaft center line
- N : Distance from crankshaft center line
- W : Weight (including cooling water and lubricating oil)


The data in the table below is based on the outlines of the standard dimensions shown in *3. Specifications*. If the customer's required specifications are known, use them instead.

	L	М	N	W
	mm	mm	mm	kg
2TNV70	151.3	64.9	4.3	84
3TNV70	192.5	77	5	98
3TNV76	158	53	10	112
3TNV82A	208	82	9.5	135
3TNV84	213	92	11	163
3TNV88	213	92	11	163
3TNV84T	213	92	11	168
4TNV84	266	92	4.6	190
4TNV88	266	92	4.6	190
4TNV84T	266	92	4.6	195
4TNV94L	282	124	27	244
4TNV98	282	124	27	244
4TNV98T	282.5	137.1	35	254

Note: F-F specs., (excluding radiator, air cleaner and muffler) including intake manifold, exhaust manifold and flywheel housing.

Engine Moment of Inertia

- G : Center of gravity
- Ix : X-axial moment
- Iv : Y-axial moment
- Iz : Z-axial moment

The data in the table below is based on the outlines of the standard dimensions shown in 3. Specifications.

	Mome	n-sec ²)	Wet weight (kg) *	
	l _x	l _y	l _z	W
2TNV70	238.50	261.45	132.78	84
3TNV70	295.18	370.00	203.00	98
3TNV76	270.66	370.69	246.15	112
3TNV82A	311.26	412.86	301.95	135
3TNV84	463.37	596.84	426.49	163
3TNV88	463.37	596.84	426.49	163
3TNV84T	478.67	616.55	440.52	168
4TNV84	579.28	901.92	688.92	190
4TNV88	579.28	901.92	688.92	190
4TNV84T	593.50	925.65	707.06	195
4TNV94L	1258.2	1714.2	1235.6	244
4TNV98	1258.2	1714.2	1235.6	244
4TNV98T	1364.1	1821.1	1238.6	254

Note: Including cooling water and lubricating oil.

This Page Intentionally Left Blank

Section 18

TORSIONAL VIBRATION

Page

What is Torsional Vibration?	18-3
Torsional Vibration of Multi-Cylinder Engine	
Equivalent Vibration System	18-5
Free Vibration of Multi-cylinder Engine	18-6
Harmonics of Torque	18-7
Forced Vibration of a Multi-cylinder Engine	
Actual Processing for Torsional Vibration	18-9
Avoidance and Suppression of Torsional Vibration	18-9
Torsional Vibration Equivalent Vibration System	. 18-10
IDI Series	. 18-10
DI Series	. 18-13

This Page Intentionally Left Blank

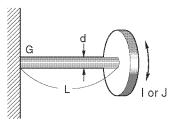
TORSIONAL VIBRATION

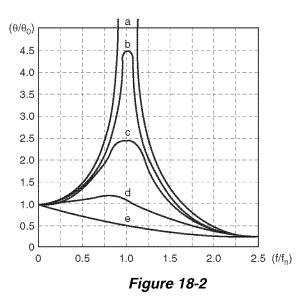
A 4-cycle engine continuously generates output by igniting on every other revolution of the crankshaft. It changes the reciprocating motion of the pistons to the rotary motion of the crankshaft. Therefore, the crankshaft is constantly loaded with tension, bending, torsion or a combination of these. When a crankshaft is designed, the designer takes into consideration the forces that are applied when the engine is running to avoid breakage due to fatigue. If an excessive load is applied to the crankshaft while the engine is running, it may shorten the life of the crankshaft.

Consequently if a large stress is applied by the torsional motion, it may lead to breakage due to fatigue of the crankshaft and transmission shaft. If the additional stress poses no problem, the excessive amplitude may cause breakage due to fatigue of the transmission gear system. Therefore, a very careful consideration of torsional vibration must be given during the design of the machine.

WHAT IS TORSIONAL VIBRATION?

Assume an elastic round bar with a disc on one end and the other end is attached to a wall (called onedegree-of freedom system) as shown in (Figure 18-1). When the disc is twisted a little and released suddenly, the disc tends to return to its original position. Because of the inertia force of the disc, however, the disc overruns the original position and again tends to return to the original position.




Figure 18-1

The disc vibrates in this way around its axis. This type of vibration is called torsional vibration. If damping, such as air resistance or internal resistance of the bar does not take place, the disc may continue to vibrate indefinitely.

In practice, because of damping, the vibration gradually diminishes until it stops. This type of vibration is called free vibration, and the number of vibrations per unit time (generally 1 minute) is called natural frequency (f_n).

Natural frequency always has a constant value when the moment of inertia of the disc (generally expressed with I or J) and the elasticity of the bar (determined by the shear modulus G, diameter d and the length (*l*) of the bar material) are determined. Natural frequency decreases as the moment of inertia of the disc increases or the elasticity of the bar decreases, and vice versa. Large inertial masses such as direct coupled A.C. alternators connected directly with the crankshaft need most careful examination.

Resonance Curve

The free vibration as described previously is caused simply by twisting and releasing the disc. If the twisting force (exciting force) is periodically applied to the disc, the subsequent vibration is called forced vibration. If the frequency of the exciting force agrees with the natural frequency of the vibratory system, the bar twisting angle (amplitude) increases greatly. This state is called resonance. (Figure 18-2) shows how amplitude θ of the vibratory system varies by the relation between the frequency f of exciting force and natural frequency f_n of the vibratory system. These curves are generally called resonance curves. Assume θ_0 is the bar twisting angle of torsion when exciting force is applied statically.

In the case of a vibratory system that has a small exciting force, θ/θ_0 becomes infinite at the resonance point f/f_n 1.0 if no damping exists (Figure 18-2). Actually it does not become infinite because some form of damping occurs. Nevertheless, in general, the amplitude will be several times the static angle of torsion θ_0 .

As damping increases to b, c, d and upward, the amplitude at the resonance point decreases. When it reaches position e, it does not enter the vibrating state because of excessive damping resistance, hence the resonance point vanishes.

As described, the resonance phenomenon has to be avoided since the amplitude at the resonance point becomes quite large in forced vibration even if it is reduced by a certain level of damping. This is not merely confined to torsional vibration but applies to all machine parts in general.

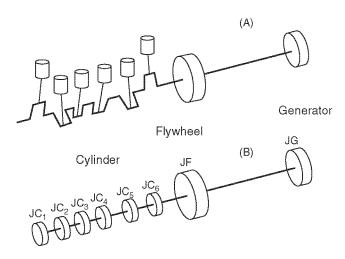
TORSIONAL VIBRATION OF MULTI-CYLINDER ENGINE

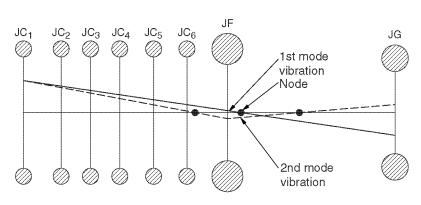
Equivalent Vibration System

What is Torsional Vibration? on page 18-3 describes the basic concept of the simplest so-called torsional vibration of one-degree-of-freedom system having a single disc. The free vibration form of a shaft having several discs attached is similarly determined.

If the multi-cylinder engine shaft system as shown in (Figure 18-3), (A) is replaced with an ideal form of vibratory system like (B) consisting of shaft of a uniform diameter and simple discs for the analysis, the vibratory system is now called an equivalent vibration system.

Shaft System of Multi-cylinder Engine




Figure 18-3

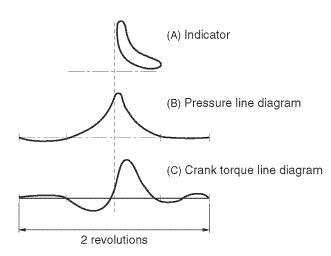
When substituting for equivalent vibration system, substitute the crankshaft and transmission shaft for equivalent shafts having a diameter of 18.72 cm (in the case of a forged steel shaft) and the equivalent torsional stiffness (kg·cm/rad). The length of equivalent shaft is called equivalent length, which represents the size of elasticity of the equivalent vibration system. Also you can replace the crankshaft (including the crankpin, crank arm, balance weight), flywheel, generator / alternator rotor, gear, front pulley, with the equivalent discs (equivalent mass) having the moment of inertia equivalent to them.

TORSIONAL VIBRATION

Free Vibration of Multi-cylinder Engine

(Figure 18-4) shows how the shaft of a multi-cylinder engine vibratory system replaced with the equivalent vibration system twists during free vibration (generally referred to as an elastic curve).

Equivalent Vibration System and Elastic Curves


Figure 18-4

(Figure 18-4) shows the forms of two free vibrations including so-called first mode vibration having only one node (beyond this node the shaft twists in the reverse direction) and second mode vibration having nodes at two locations. Theoretically, there are a number of free vibration forms such as 3rd mode, 4th mode and so forth. But generally speaking, the first and second mode vibrations cause most of the problem, followed by the 3rd mode vibration which occasionally causes a problem. The natural frequency of these forms rises as the number of nodes increase.

