PRODUCT RANGE

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Pressure</th>
<th>Flow Rate</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/270</td>
<td>HP915</td>
<td>8.6bar</td>
<td>27m³/min</td>
<td>950cfm</td>
</tr>
<tr>
<td>9/300</td>
<td>XP1000</td>
<td>8.6bar</td>
<td>30m³/min</td>
<td>1060cfm</td>
</tr>
<tr>
<td>12/235</td>
<td>VHP825</td>
<td>12bar</td>
<td>23m³/min</td>
<td>825cfm</td>
</tr>
<tr>
<td>17/235</td>
<td>-</td>
<td>17bar</td>
<td>23m³/min</td>
<td>825cfm</td>
</tr>
<tr>
<td>21/215</td>
<td>XHP750</td>
<td>21bar</td>
<td>21.5m³/min</td>
<td>760cfm</td>
</tr>
</tbody>
</table>

High ambient units (non CE) will now use the new nomenclature
- E.G. no longer use VHP825, now 12/235

Additional decal will distinguish between CE and non-CE units
- CE for CE units
- HA for non-CE units
SUMMARY

- The compressor can be divided in the following subsystems
 - ENGINE and AIREND
 - LUBRICATION & COOLING SYSTEM
 - SEPARATION SYSTEM
 - AIR FLOW REGULATION SYSTEM
 - INSTRUMENT/CONTROL PANEL
 - ELECTRICAL WIRING

- Troubleshooting

ENGINE TIER II

- 6IRQ9AE – Cummins QSL9
- 6 cylinders
- 8.9L displacement
- Power ratings @ 1800 RPM:
 - 224kW (300hp) - 9/270 & 12/235
 - 255kW (340hp) - 9/300, 17/235 & 21/215
- Turbocharged and after-cooled
- CAPS electronic injection pump
- Tier II certified
- 24 Volt Electrics

ENGINE TIER III

- 6IRQ9AE – Cummins QSL9
- 6 cylinders
- 8.9L displacement
- Power ratings @ 1800 RPM:
 - 224kW (300hp) - 9/270 & 12/235
 - 255kW (340hp) - 9/300, 17/235 & 21/215
- Turbocharged and after-cooled
- Common rail electronic
- Tier III certified
- 24 Volt Electrics
AIREND

- Casing houses two screw-type rotors mounted on ball and roller bearings.
- Diesel engine drives the male rotor through heavy-duty coupling.
- Mechanical seal used to seal the shaft.
- Gear sets allow to change rotor speed and therefore air output.
- Two different airends used on EMU range:
 - Single stage on 9/270, 9/300, 12/235
 - Two stages on 17/235, 21/215

WW 226mm AIREND

9/270, 9/300, 12/235
HR2 HIGH PRESSURE AIREND

- 2-stage airen
- Oil pump driven by second stage

17/235, 21/215

HR2 HIGH PRESSURE AIREND

HR2 HIGH PRESSURE AIREND
COMPRESSOR OIL SYSTEM

- Functions of the oil system:
 - Lubricating the rotors, airend bearings and mechanical seals
 - Sealing the clearances between the airend rotors
 - Cooling of the airend. Heat is generated during air compression.
- The oil flows due to the air pressure. Only the two-stage airend uses an oil pump.
SEPARATOR/RECEIVER TANK

• Stores the compressed air and oil.
• Pressure in the tank is forcing the oil through the system.
• An oil level indicator is provided.
• Assists in the oil cooling with fresh air passing around.

OIL TEMP. BYPASS VALVE

• Allows to regulate the oil temperature around 85°C.
• Keeping the oil hot enough allows to reduce the water condensation in the compressor.

Tip: never remove the thermostat as the oil would flow through the least restriction path and cooling would be impaired!

OIL TEMP. BYPASS VALVE

• Cold oil
• Hot oil
COOLER PACKAGE

- Aftercooler
- Radiator
- Oil Cooler

Check every day and clean if necessary to ensure high efficiency.

COOLING FAN

- The fan is a pusher type, fresh air flows around the engine.
- Make sure the compressor doors are closed during operation to prevent overheating!

OIL FILTERS

- Provide 10 microns filtration.
- Spring-loaded bypass valve is integrated in filter head.
SEPARATION SYSTEM

- Functions of the separation system:
 - Removing the oil contained in the compressed air
- Most of the oil is removed from the air through a specially shaped baffle in the separator tank.
- The remaining oil is removed by the separator element.