Harmonics of Torque

To this point, the free vibration of a multi-cylinder engine shaft system has been described. Let us assume a 4-cycle engine with its crankshaft revolving is being tested. Combustion is generated in one of the cylinders once in every two revolutions of the crankshaft. The pressure change is rewritten as the torque change of the crankshaft (Figure 18-5). While this represents an a harmonic change, the crankshaft torque consists of harmonically changing torques as shown in (Figure 18-6), that is, a group of harmonics. The 1st or 2nd order stated in (Figure 18-6) refers to the torque alternation that repeats one time or two times at every revolution of the crank. The higher the degree of the order, the weaker the strength of harmonics. Because of many harmonics, multi-cylinder engines involve awkward problems of torsional vibration.

Cylinder Pressure Change and Crank Torque Change

Figure 18-5

Crank Torque Harmonics

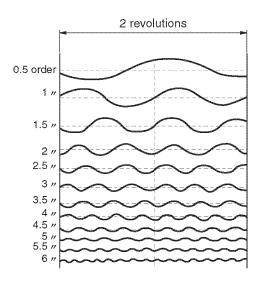


Figure 18-6

TORSIONAL VIBRATION

Forced Vibration of a Multi-cylinder Engine

As described in the preceding section, torque harmonics of respective degrees of order act on the engine crankshaft as the source of vibration. Therefore, if only one natural frequency of the vibratory system is present, a characteristic critical speed, resonates with the torque harmonics. The level of criticality in the critical speed is determined by the scale of work performed by the torque harmonics of the pertinent degree of order to vibration. Up to this point, descriptions of torque harmonics have been made for a single cylinder engine. In the case of a multi-cylinder engine, the level of criticality in the critical speed is determined by the solution of the phases of respective cylinders of the pertinent degree of order.

As described above, there are a number of critical speeds, but their level of criticality is determined by the size of the torque harmonics. Therefore, it is not necessary to consider torque harmonics of a lower degree of order as objects of criticality. Consideration should be given to the degrees of order having the harmonics of a certain size or more.

Generally, with 4-cycle engines, torque harmonics of the degree of order equivalent to one half of the number of cylinders multiplied by an integer is called the major critical speed, which is an object of criticality.

With a 4-cycle engine,

Major critical speed = $\frac{\text{Natural frequency}}{1/2 \text{ x Number of cylinders x Integer}}$

(Integer: 1, 2, 3, ...)

(The denominator represents a degree of order.)

Beside the major critical speed, there is a case where torque harmonics of other degrees of order t may become the object of criticality depending on the crank layout and / or firing order. The following table indicates the degrees of order for critical speed that cause practical problems, and that have to be avoided.

Number of cylinders (crank layout)	First mode vibration	Second mode vibration
2	No consideration required for practical application	
3	3, 4-1⁄2, 6	No consideration required
4 (180° crank)	4, 6, 8	No consideration required

ACTUAL PROCESSING FOR TORSIONAL VIBRATION

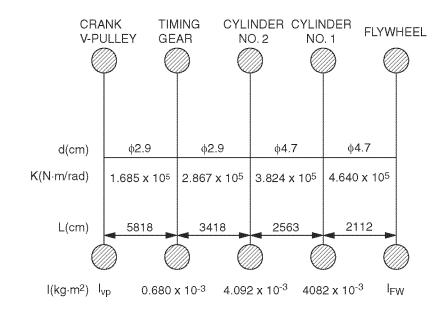
It is assumed that the reader understands the basics of torsional vibration for diesel engines described so far. This section describes how to process the torsional vibration for practical application. When planning a device using a diesel engine as the prime mover, it is important to ensure that no critical speed is present within or in the vicinity of the range of revolution at which the driven machine, whether a generator, a pump or other equipment, is driven. To do this, it is customary to select an appropriate natural frequency of a vibratory system configured with the engine and the driven machine.

Generally, a desired natural frequency is achieved by changing the equivalent length of the generator shaft or the transmission shaft of a pump or fan so it does not cause resonance with engine torque harmonics.

Therefore, when a rough plan for the machine is completed, it is necessary to consider in the design phase of the driven machine the various models needed to study the torsional vibration of the engine, driven machine and the moment of inertia of the rotors (such as the generator rotor, pump vanes, or cooling fan) that are part of the driven machine.

This is laborious work but it has to be done to prevent problems caused by torsional vibration. To do this, the driven machine manufacturer's cooperation is imperative.

AVOIDANCE AND SUPPRESSION OF TORSIONAL VIBRATION


To avoid the risk of torsional vibration, it is necessary, as already described, to either avoid the critical speed by changing the natural frequency or to suppress the amplitude of vibration to a lower level.

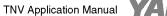
There are three methods to change the natural frequency; by changing the driven shaft system as described, by changing the equivalent length of the shaft system by inserting a flexible joint between the engine and the driven machine or by changing the equivalent mass by adding mass to the front pulley. To change the amplitude of vibration, a rubber damper and / or viscous damper is used. If a damper is used for a constant-speed engine, the damper absorbs vibration energy constantly. Considering the durability of the damper that is required, use of a damper for a constant-speed engine is not recommended.

TORSIONAL VIBRATION EQUIVALENT VIBRATION SYSTEM

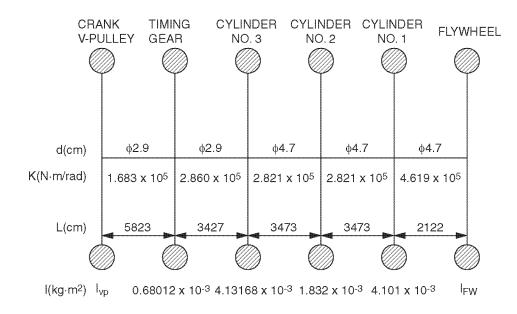
IDI Series

2TNV70

Ι	: Moment of inertia	kg∙m²
Κ	: Spring constant	N.m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm
I_{VP}	: Moment of inertia of crank V-pulley	


- I_{FW} : Moment of inertia of flywheel
- Equivalent shaft diameter: 18.72 cm

Crankshaft V-pulley moment of inertia


I _{VP}	Code No.	GD ²
0.720 x 10 ⁻³	119717-21650 (_{\equiv 110})	0.0029

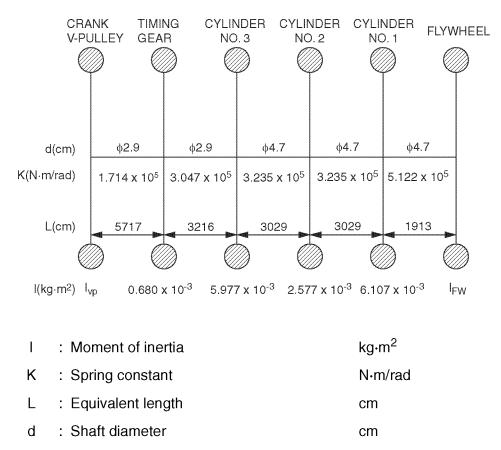
I _{FW}	Code No.	GD ²
0.113	119415-21590	0.4500

3TNV70

Ι	: Moment of inertia	kg∙m²
Κ	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm
	. Managed of the settle of superly Manalland	

- $\mathsf{I}_{\mathsf{VP}}\;$: Moment of inertia of crank V-pulley
- ${\sf I}_{\sf FW}\;$: Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm

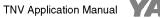

Crankshaft V-pulley moment of inertia

I _{VP}	Code No.	GD ²
0.7203 x 10 ⁻³	119717-21650 (ø110)	0.0029

Flywheel Moment of Inertia			
I _{FW} Code No. GD ²			
0.1125	119515-21590	0.4500	

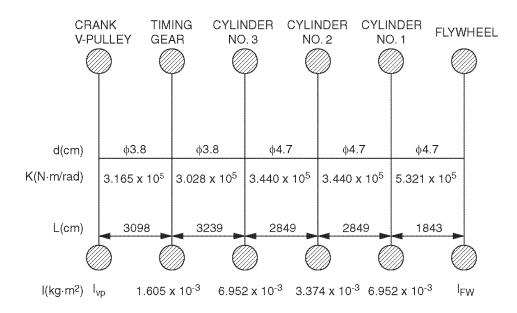
TORSIONAL VIBRATION

3TNV76


- IVP : Moment of inertia of crank V-pulley
- I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm

orankshart v-puncy moment of mertia		
I _{VP}	Code No.	GD^2
0.7203 x 10 ⁻³	119717-21650 (¢110)	0.0029


Crankshaft V-pulley moment of inertia

I _{FW}	Code No.	GD ²
0.234	119636-21580	0.9360

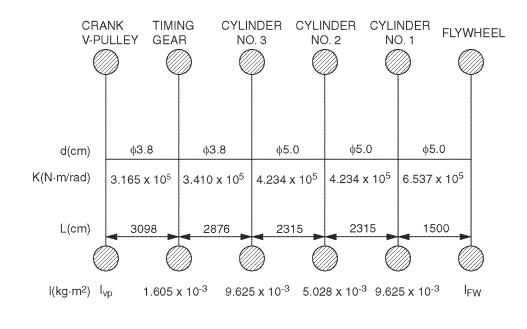
DI Series

3TNV82A

I	: Moment of inertia	kg∙m²
Κ	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm
I _{VP}	: Moment of inertia of crank V-pulley	

I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm


Crankshaft V-pulley moment of inertia

I _{VP}	Code No.	GD ²
2.664 x 10 ⁻³	119802-21650 (\0110)	0.0107
3.739 x 10 ⁻³	119802-21660 (\0120)	0.0150

I _{FW}	Code No.	GD ²
0.435	171420-21590 (CL)	1.7400
0.199	129403-21590 (VM)	0.7950
0.220	129489-21590 (VM)	0.8800
0.227	171420-21590 (CH)	0.9100
0.327	129188-21590 (SAE#5)	1.3100

TORSIONAL VIBRATION

3TNV84(T)

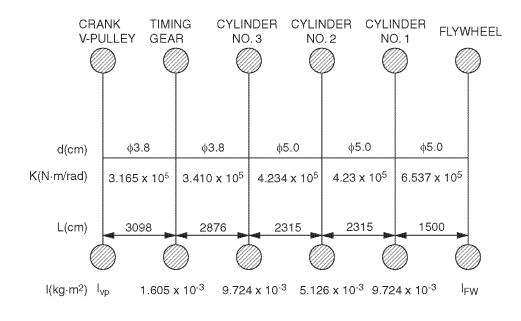
- kg⋅m² : Moment of inertia Ι N·m/rad
- Κ : Spring constant
- : Equivalent length L
- : Shaft diameter d
- IVP : Moment of inertia of crank V-pulley
- I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm

Crankshaft V-pulley moment of inertia

cm

cm


I _{VP}	Code No.	GD ²
2.166 x 10 ⁻³	129004-21650 (\0110)	0.0086
3.356 x 10 ⁻³	129005-21650 (ø120)	0.0134

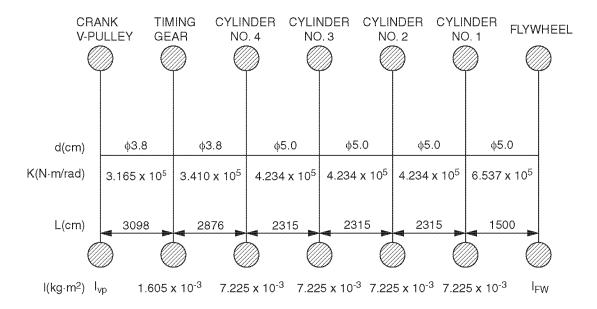
,	
Code No.	GD ²
171340-21590 (CL)	1.7400
171350-21590 (VM)	1.3200
171340-21580 (CH)	0.9100
129128-21590 (VM)	0.8800
129188-21590	1.3100
	171340-21590 (CL) 171350-21590 (VM) 171340-21580 (CH) 129128-21590 (VM)

3TNV88

Ι	: Moment of inertia	kg∙m²
Κ	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm

- $I_{VP}\;$: Moment of inertia of crank V-pulley
- I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm


Crankshaft V-pulley moment of inertia

I _{VP}	Code No.	GD ²
2.166 x 10 ⁻³	129004-21650 (ø110)	0.0086
3.356 x 10 ⁻³	129005-21650 (ø120)	0.0134

	•	
I _{FW}	Code No.	GD ²
0.435	171340-21590 (CL)	1.7400
0.330	171350-21590 (VM)	1.3200
0.220	129128-21590 (VM)	0.8800
0.327	129188-21590	1.3100

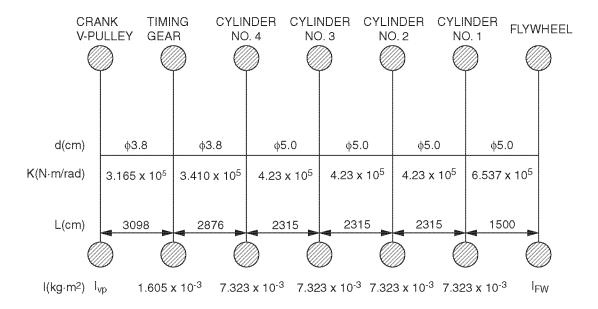
TORSIONAL VIBRATION

4TNV84(T)

I	: Moment of inertia	kg∙m²
Κ	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm

I_{VP} : Moment of inertia of crank V-pulley

I_{FW} : Moment of inertia of flywheel


Equivalent shaft diameter: 18.72 cm

I _{VP}	Code No.	GD ²
2.664 x 10 ⁻³	119802-21650 (\0110)	0.0107
3.739 x 10 ⁻³	119802-21660 (\otag120)	0.0150

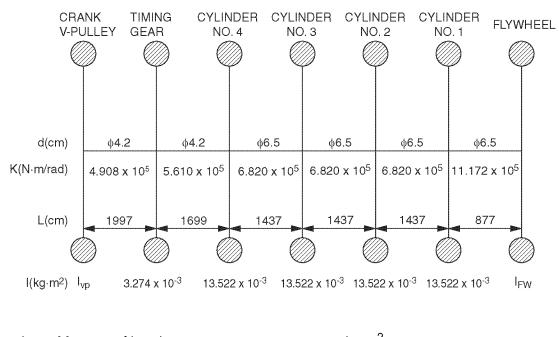
IFW	Code No.	GD ²		
0.435	171420-21590 (CL)	1.7400		
0.199	129403-21590 (VM)	0.7950		
0.220	129489-21590 (VM)	0.8800		
0.227	171420-21590 (CH)	0.9100		
0.327	129188-21590 (SAE#5)	1.3100		

4TNV88

Ι	: Moment of inertia	kg∙m²
К	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm
I_{VP}	: Moment of inertia of crank V-pulley	

I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm


Crankshaft	V-pulley	moment	of inertia
------------	----------	--------	------------

I _{VP}	Code No.	GD ²
2.664 x 10 ⁻³	119802-21650 (\0110)	0.0107
3.739 x 10 ⁻³	119802-21660 (\u00f6120)	0.0150

I _{FW}	Code No.	GD ²
0.435	171420-21590 (CL)	1.7400
0.199	129403-21590 (VM)	0.7950
0.220	129489-21590 (VM)	0.8800
0.327	129188-21590 (SAE#5)	1.3100

TORSIONAL VIBRATION

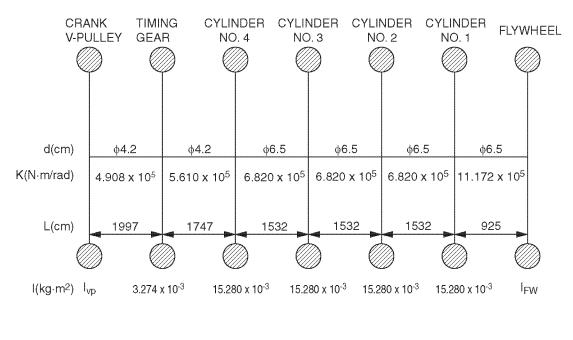
4TNV94L

- I: Moment of inertiakg·m²K: Spring constantN·m/rad
- L : Equivalent length
- d : Shaft diameter
- IVP : Moment of inertia of crank V-pulley
- I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm

Crankshaft V-pulley moment of inertia

cm


cm

I _{VP}	Code No.	GD ²
1.323 x 10 ⁻³	129900-21690 (0110)	0.0053
1.646 x 10 ⁻³	129900-21650 (ø120)	0.0055
2.127 x 10 ⁻³	129900-21660 (ø130)	0.0085
2.499 x 10 ⁻³	129900-21670 (¢130)	0.0100

	,	
I _{FW}	Code No.	GD ²
0.495	129902-21580 (CL)	1.98
0.293	129900-21580 (VM)	1.17
0.605	129955-21590	2.42
0.707	129920-21580	2.83

4TNV98(T)

Ι	: Moment of inertia	kg∙m²
Κ	: Spring constant	N•m/rad
L	: Equivalent length	cm
d	: Shaft diameter	cm