SEPARATION SCHEMATIC

SEPARATOR/RECEIVER TANK
SCAVENGE DROP TUBES

- The scavenge tube removes the oil trapped by the separator element.
- It extends up to approximately 6 to 12mm over the element’s bottom.

Tip: Always check scavenge tube length when replacing separator element.

SCAVENGE DROP TUBES

- The scavenge tube removes the oil trapped by the separator element.

Tip: Always check scavenge tube length when replacing separator element.

SCAVENGE LINE

- Returns to air inlet.
- Orifice is located in the elbow connector.
- It is designed to scavenge the oil while limiting the loss of air flow.

Tip: Look for clogged scavenge lines in case of oil carry over!
SAFETY VALVE

- Valve is on the oil side of the element where pressure is maximum when the separator element is blocked.

MINIMUM PRESSURE VALVE

- Maintains a min. pressure (~5bar) in the receiver to:
 - keep the oil flowing.
 - limit pressure drop across the separator.
- Continuous operation at min. pressure results in oil carry over due to insufficient scavenge flow.

SEPARATOR ELEMENT

Tip: Don’t remove the earth staple nor use sealant as this could lead to the separator getting electro statically charged!
AIR REGULATION SYSTEM

• The air regulation system continuously adjusts the production of compressed air to the consumption by controlling the engine speed and unloader valve.

• The blow down system allows to relieve the pressure from the separator tank automatically or manually if required.

AIR REGULATION SYSTEM

• The unloader is pneumatically controlled through the pressure regulator.
• As engine is electronically controlled, units do not have a pneumatic speed control cylinder.
• Engine speed is controlled by the engine ECM. The Wedge controller monitors regulation system pressure and separator tank pressure, measured by pressure transducers, PT2 and PT1. It then computes an engine speed to maintain discharge pressure. This throttle setting is sent to the engine ECM.

REGULATION SCHEMATIC
UNLOADER COMPRESSOR

- Pressurise the unloader valve to close it before starting.
- Stops when glow indicator lights off.
CAPTIVE SOLENOID

- Closed below 1450 RPM.
- Allows to keep the unloader valve closed to reduce load on the engine during start-up.

ORIFICE

- Continuously bleeds air from the regulation circuit.
- If blocked, unloader valve would never be able to open after start up and airend low oil pressure warning would register.
- Size of orifice greatly affects regulation characteristic and should not be adjusted.
- Located near PT2.

WEDGE CONTROLLER

- The WEDGE is located on the rear of the instrument panel.
WEDGE CONTROLLER

• WEDGE Controller is the heart of the machine monitor and control system.
• It is an Intel micro-controller based unit with analog and digital inputs and outputs.
• One of the function is to monitor regulator and discharge pressure, and varies engine speed to maintain air pressure at desired set point.

LOAD SOLENOID

• Situated on back of control panel or near unloader valve.

LOAD BUTTON

• The load button is a momentary action switch.
• It operates the load solenoid adjacent to the pressure regulator.
• Prior to being pressed the solenoid allows the air to by-pass the regulator.
REGULATOR VALVE - OPERATION

- Needle valve actuated by diaphragm and held closed by a spring.
- Controlled pressure preset in factory, can be adjusted by means of adjusting screw.
- Pin hole allows to determine diaphragm condition.

REGULATOR VALVE

- Situated on back of control panel or near unloader valve.
- Red tape is a resistor that allows defrosting in case of low temperature.

UNLOADER VALVE (one stage)

- Valve actuated by piston with diaphragm.
- Spring keeps valve normally opened, pressure on piston makes the valve close.
- Also acts as check valve to avoid oil going to filters during shut down.

Tip: Pin hole allows to determine if diaphragm has failed!
UNLOADER VALVE (one stage)

UNLOADER VALVE (two stages)

- Butterfly-type valve, normally open.
- Actuated by a piston cylinder. Pressure on piston makes the valve close.
- Check valve situated at airend outlet.
PRESSURE TRANSDUCER, PT1

PRESSURE TRANSDUCER, PT2

ANTI RUMBLE VALVE

- Allows some compressed air from the receiver to return to the inlet at idle.
- This prevents a too great vacuum at the inlet and possible rumble.
ANTI RUMBLE VALVE - OPERATION

AUTO BLOWDOWN CIRCUIT (one stage)

- Normally closed valve.
- Pilot is high pressure at inlet that appears when compressor stops and unloader check valve closes.

AUTO BLOWDOWN VALVE
AUTO BLOWDOWN VALVE

- Full Load & Idle Position
- Blowdown Position

AUTO BLOWDOWN CIRCUIT (2-stages)

- On 2-stage unloader with the butterfly valve the check valve is located on the discharge. Therefore no pressure can build up during shut down.
- Auto blowdown is done with normally open valve that is kept closed by pilot line during operation.

AUTO BLOWDOWN CIRCUIT (2-stages)

- Compressor
- Engine
- Valve opens
- Unit running, pressure keeps valve closed
- At shutdown, pressure evacuates
MANUAL BLOWDOWN VALVE

- Can be used as a back-up for the auto blow down valve.
- Must be closed before operation, if not the air regulation system will not work properly.

INSTRUMENT/CONTROL PANEL

- Interface between user and compressor.
- Provides control, monitoring and diagnostics functions.
First function of the WEDGE is to scan all analog and digital inputs at a fixed interval. The inputs are scanned every 50 milliseconds. The values are then compared against min. and max. values and an ALERT or SHUTDOWN is issued.

Second function is to monitor discharge pressure, and varies engine speed to maintain air pressure at desired set point.

Third function to retrieve diagnostic info from the engine.

1. HIGH COMPRESSOR TEMP. Indicates shutdown due to high comp. Temp.
2. LOW ENGINE OIL PRESSURE. Indicates shutdown due to low oil P.
3. HIGH ENGINE COOLANT TEMP. Indicates shutdown due to high water Temp.
4. LOW FUEL LEVEL. Indicates shutdown due to low fuel level.
5. LOW BATTERY VOLTS. Indicates battery/charging system needs service.
1. LOW ENGINE COOLANT LEVEL.
 Alarm indicator lamp. Indicates coolant needs service.

2. RESTRICTED AIR FILTER.
 Alarm indicator. Indicates eng/comp air filter needs service.

3. RESTRICTED ID FILTER.
 Shutdown indicator (if equipped)

4. COMPRESSOR MALFUNCTION.
 Indicates shutdown due to compressor system fault. Refer to fault code list.

5. ENGINE MALFUNCTION.
 Engine fault. Refer to engine fault codes.

6. FAULT CODE & DIAGNOSTICS DISPLAY.
 Refer to fault code and parameters lists.

CPRSR MALFUNCTION LIGHT

- 2-digits codes
- Extract of wedge fault code reference table v1.7

<table>
<thead>
<tr>
<th>ALERT CODE</th>
<th>LIGHT (10 RPM)</th>
<th>Machine ID CODE</th>
<th>LIGHT (10 RPM)</th>
<th>DELAY (sec)</th>
<th>Machine ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed + Max RPM</td>
<td>1</td>
<td>CPRSR-Mal</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Engine Speed - Max RPM</td>
<td>2</td>
<td>CPRSR-Mal</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Engine Cool Time Extended</td>
<td>3</td>
<td>CPRSR-Mal</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Water Temp: Temperature > 185 Deg F</td>
<td>4</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Water In Tap</td>
<td>5</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Sensor Circuit − Voltage Above Normal, or Shorted High</td>
<td>6</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Sensor Circuit − Voltage Below Normal, or Shorted Low</td>
<td>7</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Low − Warning</td>
<td>8</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Low − Warning</td>
<td>9</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Sensor Circuit − Voltage Above Normal, or Shorted High</td>
<td>10</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Engine Oil Pressure Sensor Circuit − Voltage Below Normal, or Shorted Low</td>
<td>11</td>
<td>CPRSR-Mal</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

ENGINE MALFUNCTION LIGHT

- 3,4-digits codes
- Extract of Cummins engine fault code reference table

<table>
<thead>
<tr>
<th>Displayed Code</th>
<th>Code Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Engine Control Module − Critical Internal Failure</td>
</tr>
<tr>
<td>113</td>
<td>Engine SpeedPosition Sensor Circuit − Lost Both of Two Signals</td>
</tr>
<tr>
<td>122</td>
<td>Intake Manifold Pressure Sensor Circuit − Voltage Above Normal, or Shorted High</td>
</tr>
<tr>
<td>123</td>
<td>Intake Manifold Pressure Sensor Circuit − Voltage Below Normal, or Shorted Low</td>
</tr>
<tr>
<td>132</td>
<td>Engine Coolant Temperature Sensor Circuit − Voltage Below Normal, or Shorted Low</td>
</tr>
</tbody>
</table>
DEDICATED LIGHTS