 $I_{VP}\;$: Moment of inertia of crank V-pulley

I_{FW} : Moment of inertia of flywheel

Equivalent shaft diameter: 18.72 cm

Crankshaft V-pulley moment of inertia

I _{VP}	Code No.	GD ²
1.323 x 10 ⁻³	129900-21690 (\0110)	0.0053
1.646 x 10 ⁻³	129900-21650 (ø120)	0.0055
2.127 x 10 ⁻³	129900-21660 (\0130)	0.0085
2.499 x 10 ⁻³	129900-21670 (ø130)	0.0100

I _{FW}	Code No.	GD ²
0.495	129902-21580 (CL)	1.98
0.293	129900-21580 (VM)	1.17
0.605	129955-21590	2.42
0.707	129920-21580	2.83

This Page Intentionally Left Blank

Section 19

REFERENCE MATERIALS

Page

Principal Conversion Table for the Engine Specifications
Fuel Tank
Oil Pan Holding Time 19-6
Mean Piston Speed 19-8
Total Displacement 19-9
Torque 19-10
Net Mean Effective Pressure 19-11
Fuel Injection 19-12
Cyclic Irregularity (or Coefficient of Speed Fluctuation)
Thermal Efficiency and Heat Loss
Generator
Hydraulic Pump (gear)
Water Pump Driving Horsepower (Required Horsepower) 19-24
Form Characteristics of Cooling Fan 19-24
Mesh Number and Size of Mesh 19-25
Centigrade-Fahrenheit Temperature Conversion 19-26
Hill Climbing Horsepower and Allowable Climbing Angle

Allowable Hill Climbing Angle..... 19-28

Part of this technical reference is simplified to facilitate on-site calculation. Care should be taken when using this section when a high level of precision is required for design and tests.

PRINCIPAL CONVERSION TABLE FOR THE ENGINE SPECIFICATIONS

Output

The output is in kW in principle, but hp and PS are also often used. Conversion factors are as follows:

kW	hp	PS
1	1.3410	1.3596
0.7457	1	1.0143
0.7355	0.9859	1

Pressure

Irrespective of lubricant pressure, JIS and SAE use only kPa (kilo Pascal) as the unit of pressure for engine performance.

kPa	mPa	kgf/cm ²	mmAq (H ₂ O)	mmHg (Torr)
1	1 x 10 ⁻³	1.01972 x 10 ⁻²	1.01972 x 10 ²	7.50062
1 x 10 ³	1	1.01972 x 10	1.01972 x 10 ⁵	7.50062 x 10 ³
9.80665 x 10	9.80665 x 10 ⁻²	1	1 x 10 ⁴	7.35559 x 10 ²
9.80665 x 10 ⁻³	9.80665 x 10 ⁻⁵	1 x 10 ⁻⁴	1	7.35559 x 10 ⁻²
1.33322 x 10 ⁻¹	1.33322 x 10 ⁻⁴	1.35951 x 10 ^{−3}	1.35951 x 10	1

1 kgf	i/cm² =	98	kPa	1	kPa	=	0.0102	kgf/cm²
	=	0.098	MPa	1	MPa	=	10.2	kgf/cm ²
750 mr	nHg =	100	kPa	1	Pa	=	1	N/m²

Specific fuel and lubrication oil consumption

g/kW⋅h	g/hp₊h	g/PS⋅h
1	0.7457	0.7355
1.3410	1	0.9863
1.3596	1.0139	1

Torque

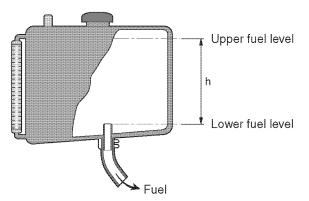
N⋅m	kgf₊m
1	1.01972 x 10 ⁻¹
9.80665	1

1 kgf = 9.80665 N

FUEL TANK

Fuel Tank Capacity

The fuel consumption by the engine is given by the following equation:


$$Q = \frac{b \times P_e}{1000 \times d}$$

Where,

Q	:	Fuel consumption by engine	ℓ/h
b	:	Specific fuel consumption	g/kW∙h
Pe	:	Engine output	kW
d	:	Specific gravity of fuel	approx. 0.83

Calculation Example

Calculate the fuel tank capacity by multiplying the fuel consumption per hour calculated by the equation above by the driven machine operating hours. The effective fuel tank capacity must be determined by providing a sufficient margin as shown by the height (h) shown in the figure below:

Calculate the fuel consumption per hour when $b = 270 \text{ g/kW} \cdot h$, $P_e = 20 \text{ kW}$ and d = 0.83.

$$Q = \frac{270 \times 20}{1000 \times 0.83}$$
= Approximately 6.5 liters per hour

Fuel Tank Holding Time

Fuel Consumption (<i>l</i> /h)				
$B = \frac{b \times P_e}{d} \times 10^{-3}$				
B : Fuel consumption	ℓ/h			
b : Specific fuel consumption	g/kW∙h			
P _e : Rated output	kW			
d : Specific gravity of fuel	Diesel fuel 0.83			
Fuel Tank Holding Time (h)				
$t = \frac{V}{B}$				

$$= \frac{V}{B}$$

t	: Fuel tank holding time	h
۷	: Effective fuel capacity	l
В	: Fuel consumption	ℓ/h

Example

According to the specification sheet for the 3TNV84 series diesel engine, the continuous rating at 1800 rpm is 13.5 kW and the fuel consumption is 245 g/kW·h. For how many hours will a fuel tank having an effective capacity of 20L last at the continuous rating?

Fuel Consumption (l/h)

$$B = \frac{b \times P_e}{d} \times 10^{-3}$$
$$= \frac{245 \times 13.5}{0.83} \times 10^{-3}$$
$$= 3.98 \ \ell/h$$

В	: Fuel consumption	ℓ/h
b	: Specific fuel consumption	245 g/kW∙h
Pe	: Rated output	13.5 kW
d	: Specific gravity of fuel	Diesel fuel 0.83

Fuel Tank Holding Time (h)

$$t = \frac{V}{B}$$
$$= \frac{20}{3.98}$$

= 5 h

t	: Fuel tank holding time	h
V	: Effective fuel capacity	20 l
В	: Fuel consumption	3.98 ℓ/h

OIL PAN HOLDING TIME

Lubricating Oil Consumption (l/h)

$$C = \frac{c \times P_e}{d} \times 10^{-3}$$

С	: Lubr	ricating oil consumption	ℓ/h
с	: Spe	cific engine oil consumption	g/kW∙h
Pe	: Rate	ed output	kW
d	: Spe	cific gravity of engine oil	0.89

Oil Pan Holding Time (h)

$$t = \frac{V}{C}$$

t	: Oil pan holding time	h
V	: Effective capacity of oil pan	l
С	: Lubrication oil consumption	ℓ/h

Example

According to the specification sheet for the 3TNV76 series diesel engine, the effective capacity of the standard oil pan in CH specifications is $2.1 \ l$.

When driven at the continuous rating of 17.7 kW for 3600 rpm, for how many hours will the oil pan last? The specific engine oil consumption is 0.2 g/kW·h.

Engine Oil Consumption (l/h)

$$C = \frac{c \times P_e}{d} \times 10^{-3}$$

$$=\frac{0.2\times17.7}{0.89}\times10^{-3}$$

~

$$= 3.98 \times 10^{-3} \ \ell/h$$

- C : Engine oil consumption ℓ/h
- c : Specific engine oil consumption 0.2 g/kW·h Reference only: Specific engine oil consumption for TNV.

Engine	IDI	DI
g/kW∙h	0.28	0.34

Pe : Continuous rating

17.7 kW

0.89

d : Specific gravity of engine oil

Oil Pan Holding Time (l/h)

$$t = \frac{V}{C}$$
$$= \frac{2.1}{3.98 \times 10^{-3}}$$
$$= 121 \text{ h}$$

t	: Oil pan holding time	h
V	: Effective capacity of oil pan	2.1 l
С	: Engine oil consumption	3.98 x 10 ⁻³ ℓ/h

MEAN PISTON SPEED

Mean Piston Speed (m/s)

$$m = \frac{2S \bullet n}{60} \times 10^{-3}$$

$$V_m : Mean piston speed m/s$$

$$S : Engine stroke mm$$

$$n : Engine speed rpm$$

Example

V

According to the specification sheet for the 3TNV84 series diesel engine, the piston stroke is 90 mm. What is the mean piston speed for 3000 rpm of engine speed in VM specifications.

$$V_{m} = \frac{2S \bullet n}{60} \times 10^{-3}$$
$$= \frac{2 \times 90 \times 3000}{60} \times 10^{-3}$$
$$= 9.0 \text{ m/s}$$

V _m : Mean piston speed	m/s
S : Engine stroke	90 mm
n : Engine speed	3000 rpm

TOTAL DISPLACEMENT

Total Displacement (l)

$V_{st} = \frac{\pi}{4} D^2 SN \times 10^{-3}$				
V _{st} : To	otal displacement	1		
D : B	ore	mm		
S : St	troke	mm		
N : N	umber of cylinders			

Example

According to the specification sheet for the 3TNV76 series diesel engine, the cylinder bore is 76 mm, and the piston stroke is 82 mm. What is the total displacement of this engine?

$$V_{st} = \frac{\pi}{4} D^2 SN \times 10^{-3}$$
$$= \frac{\pi}{4} \times 76^2 \times 82 \times 3 \times 10^{-3}$$
$$= 1115 cc$$

V_{st}	: Total displacement	I
D	: Bore	76 mm
S	: Stroke	82 mm
Ν	: Number of cylinders	3
р	: Pi	3.1416

Note: Japan and America have different approaches to the processing of the decimal point.

Japanese system: Omits the figures below the decimal point.

American system: Counts fractions of 0.5 and over as a unit and discards the rest.

REFERENCE MATERIALS

TORQUE

Torque (T_{tq})

Output unit		Torque T _{tq}	
Pe		N⋅m kgf⋅m	
(a)	kW	$9550 imes rac{P_{e}}{n}$	$973.8 \times \frac{P_e}{n}$
(b)	hp	$7121 \times \frac{P_e}{n}$	$726.1 \times \frac{P_e}{n}$
(c)	PS	$7024 \times \frac{P_e}{n}$	$716.2 \times \frac{P_e}{n}$

T_{tq} : Torque

P_e : Output

n : Engine speed

N⋅m (kgf⋅m) kW (hp or PS) rpm

1kgf·m = 9.80665 N·m

Example

According to the specification sheet for the 4TNV84T series diesel engine, the rated output for a rated speed of 2400 rpm is 35.5 kW. What is the rated torque?

Since the output is in units of kW, equation (a) is used.

T _{tq}	: Torque	N∙m
Pe	: Output	33.5 kW
n	: Engine speed	2400 rpm

To obtain the rated torque in N·m:

$$T_{tq} = 9550 \times \frac{P_e}{n}$$

= 9550 × $\frac{33.5}{2400}$
= 133 N·m

To obtain the rated torque in kgf·m:

$$T_{tq} = 973.8 \times \frac{P_e}{n}$$

= 973.8 × $\frac{33.5}{2400}$
= 13.6 kgf·m

NET MEAN EFFECTIVE PRESSURE

Net Mean Effective Pressure (Pme)

Output unit		Net mean effective pressure P _{me}		
F)e	kPa	kgf/cm ²	
(a)	kW	$\frac{120.0 \times P_{e}}{V_{st} \times n} \times 10^{3}$	$\frac{1224 \times P_e}{V_{st} \times n}$	
(b)	hp	$\frac{89.49\times P_e}{V_{st}\times n}\times 10^3$	$\frac{912.5 \times P_{e}}{V_{st} \times n}$	
(c)	PS	$\frac{88.26 \times P_e}{V_{st} \times n} \times 10^3$	$\frac{900 \times P_{e}}{V_{st} \times n}$	

kPa (kgf/cm²)

kW (hp or PS)

rpm

l (here no cc (metric) unit is in use)

- Pme : Brake mean effective pressure
- Pe : Output
- V_{st} : Total displacement
- n : Engine speed

 $1 \text{kgf/cm}^2 = 9.80665 \times 10 \text{ kPa}$

Example

According to the specification sheet for the 4TNV84T series diesel engine, the rated output for the rated speed of 2400 rpm is 33.5 kW. What is the net mean effective pressure? The total displacement of the engine is 1995 cc.

Since the unit is in kW, equation (a) is used.

Pe	: Output	33.5 kW
V_{st}	: Total displacement	1.995 l
n	: Engine speed	2400 rpm

To obtain the net mean effective pressure in kPa:

$$P_{me} = \frac{120.0 \times P_{e}}{V_{st} \times n} \times 10^{3}$$
$$= \frac{120.0 \times 33.5}{1.995 \times 2400} \times 10^{3}$$

= 840 kPa

To obtain the net mean effective pressure in kgf/cm²:

$$P_{me} = \frac{1224 \times P_{e}}{V_{st} \times n}$$
$$= \frac{1224 \times 33.5}{1.995 \times 2400}$$
$$= 8.56 \text{ kgf/cm}^{2}$$

YANMAR. TNV Application Manual

REFERENCE MATERIALS

FUEL INJECTION

This value represents the fuel injection per 1000 strokes of one plunger of a fuel injection pump in weight.

Fuel Injection (g/1000 st)

$$Q = \frac{b \times P_e}{60 \times (n/2) \times N} \times 10^3$$

$$Q : Fuel injection quantity g/1000 st$$

$$b : Specific fuel consumption g/kWh$$

$$P_e : Output kW$$

$$n : Engine speed rpm$$

$$N : Number of engine cylinders$$

Example

According to the specifications sheet for the 4TNV98 series diesel engine, the rated output for the rated speed of 2500 rpm is 51.1 kW and the specific fuel consumption is 224 g/kWh. What is the injection quantity?

Q	: Fuel injection quantity	g/1000 st
b	: Specific fuel consumption	224 g/kWh
Pe	: Output	51.1 kW
n	: Engine speed	2500 rpm
Ν	: Number of engine cylinders	4

$$Q = \frac{b \times P_e}{60 \times (n/2) \times N} \times 10^3$$
$$= \frac{224 \times 51.1}{60 \times (2500/2) \times 4} \times 10^3$$
$$= 38.2 \text{ g}$$

$$-1000$$
 st

CYCLIC IRREGULARITY (OR COEFFICIENT OF SPEED FLUCTUATION)

Meaning of Cyclic Irregularity

 $\delta = \frac{\omega_{max} - \omega_{min}}{100} \times 100$

^{(Ω} mean

δ	:	Cyclic irregularity	%
^ω max	:	Maximum angular velocity during 1 cycle	rad/sec
ω _{min}	:	Minimum angular velocity during 1 cycle	rad/sec
ω_{mean}	:	Mean angular velocity during 1 cycle	rad/sec

The revolution angular velocity of an engine fluctuates cyclically during one cycle. The cyclic irregularity represents the percentage of fluctuation from the mean angular velocity (JIS B 0108-8.13). A theoretical formula can be derived from this, but generally Sass's empirical formula as follows is used.

Cyclic Irregularity by Sass's Empirical Formula

The cyclic irregularity by Sass's empirical formula is expressed as a fraction with a numerator of 1. This is customarily used.

Number of cylinders	Crank angle	Effect of supercharger	Sass's constant K
1	-	-	51 x 10 ⁶
2	-	-	21 x 10 ⁶
3	-	-	12.5 x 10 ⁶
4	90°	-	11.8 x 10 ⁶
	180°	-	2.7 x 10 ⁶
5	-	-	4.8 x 10 ⁶
6	-	None	1.6 x 10 ⁶
	-	Т	1.2 x 10 ⁶
	-	HT, DT, UT	0.96 x 10 ⁶

If output is in kW:

$$\delta = \frac{1}{\frac{n^3 \times GD^2}{K \times P_i} \times 0.7355}$$

δ	:	Cyclic irregularity	
n	:	Engine speed	rpm
GD ²	:	Inertia weight of flywheel	kg∙m²
К	:	Sass's constant	
Pi		Indicated output of engine $P_i = P_e / 0.8$	kW
Pe	:	Rated output of engine	kW

If output is in hp:

$$\begin{split} \delta &= \frac{1}{\frac{n^3 \times GD^2}{K \times P_i} \times 1.0139} \\ P_i &: \text{ Indicated output of engine } & \text{hp} \\ P_i &= P_e \,/ \, 0.8 \\ P_e &: \text{ Rated output of engine } & \text{hp} \end{split}$$

If output is in PS:

$$\begin{split} \delta &= \frac{1}{\frac{n^3 \times GD^2}{K \times P_i}} \\ P_i &: \text{ Indicated output of engine } & PS \\ P_i &= P_e \,/ \, 0.8 \\ P_e &: \text{ Rated output of engine } & PS \end{split}$$

Example

According to the specification sheet for the 4TNV98 series diesel engine, the rated output for a rated speed of 1500 rpm is 34.6 kW. Based on the torsional vibration materials in Torsional Vibration on page 18-1, the inertia weight GD² of a flywheel is 1.98 kg·m² for CL specifications. What is cyclic irregularity for this combination?