- No code
- Light state table, v1.7

Note: CAN derived data

<table>
<thead>
<tr>
<th>CODE</th>
<th>LIGHT in PKT</th>
<th>Machine Stat</th>
<th>CODE</th>
<th>LIGHT in PKT</th>
<th>Machine Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>24</td>
<td>1</td>
<td>P1</td>
<td>24</td>
</tr>
</tbody>
</table>

- Air Filter Red/Blue
- Speed
- Low Oil Pressure
- Engine Oil Pressure > RPM
- Low Coolant Level
- Engine Coolant Level > ambient
- Engine Coolant Temp > 315 deg F
- Engine Oil Pressure > 50 deg F
- Coolant Pressure
- Coolant Temp - FT2 to FT7

WEDGE DISPLAY

- Accessed by toggling:
 - "Service Switch" if machine is stopped
 - "Start" key switch if machine is running
- Number appears first and after three seconds parameter will be displayed

<table>
<thead>
<tr>
<th>Number</th>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RPM</td>
<td>F/W sensor</td>
</tr>
<tr>
<td>5</td>
<td>RPM Filtered</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reg system pressure</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sep tank pressure</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Discharge temperature</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sep tank temperature</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Discharge temperature</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Engine Oil temp</td>
<td>Engine code</td>
</tr>
<tr>
<td>12</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>13</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>14</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>15</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>16</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>17</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>18</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
<tr>
<td>19</td>
<td>Engine Oil Pressure</td>
<td>Engine code</td>
</tr>
</tbody>
</table>

** 1 = CU XHP Viking, 2 = CAT EMU LP, 3 = CAT EMU HP, 4 = XHP CAT Viking, 5 = CU EMU LP, 6 = CU EMU HP, 7 = P426 Deere, 8 = WW600

WEDGE OPERATION – STARTUP

Power "ON" at Control Panel:
- 1. Key switch signal (24VDC) supplied to engine controller by WEDGE controller
- 2. Frequency throttle signal ON
- 3. Unloader solenoid valve (L2) is closed (de-energized)
- 4. Start-up compressor is turned on for 10 seconds.

Engine Start-up:
- When the key is switched to the engine crank position:
 - 1. Unloader solenoid valve (L2) is closed (de-energized).
 - 2. Start compressor is turned on.
 - 3. Key switch signal (24VDC) is supplied to engine controller.
 - 4. K1 auxiliary start relay is energized.
 - 5. RunStart solenoid valve (L1) is opened (energized).

Note: Start compressor remains on, unloader solenoid stays open and unloader solenoid valve stays closed for 10 seconds after the key is released if the engine does not start.
- When the engine speed reaches 600 RPM (engine start declared):
 - 1. Engine speed is set to 1500 RPM.
- When the engine speed reaches 1450 RPM:
 - 1. Unloader solenoid valve is opened (energized) (L2)
 - 2. Start compressor is turned off.
 - 3. RunStart solenoid valve is closed (de-energized) (L2)
- When the separator tank pressure reaches 50 psi:
 - 1. RunStart solenoid valve is opened (energized) (L2)
- After 10 seconds:
 - 1. Engine speed is set to idle (1200 RPM), air and discharge temperature is approximately 100 degrees F or if J1939CAN is functioning: The engine coolant is 100 degrees F, the engine idle stays at 1500 RPM
WEDGE OPERATION – LOADING

Loading:
- When the “Service Air” switch is pushed:
 - 1. Engine speed is set to 1800 RPM
- When engine speed reaches 1700 RPM:
 - 1. Run/Start solenoid valve is closed (de-energized).
- After 2 seconds and if the regulation system pressure is 4 psi or greater:
 - 1. Compressor pressure control is engaged.

- Operation slightly different for two stage machines with butterfly unloader, see Electronic Service Manual.

WEDGE MACHINE ID

FOR WEDGE CONTROL SYSTEMS with V1.60 or Greater Software
- 1. Determine machine ID.
- 2. Turn power to the “ON” position. Machine must not be operating.
- 3. Toggle the switch until number “19” is reached. Push and hold the data input switch and the number “20” will appear. Continue to hold the switch. After 1 second, the machine ID will appear in the display. Continue to hold for 9 more seconds and a blinking “--” will appear. Release the switch.
- 5. Toggle the data input switch, the display will show “0”. Toggle the data input switch until the proper machine ID appears on the display, then stop the toggle sequence.
- 6. Wait until the controller performs a reset function (approximately 10 seconds). At reset, the controller display first goes blank, then all 10 annunciator LED’s light, the 4-digit LED display shows all 8’s, the display then shows the installed software version and finally the display goes blank and the engine oil pressure and alternator LED begin flashing. At this point the controller has stored the machine ID selected in step 5.
- 7. Check the setting.