To find the cyclic irregularity when output is in kW:

$$\delta = \frac{1}{\frac{n^3 \times GD^2}{K \times P_i} \times 0.7355}$$
$$= \frac{1}{\frac{1500^3 \times 1.98}{2.7 \times 10^6 \times 43.25} \times 0.7355}$$
$$= \frac{1}{42}$$

δ	: Cyclic irregularity	
n	: Engine speed	1500 rpm
GD ²	: Inertia weight of flywheel	1.98 kg∙m ²
К	: Sass's constant (4-cylinder, 180° crank)	2.7 x 10 ⁶
Pi	: Indicated output of engine P _i = P _e / 0.8	43.25 kW (34.6 / 0.8)
Pe	: Rated output of engine	34.6 kW

THERMAL EFFICIENCY AND HEAT LOSS

Thermal Efficiency (η)

If specific fuel consumption is in kW:

$$\eta = \frac{8.6000 \times 10^{2} \times P_{e}}{H_{u} \times b \times P_{e} \times 10^{-3}} \times 10^{2}$$
$$= \frac{83.50}{b} \times 10^{2}$$
$$\eta \quad : \text{ Thermal efficiency} \qquad \%$$

•	3	
Pe	: Engine output	hp
Hu	: Lower calorific value of diesel fuel	10300 kcal/kg
b	: Specific fuel consumption	g/hph

 $1 \text{ kW} = 8.6000 \text{ x} 10^2 \text{ kcal/h}$

If specific fuel consumption is in hp:

$$\begin{split} \eta &= \frac{6.23610 \times 10^2 \times P_e}{H_u \times b \times P_e \times 10^{-3}} \times 10^2 \\ &= \frac{60.54}{b} \times 10^2 \\ \eta &: \text{Thermal efficiency} & \% \\ P_e &: \text{Engine output} & \text{hp} \\ H_u &: \text{Lower calorific value of diesel fuel} & 10300 \text{ kcal/kg} \\ b &: \text{Specific fuel consumption} & g/\text{hph} \end{split}$$

 $1 \text{ hp} = 6.23610 \text{ x} 10^2 \text{ kcal/h}$

η

If specific fuel consumption is in PS:

$$= \frac{6.32529 \times 10^2 \times P_e}{H_u \times b \times P_e \times 10^{-3}} \times 10^2$$

$$= \frac{61.41}{b} \times 10^2$$

$$\eta : \text{Thermal efficiency} \qquad \%$$

$$P_e : \text{Engine output} \qquad PS$$

$$H_u : \text{Lower calorific value of diesel fuel} \qquad 10300 \text{ kcal/kg}$$

$$b : \text{Specific fuel consumption} \qquad g/PSh$$

1 PS = 6.32529 x 10² kcal/h

REFERENCE MATERIALS

Example

The specific fuel consumption for the 4TNV98 series diesel engine for a rated output of 51.1 kW at the rated speed of 2500 rpm is 224 g/kWh. What is the thermal efficiency?

To find thermal efficiency when specific fuel consumption is in kW:

h	:	Thermal efficiency	%
Pe	:	Engine output	51.1 kW
H _u	:	Lower calorific value of diesel fuel	10300 kcal/kg
b	:	Specific fuel consumption	224 g/kWh

$$\eta = \frac{83.50}{b} \times 10^{2}$$
$$= \frac{83.50}{224} \times 10^{2}$$
$$= 0.373 \times 10^{2}$$

Exhaust Loss ϕ_{ex}

$$\phi_{ex} = \frac{\{n_t \times V_{st} \times 10^{-3} \times n/(2 \times 60)\} \times c \times t_{ex}}{H_u \times b \times 10^{-3} \times P_e/3600} \times 10^2$$

ϕ_{ex}	: Exhaust loss	%
V _{st}	: Total displacement	l
n	: Engine speed	rpm
η_t	: Intake efficiency	if unknown, use 0.85
Cp	: Specific heat at constant pressure	kcal/Nm ³ °C
t _{ex}	: Exhaust temperature	°C

Exhaust Temperature t _{ex} °C	Mean specific heat c kcal/Nm ³ °C
200	0.313
300	0.315
400	0.318
500	0.321
600	0.324

H_u : Lower calorific value of diesel fuel

- b : Specific fuel consumption
- P_e : Engine output

10300 kcal/kg g/kWh (g/hph, g/PSh) kW (hp, PS)

$$\phi_{ex} = 2.9126 \times 10^{-3} \times \frac{V_{st} \times n \times \eta_t \times c \times t_{ex}}{b \times P_e} \times 10^2$$

Example

The specific fuel consumption of the 3TNV76 series diesel engine for the rated output of 14.9 kW at the rated speed of 2500 rpm is 279 g/kWh, and the exhaust temperature is 500°C. What is the exhaust loss?

ϕ_{ex}	: Exhaust loss	%
V _{st}	: Total displacement	1.232 l
n	: Engine speed	2500 rpm
η_t	: Intake efficiency	0.85
с _р	: Specific heat at constant pressure	0.321 kcal/Nm ³ °C
t _{ex}	: Exhaust temperature	500°C
b	: Specific fuel consumption	279 g/kWh
Pe	: Engine output	14.9kW

$$\phi_{ex} = 2.9126 \times 10^{-3} \times \frac{V_{st} \times n \times \eta_t \times c_p \times t_{ex}}{b \times P_e} \times 10^2$$

= 2.9126 \times 10^{-3} \times \frac{1.232 \times 2500 \times 0.85 \times 0.321 \times 500}{279 \times 14.9} \times 10^2
= 0.294 \times 10^2
= 29.4 \%

Cooling Loss φcw

$$\phi_{cw} = \frac{(Q_p/60) \times \rho \times C_p \times (t_{wo} - t_{wi})}{H_u \times b \times 10^{-3} \times P_e/3600} \times 10^2$$

φ _{cw}	:	Cooling loss	%
Qp	:	Cooling water pump discharge	ℓ/min
r	:	Specific weight	1 kg/ℓ
Cp	:	Specific heat at constant pressure	1 kcal/kg°C
t _{wo}	:	Cooling water temperature at engine outlet	°C
t _{wi}	:	Cooling water temperature at engine inlet	°C
H _u	:	Lower calorific value of diesel fuel	10300 kcal/kg
b	:	Specific fuel consumption	g/kWh
Pe	:	Engine output	kW

$$\phi_{cw} = 5.8252 \times \frac{Q_{p} \times (t_{wo} - t_{wi})}{b \times P_{e}} \times 10^{2}$$

Example

The specific fuel consumption of the 3TNV76 series diesel engine for the rated output of 14.9 kW at the rated speed of 2500 rpm is 279 g/kWh. According to separate materials, the pump discharge is 34 L/min. If the difference of engine cooling water temperature between the outlet and inlet of the engine is 5° C, what is the cooling water loss of the engine?

φ _{cw}	:	Cooling loss	%
Qp	:	Cooling water pump discharge	34 l/min
(t _{wo} -t _{wi})	:	Temperature difference of cooling water between the outlet and inlet of the engine	5°C
b	:	Specific fuel consumption	279 g/kWh
Pe	:	Engine output	14.9 kW

$$\phi_{cw} = 5.8252 \times \frac{Q_{p} \times (t_{wo} - t_{wi})}{b \times P_{e}} \times 10^{2}$$
$$= 5.8252 \times \frac{34 \times 5}{279 \times 14.9} \times 10^{2}$$
$$= 0.238 \times 10^{2}$$
$$= 24\%$$

Other Loss ϕ_o

$$\begin{split} \phi_{o} &= 100 - (\eta + \phi_{ex} + \phi_{cw}) \\ \phi_{o} &: \text{Other loss} & \% \\ \eta &: \text{Thermal efficiency} & \% \\ \phi_{ex} &: \text{Exhaust loss} & \% \end{split}$$

$$\phi_{cw}$$
 : Cooling loss %

GENERATOR

Relation of Capacity (Output), Voltage and Current of AC Generator

Single Phase AC Generator

$$C~=~E\times I\times 10^{-3}$$

$$O = C \times pf$$

C : Capacity	kVA
O : Output	kW
E : Voltage	V
I : Current	А
pf : Power factor	1.0 for single-phase AC generator

3-phase AC Generator

$$C = \sqrt{3} \times E \times I \times 10^{-3}$$

$$O = C \times pf$$

$$C : Capacity \qquad kVA$$

$$O : Output \qquad kW$$

$$E : Voltage \qquad V$$

$$I : Current \qquad A$$

$$pf : Power factor \qquad 0.8 \text{ for 3-phase AC}$$

$$generator$$

Power Factor

Power factor is a term for expressing the property of the load, and not for matters concerning the characteristics of a generator.

The efficiency of a generator is affected if the power factor is different even if the output is the same. If an AC voltage is applied to capacitors, coil and resistors provided in series in the machine on the load side, the alternating current does not synchronize, resulting in a phase shift. This shift of phase is called power factor. (For more detailed descriptions, please refer to technical references.)

The power factor varies by machine; a rough guideline is as follows. If more detailed studies are necessary when selecting generator, check with the electric machine manufacturer

Electric equipment	Power factor%
Incandescent lamp	100
Electric heater	100
3-phase induction motor	70 to 90
Fluorescent lamp (with safety device)	55
Neon tube lamp	40 to 50
Resistance welding machine	40 to 50
AC arc welding machine	40 to 50
DC arc welding machine	50 to 80

When trying to decide on generator specifications, the type of load is unknown in advance. Therefore, the power factor of 1.0 is applied to a single-phase AC generator assuming the resistance load of an incandescent lamp and the heater for which the generator is comparatively frequently used.

In the case of a 3-phase AC generator, a power factor of 0.8 is customarily used as it is frequently used for the motor load.

Generator Capacity and Engine Output

 $O_G = C_G \times pf$

 $O_F = O_G / E_G$

O _G : Generator output	kW
C _G : Generator capacity	kVA
pf : power factor single-phase AC generator 3-phase AC generator	1.0 0.8
O _E : Engine output	kW
E_{G} : Generator efficiency	h

Strictly speaking, it is not possible to select an engine without knowing the power factor (pf) and the generator efficiency (E_G) even if a certain generator capacity only is specified. If a generator manufacturer needs to select an engine for a new application, always check on the generator efficiency and the power factor.

Since it is customary to use 0.8 as the power factor of a 3-phase AC generator, the required engine output can be obtained by using the generator efficiency (E_G) guideline as follows.

Select the engine so that the required engine output will be equivalent to or less than the continuous rated output.

Generato C	• •	Generator efficiency	Engine output O _E		or capacity C _G	Generator efficiency	Engine output O _E
kVA	kW	h	kW	kVA	kW	h	kW
1	0.8	68.0	1.2	37.5	30	86.8	34.6
2	1.6	70.0	2.3	40	32	87.0	36.8
3	2.4	72.0	3.3	45	36	87.4	41.2
5	4	77.0	5.2	50	40	87.8	45.6
6	4.8	78.0	6.2	56.25	45	88.2	51.0
6.25	5	79.0	6.3	60	48	88.4	54.3
7.5	6	82.0	7.3	62.5	50	88.5	56.5
10	8	82.0	9.8	75	60	89.1	67.3
12.5	10	82.0	12.2	80	64	89.3	71.7
15	12	83.0	14.5	100	80	90.0	88.9
18.75	15	83.0	18.1	120	96	90.0	107
20	16	84.0	19.0	125	100	90.0	111
25	20	85.2	23.5	130	104	90.0	116
30	24	85.9	27.9	140	112	90.0	124
31.25	25	86.0	29.1	150	120	90.5	133
35	28	86.5	32.4	160	128	90.5	141

Relation of number of poles, frequency and speed of the generator

$$n = \frac{120f}{p}$$

n	: Generator speed	rpm
---	-------------------	-----

f : Frequency Hz

p : Number of poles (2, 4, 6,---even number)

HYDRAULIC PUMP (GEAR)

Discharge ℓ/min

Theoretical Discharge

$$Q_t = 2\pi \times Z \times b \times m^2 \times N \times 10^{-6}$$

Real Discharge

 $Q_r = \eta_v \times Q_t$

Qt	:	Theoretical discharge	ℓ/min
----	---	-----------------------	-------

- Q_r : Real discharge ℓ/min
- Z : Number of drive gear teeth
- b : Face width
- m : Module
- N : Drive gear speed rpm
- η_V : Volume efficiency

Driving Horsepower (Required Horsepower)

Theoretical Driving Horsepower (Theoretical Required Horsepower)

		Discharge pressure P		
		kPa	kgf/cm ²	
The suctional	kW	$\frac{P\timesQ_{t}}{60}\times10^{-3}$	$\frac{P \times Q_t}{6 \times 102.0}$	
Theoretical driving horsepower L _t	hp	$\frac{P\timesQ_{t}}{60\times0.7457}\times10^{-3}$	$\frac{P \times Q_t}{6 \times 76.04}$	
-1	PS	$\frac{P\timesQ_{t}}{60\times0.7355}\times10^{-3}$	$\frac{P \times Q_t}{6 \times 75}$	

P : Discharge pressure

Q_t : Theoretical discharge

kPa (kgf/cm²) ℓ/min

 $1 \text{ kW} = 1.0000 \text{ x} 10^3 \text{ x} \text{ N} \cdot \text{m/s} = 102.0 \text{ kgf} \cdot \text{m/s}$

 $1 \text{ hp} = 0.7457 \text{ x} 10^3 \text{ x} \text{ N} \cdot \text{m/s} = 76.04 \text{ kgf} \cdot \text{m/s}$

 $1 \text{ PS} = 0.7355 \text{ x} 10^3 \text{ x} \text{ N} \cdot \text{m/s} = 75 \text{ kgf} \cdot \text{m/s}$

Real driving horsepower (real required horsepower)

 $L_r = L_t / \eta_p$

- L_r : Real driving horsepower (real required horsepower)
- Lt : Theoretical driving horsepower (theoretical required horsepower)
- $\eta_{\text{p}}~$: Total pump efficiency

 $\eta_p = \eta_v \times \eta_m$

- $\eta_{V}~$: Volumetric efficiency of pump
- $\eta_m\;$: Mechanical efficiency of pump

Guideline for Efficiency

	Volumetric efficiency	Overall efficiency
	η ν	η _p
Gear pump	75 to 85	65 to 80
Vane pump	85 to 93	75 to 85
Plunger pump	90 to 98	85 to 90

Actual Calculation Method

Theoretical discharge Q_t is calculated by the hydraulic pump manufacturer. The driving horsepower (required horsepower) is examined by using discharge cc/rev per pump revolution which is usually stated in the hydraulic pump specification.

Discharge cc/rev already includes estimated volumetric efficiency. Therefore, the driving horsepower (required horsepower) is obtained by only taking the mechanical efficiency m of the pump into consideration.

Discharge Q //min

 $Q = q \times n \times 10^{-3}$

Q	: Discharge	۵/min
---	-------------	-------

- q : Discharge per revolution of hydraulic pump cc/rev
- n : Hydraulic pump speed rpm

Driving Horsepower (Required Horsepower)

		Discharge pressure P		
		kPa	kgf/cm ²	
	kW	$\frac{P\times Q\times 10^{-3}}{60\times \eta_m}$	$\frac{P \times Q_t}{6 \times 102.0 \times \eta_m}$	
Driving horsepower L _h	hp	$\frac{P\times Q\times 10^{-3}}{60\times 0.7457\times \eta_m}$	$\frac{P \times Q_t}{6 \times 76.04 \times \eta_m}$	
	PS	$\frac{P \times Q \times 10^{-3}}{60 \times 0.7355 \times \eta_m}$	$\frac{P \times Q_t}{6 \times 75 \times \eta_m}$	

Lh	:	Driving horsepower	(required horsepower)	kW (hp, PS)
-n		Binnighorooponor	(loganoa nolooponol)	, (inp, i O)

Ρ	:	Discharge pressure	kPa (kgf/cm ²)
Q	:	Hydraulic pump discharge	ℓ/min
η_{m}	:	Mechanical efficiency of hydraulic pump	if unknown, 0.9

REFERENCE MATERIALS

WATER PUMP DRIVING HORSEPOWER (REQUIRED HORSEPOWER)

	kW	$\frac{\gamma \times Q \times H}{60 \times 102.0 \times \eta_m}$
Driving horsepower L _w	hp	$\frac{\gamma \times Q \times H}{60 \times 76.04 \times \eta_m}$
	PS	$\frac{\gamma \times Q \times H}{60 \times 75 \times \eta_m}$

 L_w : Driving horsepower (required horsepower) kW (hp, PS)

γ	: Specific weight	1 kg/ℓ
Q	: Water pump discharge	ℓ/min
Н	: Head	m

 $\eta_m \ : \ \text{Mechanical efficiency of water pump} \\ \text{Check the efficiency with the manufacturer as it varies greatly with the model.}$

Relation Between Water Temperature and Suction Head

Water temperature °C (°F)	Suction head (m)
0 (32)	6.7
20 (68)	6.8
40 (104)	4.7
60 (140)	2.3
70 (158)	0

(Under normal atmospheric conditions)

FORM CHARACTERISTICS OF COOLING FAN

Required horsepower	∞	n ³	$\cdot D^5$
Air capacity	x	n	• D ³
Back pressure	x	n²	$\cdot D^2$
Noise	∞	n ⁵	$\cdot D^7$

- n : Fan speed
- D : Fan diameter

This proportional expression is used for an estimation calculation if either n or D varies within a minor range.