WEDGE DISPLAY UNITS

- To determine which units the WEDGE has been configured for:
 - 1. With the machine power off (Key turned OFF)
 - 2. Press and hold the “Service Air” Switch
 - 3. Turn the key switch directly to the crank position.
 - 4. Hold these switch positions until the 4 digit LED display on the WEDGE goes blank.
 - 5. Release “Service Air” switch, release key switch to “ON”.
 - 6. Units will be displayed for 2 seconds as:
 - PSI for Deg C, PSI
 - “Bar” for Deg C, Bars
 - “MPa” for Deg C, Kg/cm2
 - “HPA” for Deg C, KPa

- To change the units setting:
 - 1. With the WEDGE showing the current setting, press and release the “Service Air” switch until the desired setting appears on the display.
 - 2. Once it appears, do not release the “Service Air” switch. Hold it in the ON position until the WEDGE restarts. This will select units selection that was displayed.
 - 3. Release the “Service Air” switch. The compressor is ready to start.
PDA SERVICE TOOL

• Plugs on connector near wedge controller.
• Features:
 – Extract shut down / alarm history
 – Read controller fault codes
 – Read/capture SAE J1939 engine data
 – Download controller software

ELECTRICAL WIRING

• System Diagram
• General Machine Wiring Schematic
• Control Panel Wiring Schematic

K – STARTUP AIR COMPRESSOR

- The WEDGE connects to the startup compressor through relay K2. The startup compressor is activated at engine crank to provide air to close the inlet valve to the airen.

- Troubleshooting:
 - The start compressor activate signal is turned on at engine crank for 10 seconds. At all other times it is off.
 - First ensure the protection fuse is not blown.
 - Then verify the control signal from the WEDGE to the K2 relay is activated at engine crank. This can be measured at P1-29 at the WEDGE or at pin 2 (85) on K2 relay.

MACHINE WIRING HARNESS

- Links the wedge controller to:
 - The engine controller
 - The compressor sensors
 - The actuators
 - The control panel
 - But NOT the engine sensors

- The engine sensors are link to the engine controller via the engine harness.
RT3 - DISCHARGE TEMP. SENDER

SWITCH S8 - OIL PRESSURE

WEDGE ID RESISTOR R1 (OBSOLETE)

Resistor Menu

<table>
<thead>
<tr>
<th>Machine ID Code</th>
<th>Machine Type</th>
<th>Resistor Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Viking HP CU</td>
<td>Green</td>
</tr>
<tr>
<td>1</td>
<td>Viking XHP CU</td>
<td>Blue</td>
</tr>
<tr>
<td>2</td>
<td>Emu LP CAT</td>
<td>Yellow</td>
</tr>
<tr>
<td>3</td>
<td>Emu HP CAT</td>
<td>Red</td>
</tr>
<tr>
<td>4</td>
<td>Viking XHP CAT</td>
<td>Black</td>
</tr>
<tr>
<td>5</td>
<td>Emu LP CU</td>
<td>Purple</td>
</tr>
<tr>
<td>6</td>
<td>Emu HP CU</td>
<td>Orange</td>
</tr>
<tr>
<td>7</td>
<td>Zenith P420</td>
<td>Grey</td>
</tr>
<tr>
<td>8</td>
<td>WW600</td>
<td>White</td>
</tr>
</tbody>
</table>

Machine ID Resistor 'R1'
Maintenance General

- Fuel Quality → SULFUR content
 - Recommended Sulfur content is less than 0.10% (1000ppm).
 - If sulfur is between 0.10 and 0.50% we strongly suggest decreasing oil maintenance intervals based on oil sampling data.

- Fuel Quality → Solid contaminants
 - Fuel used should meet EN590 or ASTM D975 specification
 - Dirty fuel will damage vital fuel system components, causing machine downtime and expensive repairs.
 - If Biofuel is used it should be conform to JD specs. (consult engine manual)

Options

- Aftercooler W/ Waterseparator
- IQ system
- Low Fuel Shutdown (beacon)
- Spark Arrestor
- Overspeed valve
- Work lights
- Service Lights
- Dual Pressure
- Auto Start/Stop