MESH NUMBER AND SIZE OF MESH

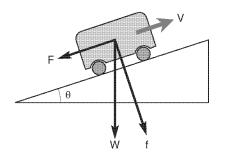
American sy	/stem (Tyler)	German	German Standard		
Mesh (Number of mesh/inch)	Size of mesh (mm)	Mesh (Number of mesh hole/ cm ²)	Size of mesh (mm)		
10	1.65	16	1.5		
12	1.40	25	1.2		
14	1.17	36	1.0		
16	0.99	64	0.75		
20	0.83	100	0.60		
24	0.70	121	0.54		
28	0.69	141	0.49		
32	0.50	196	0.43		
35	0.417	256	0.385		
42	0.351	400	0.300		
48	0.295	576	0.250		
60	0.240	900	0.200		
65	0.208	1600	0.150		
80	0.175	2500	0.120		
100	0.147	3600	0.102		
150	0.104	4900	0.088		
200	0.074	6400	0.075		
250	0.062	10000	0.060		
300	0.046				

CENTIGRADE-FAHRENHEIT TEMPERATURE CONVERSION

$$^{\circ}C = \frac{5}{9} \times ^{\circ}F - 32 \qquad ^{\circ}F = \frac{9}{5} \times ^{\circ}C + 32$$

Centigrade °C	Fahrenheit °F	Centigrade °C	Fahrenheit °F	Centigrade °C	Fahrenheit °F
-40	-40.0	30	86.0	74	165.2
-35	-31.0	31	87.8	75	167.0
-30	-22.0	32	89.6	76	168.8
-25	-13.0	33	91.4	77	170.6
-20	-4.0	34	93.2	78	172.4
-18	-0.4	35	95.0	79	174.2
-16	3.2	36	96.8	80	176.0
-14	6.8	37	98.6	81	177.8
-12	10.4	38	100.4	82	179.6
-10	14.0	39	102.2	83	181.4
-8	17.6	40	104.0	84	183.2
-6	21.2	41	105.8	85	185.0
-4	24.8	42	107.6	86	186.6
-2	28.4	43	109.4	87	188.6
0	32.0	44	111.2	88	190.4
1	33.8	45	113.0	89	192.2
2	35.6	46	114.8	90	194.0
3	37.4	47	116.6	91	195.8
4	39.2	48	118.4	92	197.6
5	41.0	49	120.2	93	199.4
6	42.8	50	122.0	94	202.2
7	44.6	51	123.8	95	203.0
8	46.4	52	125.6	96	204.8
9	48.2	53	127.4	97	206.6
10	50.0	54	129.2	98	208.4
11	51.8	55	131.0	99	210.2
12	53.6	56	132.8	100	212.0
13	55.4	57	134.6	101	213.8
14	57.2	58	136.4	102	215.6
15	59.0	59	138.2	102	217.4
16	61.8	60	140.0	104	219.2
17	63.6	61	141.8	105	221.0
18	65.4	62	143.6	105	222.8
19	67.2	63	145.4	100	224.6
20	68.0	64	147.2	107	224.0
20	69.8	65	149.0	109	228.2
22	71.6	66	150.8	110	230.0
23	71.0	67	152.6	112	233.6
23	75.2	68	152.0	114	237.2
25	77.0	69	156.2	116	240.8
26	78.8	70	158.0	118	240.8
20	80.6	70	158.0	120	244.4
28	80.8	71	161.6	120	248.0
20	84.2	72	163.4	122	251.6
29	04.2	13	103.4	1 124	200.2

HILL CLIMBING HORSEPOWER AND ALLOWABLE CLIMBING ANGLE


The required horsepower of a mobile driven machine can be divided into working, traveling and hill climbing horsepower.

The working horsepower refers to the horsepower at which the driven machine works at its maximum, and varies according to the workload. The traveling horsepower refers to the horsepower needed for moving the driven machine, which fluctuates sharply with the speed level and running resistance generated by the travel device (such as crawler, tire, etc.) and the road surface conditions (asphalt, soil, sand, farmland, etc.)

The required horsepower for both the working and the traveling must be measured with an actual machine test. The hill climbing horsepower can be calculated in advance. If the road surface conditions are assumed to be the same, the running resistance, that is, the traveling horsepower is assumed to remain unchanged for both the level and grade running.

Hill Climbing Horsepower

The required horsepower for a driven machine having gross vehicle weight W to climb a grade of incline angle θ at running speed V can be obtained from the calculation formula given in the table below:

W	: Gross vehicle weight	N (kgf)
θ	: Incline angle of a grade	rad (deg)
۷	: Running speed	m/sec
	= Wsinθ = Wcosθ	
1	$kW = 1.0000 \times 10^3 \text{ N} \cdot \text{m/s} = 102.0$	kgf⋅m/s

		Ngi m/o
1 hp	$= 0.7457 \text{ x } 10^3 \text{ N} \cdot \text{m/s} = 76.04$	kgf∙m/s
1 PS	= 0.7355 x 10 ³ N⋅m/s = 75	kgf∙m/s

	Gross Vehicle Weight W			
	N	kgf		
kW	$V imes W sin \theta imes 10^{-3}$	$\frac{V \times W \sin \theta}{102.0}$		
hp	$\frac{V\timesWsin\theta}{0.7457}\times10^{-3}$	$\frac{V\timesW\!\operatorname{sin}\!\theta}{76.04}$		
PS	$\frac{V\timesWsin\theta}{0.7355}\times10^{-3}$	$\frac{V \times W \sin \theta}{75}$		

REFERENCE MATERIALS

Allowable Hill Climbing Angle

A driven machine that has an engine that meets the required hill climbing horsepower does not necessarily climb the hill. Another point that must be considered is the limit of climbing angle generated from the coefficient of friction between the traveling device or from the characteristics of the road surface itself.

In other words, it is meaningless to consider the hill climbing horsepower beyond the limit of slipping between the traveling device and the road surface or in case of collapse of the road surface itself.

The driven machine manufacturer's data are needed for the dynamic coefficient of friction between the traveling device and various road surface conditions and the characteristics of the road surface material itself. Supposing that the coefficient is, the allowable hill climbing angle will be as follows:

 $\begin{array}{ll} \mathsf{F} & < \mu \, x \, \mathsf{f} \\ \mathsf{W} \sin \theta & < \mu \, x \, \mathsf{W} \cos \theta \\ \mathsf{tan} \theta & < \mathsf{m} \\ \theta & < \mathsf{tan}^{-1} \mu \end{array}$

If coefficient μ (determined by the environment of the driven machine) is known, a target limit of the climbing angle can be calculated regardless of the weight of the driven machine.

Section 20

CONVERSION FACTORS FOR SI UNITS

This Page Intentionally Left Blank

To convert from English (A)	To S.I. Metric (B)	Multiply by (C)	To old Metric (D)	Multiply by (E)
sq in	mm ²	645.16	cm ²	6.4516
sq ft	m ²	0.0929	m ²	0.0929
lb/cu ft	kg/m ³	16.0185	kg/m ³	16.0185
lbf	N	4.4482	Ň	4.4482
lbf/ft	N/m	14.5939	N/m	14.5939
Btu	kJ	1.0551	kcal	0.252
Btu/hr	w	0.2931	kcal/hr	0.252
Btu/scf	kJ/nm³	37.2590	kcal/nm³	0.1565
in	mm	25.400	cm	2.540
ft	m	0.3048	m	0.3048
yd	m	0.914	m	0.914
lb	kg	0.4536	kg	0.4536
hp	kW	0.7457	kW	0.7457
psi	kPa	6.8948	kg/cm ²	0.070
psia	kPa abs	6.8948	bars abs	0.0716
psig	kPa gage	6.8948	ata	0.070
in Hg	kPa	3.3769	cm Hg	2.540
in H ₂ O	kPa	0.2488	cm H ₂ O	2.540
°F	°C	(°F-32) 5/9	°C	(°-32) 5/9
°F (interval)	°C (interval)	5/9	°C (interval)	5/9
ft-lb	N-m	1.3558	N-m	1.3558
ft-lb	-	-	kgf∙m	0.1383
mph	km/hr	1.6093	km/hr	1.6093
ft/sec	m/sec	0.3048	m/sec	0.3048
cu ft	m ³	0.0283	m ³	0.0283
gal (US)	L	3.7854	L	3.7854
cfm	m ³ /min	0.0283	m ³ /min	0.0283
scfm	nm ³ /min	0.0268	nm ³ /hr	1.61
To convert from	To S I Metric	Multiply by	To old Metric	Multiply by

To convert from English	To S.I. Metric	Multiply by	To old Metric	Multiply by
cm ²	mm ²	100		
kcal	kJ	4.1868		
kcal/hr	W	1.16279		
cm	mm	10		
kg/cm ²	kPa	98.0665		
bars	kPa	100		
atm	kPa	101.325		
cm Hg	kPa	1.3332		
cm H ₂ O	kPa	9.8064		
nm ³ /hr	nm ³ /min	0.0176		

How to use this table.

1. If you want to convert from A to B, you have to multiply A and C together.

 $(B = A \times C)$

2. If you want to convert from A to D, you have to multiply A and E together.

```
(D = A \times E)
```

This Page Intentionally Left Blank

